Zhang X, Chu Q, Guo G, Dong G, Li X, Zhang Q, Zhang S, Zhang Z, Wang Y. Genome-wide association studies identified multiple genetic loci for body size at four growth stages in Chinese Holstein cattle. PLoS One. 2017;12(4):e0175971. https://doi.org/10.1371/journal.pone.0175971 PMID: 28426785; PMCID: PMC5398616.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu HL, Xu CX, Jin YT, Hero JM, Du WG. Proximate causes of altitudinal differences in body size in an agamid lizard. Ecol Evol. 2017;8(1):645–54. https://doi.org/10.1002/ece3.3686 PMID: 29321901; PMCID: PMC5756846.
Article
PubMed
PubMed Central
Google Scholar
Cheng Y, Liu S, Su D, Lu C, Zhang X, Wu Q, Li S, Fu H, Yu H, Hao L. Distribution and linkage disequilibrium analysis of polymorphisms of GH1 gene in different populations of pigs associated with body size. J Genet. 2016;95(1):79–87. https://doi.org/10.1007/s12041-015-0611-0.
Article
CAS
PubMed
Google Scholar
Reimer C, Rubin CJ, Sharifi AR, Ha NT, Weigend S, Waldmann KH, Distl O, Pant SD, Fredholm M, Schlather M, Simianer H. Analysis of porcine body size variation using re-sequencing data of miniature and large pigs. BMC Genomics. 2018;19(1):687. https://doi.org/10.1186/s12864-018-5009-y PMID: 30231878; PMCID: PMC6146782.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hinrichs A, Kessler B, Kurome M, Blutke A, Kemter E, Bernau M, Scholz AM, Rathkolb B, Renner S, Bultmann S, Leonhardt H, de Angelis MH, Nagashima H, Hoeflich A, Blum WF, Bidlingmaier M, Wanke R, Dahlhoff M, Wolf E. Growth hormone receptor-deficient pigs resemble the pathophysiology of human Laron syndrome and reveal altered activation of signaling cascades in the liver. Mol Metab. 2018;11:113–28. https://doi.org/10.1016/j.molmet.2018.03.006 Epub 2018 Mar 15. PMID: 29678421; PMCID: PMC6001387.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu S, Wang Y, Ning Y, Guo H, Wang X, Zhang L, Khan R, Cheng G, Wang H, Zan L. Genetic Variants in STAT3 Promoter Regions and Their Application in Molecular Breeding for Body Size Traits in Qinchuan Cattle. Int J Mol Sci. 2018;19(4):1035. https://doi.org/10.3390/ijms19041035 PMID: 29596388; PMCID: PMC5979584.
Article
CAS
PubMed Central
Google Scholar
Bouwman AC, Daetwyler HD, Chamberlain AJ, et al. Meta-analysis of genome-wide association studies for cattle stature identifies common genes that regulate body size in mammals. Nat Genet. 2018;50(3):362–7. https://doi.org/10.1038/s41588-018-0056-5.
Article
CAS
Google Scholar
Lango Allen H, Estrada K, Lettre G, et al. Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature. 2010;467(7317):832–8. https://doi.org/10.1038/nature09410.
Article
CAS
PubMed
PubMed Central
Google Scholar
Signer-Hasler H, Flury C, Haase B, Burger D, Simianer H, Leeb T, Rieder S. A genome-wide association study reveals loci influencing height and other conformation traits in horses. PLoS One. 2012;7(5):e37282. https://doi.org/10.1371/journal.pone.0037282 Epub 2012 May 16. PMID: 22615965; PMCID: PMC3353922.
Article
CAS
PubMed
PubMed Central
Google Scholar
Metzger J, Rau J, Naccache F, Bas Conn L, Lindgren G, Distl O. Genome data uncover four synergistic key regulators for extremely small body size in horses. BMC Genomics. 2018;19(1):492. https://doi.org/10.1186/s12864-018-4877-5 PMID: 29940849; PMCID: PMC6019228.
Article
CAS
PubMed
PubMed Central
Google Scholar
Norton EM, Avila F, Schultz NE, Mickelson JR, Geor RJ, McCue ME. Evaluation of an HMGA2 variant for pleiotropic effects on height and metabolic traits in ponies. J Vet Intern Med. 2019;33(2):942–52. https://doi.org/10.1111/jvim.15403 Epub 2019 Jan 21. PMID: 30666754; PMCID: PMC6430908.
Article
PubMed
PubMed Central
Google Scholar
Moser SC, van der Eerden BCJ. Osteocalcin-A Versatile Bone-Derived Hormone. Front Endocrinol (Lausanne). 2019;9:794. https://doi.org/10.3389/fendo.2018.00794 PMID: 30687236; PMCID: PMC6335246.
Article
Google Scholar
Brotto M, Bonewald L. Bone and muscle: Interactions beyond mechanical. Bone. 2015;80:109–14. https://doi.org/10.1016/j.bone.2015.02.010 PMID: 26453500; PMCID: PMC4600532.
Article
PubMed
PubMed Central
Google Scholar
Dugarjaviin M, Yang H. Progress in the study of genetic diversity of Mongolian horse. Yi Chuan. 2008;30(3):269–76.
Article
Google Scholar
Li LF, Guan WJ, Hua Y, Bai XJ, Ma YH. Establishment and characterization of a fibroblast cell line from the Mongolian horse. In Vitro Cell Dev Biol -Animal. 2009;45:311–6.
Article
CAS
Google Scholar
Kader A, Liu X, Dong K, Song S, Pan J, Yang M, Chen X, He X, Jiang L, Ma Y. Identification of copy number variations in three Chinese horse breeds using 70K single nucleotide polymorphism bead Chip array. Anim Genet. 2016;47(5):560–9. https://doi.org/10.1111/age.12451.
Article
CAS
PubMed
Google Scholar
Kang MJ. Novel genetic cause of idiopathic short stature. Ann Pediatr Endocrinol Metab. 2017;22(3):153–7. https://doi.org/10.6065/apem.2017.22.3.153 Epub 2017 Sep 28. PMID: 29025200; PMCID: PMC5642075.
Article
PubMed
PubMed Central
Google Scholar
Fassone L, Corneli G, Bellone S, Camacho-Hübner C, Aimaretti G, Cappa M, Ubertini G, Bona MDG. Growth hormone receptor gene mutations in two Italian patients with Laron syndrome. J Endocrinol Investig. 2007;30:417–20. https://doi.org/10.1007/BF03346320.
Article
CAS
Google Scholar
Wade CM, Giulotto E, Sigurdsson S, et al. Genome sequence, comparative analysis, and population genetics of the domestic horse. Science. 2009;326(5954):865–7. https://doi.org/10.1126/science.1178158.
Article
CAS
PubMed
PubMed Central
Google Scholar
Coleman SJ, Zeng Z, Hestand MS, Liu J, Macleod JN. Analysis of unannotated equine transcripts identified by mRNA sequencing. PLoS One. 2013;8(7):e70125. https://doi.org/10.1371/journal.pone.0070125 Erratum in: PLoS One. 2014;8(9). doi:10.1371/annotation/b9b4a26a-4eb1-482f-b99d-e248f8ca31fa. PMID: 23922931; PMCID: PMC3726457.
Article
CAS
PubMed
PubMed Central
Google Scholar
Coleman SJ, Zeng Z, Wang K, Luo S, Khrebtukova I, Mienaltowski MJ, Schroth GP, Liu J, MacLeod JN. Structural annotation of equine protein-coding genes determined by mRNA sequencing. Anim Genet. 2010;41(Suppl 2):121–30. https://doi.org/10.1111/j.1365-2052.2010.02118.x.
Article
PubMed
Google Scholar
Liu XX, Pan JF, Zhao QJ, He XH, Pu YB, Han JL, Ma YH, Jiang L. Detecting selection signatures on the X chromosome of the Chinese Debao pony. J Anim Breed Genet. 2018;135(1):84–92. https://doi.org/10.1111/jbg.12314.
Article
CAS
PubMed
Google Scholar
Kader A, Li Y, Dong K, Irwin DM, Zhao Q, He X, Liu J, Pu Y, Gorkhali NA, Liu X, Jiang L, Li X, Guan W, Zhang Y, Wu DD, Ma Y. Population Variation Reveals Independent Selection toward Small Body Size in Chinese Debao Pony. Genome Biol Evol. 2015;8(1):42–50. https://doi.org/10.1093/gbe/evv245 PMID: 26637467; PMCID: PMC4758242.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bozzola M, Travaglino P, Marziliano N, et al. The shortness of pygmies is associated with severe under-expression of the growth hormone receptor. Mol Genet Metab. 2009;98(3):310–3. https://doi.org/10.1016/j.ymgme.2009.05.009.
Article
CAS
PubMed
Google Scholar
Venken K, Schuit F, Van Lommel L, et al. Growth without growth hormone receptor: estradiol is a major growth hormone-independent regulator of hepatic IGF-I synthesis. J Bone Miner Res. 2005;20(12):2138–49. https://doi.org/10.1359/JBMR.050811.
Article
CAS
PubMed
Google Scholar
Baliram R, Latif R, Morshed SA, Zaidi M, Davies TF. T3 Regulates a Human Macrophage-Derived TSH-β Splice Variant: Implications for Human Bone Biology. Endocrinology. 2016;157(9):3658–67. https://doi.org/10.1210/en.2015-1974 Epub 2016 Jun 14. PMID: 27300765; PMCID: PMC5007892.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bargi-Souza P, Romano RM, Goulart-Silva F, Brunetto EL, Nunes MT. T(3) rapidly regulates several steps of alpha subunit glycoprotein (CGA) synthesis and secretion in the pituitary of male rats: potential repercussions on TSH, FSH and LH secretion. Mol Cell Endocrinol. 2015;409:73–81. https://doi.org/10.1016/j.mce.2015.04.002.
Article
CAS
PubMed
Google Scholar
Bunda S, Kommaraju K, Heir P, Ohh M. SOCS-1 mediates ubiquitylation and degradation of GM-CSF receptor. PLoS One. 2013;8(9):e76370. https://doi.org/10.1371/journal.pone.0076370 PMID: 24086733; PMCID: PMC3784415.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vesterlund M, Zadjali F, Persson T, Nielsen ML, Kessler BM, Norstedt G, Flores-Morales A. The SOCS2 ubiquitin ligase complex regulates growth hormone receptor levels. PLoS One. 2011;6(9):e25358. https://doi.org/10.1371/journal.pone.0025358 Epub 2011 Sep 29. PMID: 21980433; PMCID: PMC3183054.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ungureanu D, Wu J, Pekkala T, Niranjan Y, Young C, Jensen ON, Xu CF, Neubert TA, Skoda RC, Hubbard SR, Silvennoinen O. The pseudokinase domain of JAK2 is a dual-specificity protein kinase that negatively regulates cytokine signaling. Nat Struct Mol Biol. 2011;18(9):971–6. https://doi.org/10.1038/nsmb.2099 PMID: 21841788; PMCID: PMC4504201.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vert A, Castro J, Ribó M, Benito A, Vilanova M. Activating transcription factor 3 is crucial for antitumor activity and to strengthen the antiviral properties of Onconase. Oncotarget. 2017;8(7):11692–707. https://doi.org/10.18632/oncotarget.14302 PMID: 28035074; PMCID: PMC5355296.
Article
PubMed
Google Scholar
Weng S, Zhou L, Deng Q, Wang J, Yu Y, Zhu J, Yuan Y. Niclosamide induced cell apoptosis via upregulation of ATF3 and activation of PERK in Hepatocellular carcinoma cells. BMC Gastroenterol. 2016;16:–25. https://doi.org/10.1186/s12876-016-0442-3 PMID: 26917416; PMCID: PMC4766699.
Yoon TM, Kim SA, Lee DH, Lee JK, Park YL, Lee KH, Chuang IJ, Joo YE. EGR1 regulates radiation-induced apoptosis in head and neck squamous cell carcinoma. Oncol Rep. 2015;33(4):1717–22. https://doi.org/10.3892/or.2015.3747.
Article
CAS
PubMed
Google Scholar
Li L, Zhao LM, Dai SL, Cui XW, Lv HL, Chen L, Shan BE. Periplocin extracted from cortex Periplocae induced apoptosis of gastric Cancer cells via the ERK1/2-EGR1 pathway. Cell Physiol Biochem. 2016;38(5):1939–51. https://doi.org/10.1159/000445555.
Article
CAS
PubMed
Google Scholar
Wu X, Zhou S, Zhu N, Wang X, Jin W, Song X, Chen A. Resveratrol attenuates hypoxia/reoxygenation-induced Ca2+ overload by inhibiting the Wnt5a/Frizzled-2 pathway in rat H9c2 cells. Mol Med Rep. 2014;10:2542–8. https://doi.org/10.3892/mmr.2014.2488.
Article
CAS
PubMed
Google Scholar
Julià A, González I, Fernández-Nebro A, et al. A genome-wide association study identifies SLC8A3 as a susceptibility locus for ACPA-positive rheumatoid arthritis. Rheumatology (Oxford). 2016;55(6):1106–11. https://doi.org/10.1093/rheumatology/kew035.
Article
CAS
Google Scholar
Wei Y, Wang Y, Wang Y, Bai L. Transient receptor potential Vanilloid 5 mediates Ca2+ influx and inhibits chondrocyte autophagy in a rat osteoarthritis model. Cell Physiol Biochem. 2017;42(1):319–32. https://doi.org/10.1159/000477387.
Article
CAS
PubMed
Google Scholar
Misawa A, Orimo H. lncRNA HOTAIR inhibits mineralization in Osteoblastic osteosarcoma cells by epigenetically repressing ALPL. Calcif Tissue Int. 2018;103(4):422–30. https://doi.org/10.1007/s00223-018-0434-0.
Article
CAS
PubMed
Google Scholar
Ambroszkiewicz J, Chełchowska M, Szamotulska K, Rowicka G, Klemarczyk W, Strucińska M, Gajewska J. The Assessment of Bone Regulatory Pathways, Bone Turnover, and Bone Mineral Density in Vegetarian and Omnivorous Children. Nutrients. 2018;10(2):183. https://doi.org/10.3390/nu10020183 PMID: 29414859; PMCID: PMC5852759.
Article
CAS
PubMed Central
Google Scholar
Hoch JM, Mattacola CG, Medina McKeon JM, Howard JS, Lattermann C. Serum cartilage oligomeric matrix protein (sCOMP) is elevated in patients with knee osteoarthritis: a systematic review and meta-analysis. Osteoarthritis Cartilage. 2011;19(12):1396–404. https://doi.org/10.1016/j.joca.2011.09.005 Epub 2011 Oct 5. PMID: 22001901; PMCID: PMC3962955.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. 2003;423(6937):337–42. https://doi.org/10.1038/nature01658.
Article
CAS
PubMed
Google Scholar
Makkawi H, Hoch S, Burns E, Hosur K, Hajishengallis G, Kirschning CJ, Nussbaum G. Porphyromonas gingivalis Stimulates TLR2-PI3K Signaling to Escape Immune Clearance and Induce Bone Resorption Independently of MyD88. Front Cell Infect Microbiol. 2017;7:359. https://doi.org/10.3389/fcimb.2017.00359 PMID: 28848717; PMCID: PMC5550410.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu X, Hu Y, Freire M, Yu P, Kawai T, Han X. Role of toll-like receptor 2 in inflammation and alveolar bone loss in experimental peri-implantitis versus periodontitis. J Periodontal Res. 2018;53(1):98–106. https://doi.org/10.1111/jre.12492 Epub 2017 Sep 5. PMID: 28872184; PMCID: PMC5760345.
Article
CAS
PubMed
Google Scholar
Wong BR, Josien R, Choi Y. TRANCE is a TNF family member that regulates dendritic cell and osteoclast function. J Leukoc Biol. 1999;65(6):715–24. https://doi.org/10.1002/jlb.65.6.715.
Article
CAS
PubMed
Google Scholar
Dougall WC, Glaccum M, Charrier K, Rohrbach K, Brasel K, De Smedt T, Daro E, Smith J, Tometsko ME, Maliszewski CR, Armstrong A, Shen V, Bain S, Cosman D, Anderson D, Morrissey PJ, Peschon JJ, Schuh J. RANK is essential for osteoclast and lymph node development. Genes Dev. 1999;13(18):2412–24. https://doi.org/10.1101/gad.13.18.2412 PMID: 10500098; PMCID: PMC317030.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mildmay-White A, Khan W. Cell surface markers on adipose-derived stem cells: a systematic review. Curr Stem Cell Res Ther. 2017;12(6):484–92. https://doi.org/10.2174/1574888X11666160429122133.
Article
CAS
PubMed
Google Scholar
Gale AL, Linardi RL, McClung G, Mammone RM, Ortved KF. Comparison of the Chondrogenic differentiation potential of equine synovial membrane-derived and bone marrow-derived Mesenchymal stem cells. Front Vet Sci. 2019;6:178.
Article
Google Scholar
Yoo HJ, Yoon SS, Park SY, Lee EY, Lee EB, Kim JH, Song YW. Gene expression profile during chondrogenesis in human bone marrow derived mesenchymal stem cells using a cDNA microarray. J Korean Med Sci. 2011;26(7):851–8. https://doi.org/10.3346/jkms.2011.26.7.851 Epub 2011 Jun 20. PMID: 21738335; PMCID: PMC3124712.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jo S, Han J, Lee YL, Yoon S, Lee J, Wang SE, Kim TH. Regulation of osteoblasts by alkaline phosphatase in ankylosing spondylitis. Int J Rheum Dis. 2019;22(2):252–61. https://doi.org/10.1111/1756-185X.13419.
Article
CAS
PubMed
Google Scholar
Aodengqimuge, Liu S, Mai S, Li X, Li Y, Hu M, Yuan S, Song L. AP-1 activation attenuates the arsenite-induced apoptotic response in human bronchial epithelial cells by up-regulating HO-1 expression. Biotechnol Lett. 2014;36(10):1927–36. https://doi.org/10.1007/s10529-014-1560-z.
Article
CAS
PubMed
Google Scholar
Kulik G. ADRB2-Targeting Therapies for Prostate Cancer. Cancers (Basel). 2019;11(3):358. https://doi.org/10.3390/cancers11030358 PMID: 30871232; PMCID: PMC6468358.
Article
CAS
Google Scholar
Poorebrahim M, Sadeghi S, Rahimi H, Karimipoor M, Azadmanesh K, Mazlomi MA, Teimoori-Toolabi L. Rational design of DKK3 structure-based small peptides as antagonists of Wnt signaling pathway and in silico evaluation of their efficiency. PLoS One. 2017;12(2):e0172217. https://doi.org/10.1371/journal.pone.0172217 PMID: 28234935; PMCID: PMC5325476.
Article
CAS
PubMed
PubMed Central
Google Scholar
Janda CY, Dang LT, You C, Chang J, de Lau W, Zhong ZA, Yan KS, Marecic O, Siepe D, Li X, Moody JD, Williams BO, Clevers H, Piehler J, Baker D, Kuo CJ, Garcia KC. Surrogate Wnt agonists that phenocopy canonical Wnt and β-catenin signalling. Nature. 2017;545(7653):234–7. https://doi.org/10.1038/nature22306 Epub 2017 May 3. PMID: 28467818; PMCID: PMC5815871.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qiao Y, Wang R, Yang X, Tang K, Jing N. Dual roles of histone H3 lysine 9 acetylation in human embryonic stem cell pluripotency and neural differentiation. J Biol Chem. 2015;290(4):2508–20. https://doi.org/10.1074/jbc M114.603761. Epub 2014 Dec 17. Erratum in: J Biol Chem. 2015 Apr 17;290(16):9949. PMID: 25519907; PMCID: PMC4303699.
Article
PubMed
Google Scholar
Song Q, Yi F, Zhang Y, Jun Li DK, Wei Y, Yu H, Zhang Y. CRKL regulates alternative splicing of cancer-related genes in cervical cancer samples and HeLa cell. BMC Cancer. 2019;19(1):499. https://doi.org/10.1186/s12885-019-5671-8 PMID: 31133010; PMCID: PMC6537309.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brown J, Pirrung M, McCue LA. FQC dashboard: integrates FastQC results into a web-based, interactive, and extensible FASTQ quality control tool. Bioinformatics. 2017;33(19):3137–9. https://doi.org/10.1093/bioinformatics/btx373.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kong Y. Btrim: a fast, lightweight adapter and quality trimming program for next-generation sequencing technologies. Genomics. 2014;98(2):152–3.
Article
Google Scholar
Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods. 2017;14(4):417–9.
Article
CAS
Google Scholar
Robinson MD. McCarthy DJ, and Smyth GK edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40.
Article
CAS
Google Scholar
Schurch NJ, Schofield P, Gierlinski M, Cole C, Sherstnev A, Singh V, Wrobel N, Gharbi K, Simpson GG, Owen-Hughes T, Blaxter M, Barton GJ. How many biological replicates are needed in an RNA-seq experiment and which differential expression tool should you use? RNA. 2016;22(6):839–51.
Article
CAS
Google Scholar
Parker RA, Clegg PD, Taylor SE. The in vitro effects of antibiotics on cell viability and gene expression of equine bone marrow-derived mesenchymal stromal cells. Equine Vet J. 2012;44(3):355–60.
Article
CAS
Google Scholar
Islam R, Matsuzaki K, Sumiyoshi E, Hossain ME, Hashimoto M, Katakura M, Sugimoto N, Shido O. Theobromine improves working memory by activating the CaMKII/CREB/BDNF pathway in rats. Nutrients. 2019;11(4):888.
Article
CAS
Google Scholar
Kumar P, Nagarajan A, Uchil PD. Analysis of Cell Viability by the MTT Assay. Cold Spring Harb Protoc. 2018;2018(6). https://doi.org/10.1101/pdb.prot095505.
Giry-Laterrie’re M, Verhoeyen E, Salmon P. Lentiviral vectors. Methods Mol Biol. 2011;737:183–209.
Article
Google Scholar
Lizee G, Aerts JL, Gonzales MI, Chinnasamy N, Morgan RA, Topalian SL. Real-time quantitative reverse transcriptase-polymerase chain reaction as a method for determining lentiviral vector titers and measuring transgene expression. Hum Gene Ther. 2003;14:497–507.
Article
CAS
Google Scholar