Ineno T, Tsuchida S, Kanda M, Watabe S. Thermal tolerance of a rainbow trout Oncorhynchus mykiss strain selected by high-temperature breeding. Fisheries Sci. 2005;71:767–75.
Article
CAS
Google Scholar
Dandekar A, Mendez R, Zhang K. Cross talk between ER stress, oxidative stress, and inflammation in health and disease. Methods Mol Biol. 2015;1292:205–14.
Article
CAS
PubMed
Google Scholar
Roberts RJ, Agius C, Saliba C, Bossier P, Sung YY. Heat shock proteins (chaperones) in fish and shellfish and their potential role in relation to fish health: a review. J Fish Dis. 2010;33:789–801.
Article
CAS
PubMed
Google Scholar
Slimen I, Najar T, Ghram A, Dabbebi H, Ben M, Abdrabbah M. Reactive oxygen species, heat stress and oxidative-induced mitochondrial damage a review. Int J Hyperth. 2014;30:513–23.
Article
CAS
Google Scholar
Xia B, Liu Z, Zhou Y, Wang Y, Huang J, Li Y, Kang Y, Wang J, Liu X. Effects of heat stress on biochemical parameters and heat shock protein family a (Hsp70) member 5 (HSPA5) mRNA expression in rainbow trout (Oncorhynchus mykiss). Mar Freshw Res. 2018;69:1674–80.
Article
CAS
Google Scholar
Li Y, Huang J, Liu Z, et al. Transcriptome analysis provides insights into hepatic responses to moderate heat stress in the rainbow trout (Oncorhynchus mykiss). Gene. 2017;619:1–9.
Article
CAS
PubMed
Google Scholar
Narum SR, Campbell NR. Transcriptomic response to heat stress among ecologically divergent populations of redband trout. BMC Genomics. 2015;16(1):103.
Article
PubMed
PubMed Central
CAS
Google Scholar
Huang J, Li Y, Kang Y, Liu Z, Wang J. Transcriptomic responses to heat stress in rainbow trout Oncorhynchus mykiss head kidney. Fish Shellfish Immunol. 2018;82:32–40.
Article
CAS
PubMed
Google Scholar
Ma F, Liu Z, Huang J, Li Y, Kang Y, Liu X. High-throughput sequencing reveals micrornas in response to heat stress in the head kidney of rainbow trout (Oncorhynchus mykiss). Funct Integr Genomics. 2019;19:775–86.
Danan M, Schwartz S, Edelheit S, Sorek R. Transcriptome wide discovery of circular RNAs in Archaea. Nucleic Acids Res. 2012;40:3131–42.
Article
CAS
PubMed
Google Scholar
Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495:333–8.
Article
CAS
PubMed
Google Scholar
Zhang X, Wang H, Zhang Y, Lu X, Chen L, Yang L. Complementary sequence-mediated exon circularization. Cell. 2014;159:134–47.
Article
CAS
PubMed
Google Scholar
Lu T, Cui L, Zhou Y, Zhu C, Fan D, Gong H, Zhao Q, Zhou C, Zhao Y, Lu D, Luo J, Wang Y, Tian Q, Feng Q, Huang T, Han B. Transcriptome-wide investigation of circular RNAs in rice. RNA. 2015;21:2076–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lasda E, Parker R. Circular RNAs co-precipitate with extracellular vesicles: a possible mechanism for circRNA clearance. PLoS One. 2016;11:e0148407.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shen Y, Guo X, Wang W. Identification and characterization of circular RNAs in zebrafish. FEBS Lett. 2017;591:213–20.
Article
CAS
PubMed
Google Scholar
Aktas T, Avsar I, Maticzka D, Bhardwaj V, Pessoa R, Mittler G, Akhtar A. DHX9 suppresses RNA processing defects originating from the Alu invasion of the human genome. Nature. 2017;544:115–9.
Article
CAS
PubMed
Google Scholar
Conn S, Pillman K, Toubia J, Conn V, Salmanidis M, Phillips C, Goodall G. The RNA binding protein quaking regulates formation of circRNAs. Cell. 2015;160:1125–34.
Article
CAS
PubMed
Google Scholar
Du W, Yang W, Chen Y. Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses. Eur Heart J. 2017;38:1402–12.
CAS
PubMed
Google Scholar
Dale C, Kumar P, Israr K, John K, Kate O, Erin G. Registered report: a coding-independent function of gene and pseudogene mrnas regulates tumour biology. Nature. 2015;465:1033–8.
Google Scholar
Quinn J, Chang H. Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet. 2016;17:47–62.
Article
CAS
PubMed
Google Scholar
Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi P. A cerna hypothesis: the rosetta stone of a hidden rna language? Cell. 2011;146:353–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Faghihi M, Modarresi F, Khalil A. Expression of a noncoding RNA is elevated in Alzheimer’s disease and drives rapid feed-forward regulation of beta-secretase. Nat Med. 2008;14:723–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bai Y, Long J, Liu Z, Lin J, Huang H, Wang D, Zhao H. Comprehensive analysis of a ceRNA network reveals potential prognostic cytoplasmic lncRNAs involved in HCC progression. J Cell Physiol. 2019;234:18837–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yan Y, Yu J, Liu H, Guo S, Zhang Y, Ye Y, Ming L. Construction of a long non-coding RNA-associated ceRNA network reveals potential prognostic lncRNA biomarkers in hepatocellular carcinoma. Pathol Res Pract. 2018;214:2031–8.
Article
CAS
PubMed
Google Scholar
Andrew D, Bosson J, Zamudio R, Phillip A. Endogenous mirna and target concentrations determine susceptibility to potential cerna competition. Mol Cell. 2014;56:347–59.
Article
CAS
Google Scholar
Berthelot C, Brunet F, Chalopin D. The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates. Nat Commun. 2014;5:3657.
Wang Y, Liu Z, Li Z, Shi H, Kang Y, Wang J, Huang J, Jiang L. Effects of heat stress on respiratory burst, oxidative damage and SERPINH1 (HSP47) mRNA expression in rainbow trout Oncorhynchus mykiss. Fish Physiol Biochem. 2016;42:701–10.
Kumar P, Nagarajan A, Uchil P. Analysis of cell viability by the lactate dehydrogenase assay. Cold Spring Harb Protoc. 2018;6:465–9.
Google Scholar
Rico B, Saavedra D, Rafael O, Shen L. Impact of cyclometalated ruthenium (II) complexes on lactate dehydrogenase activity and cytotoxicity in gastric and colon cancer cells. J Inorg Biochem. 2016;163:28–38.
Article
CAS
Google Scholar
Yao P, Potdar A, Arif A. Coding region Polyadenylation generates a truncated tRNA Synthetase that counters translation repression. Cell. 2012;149:88–100.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thomas M, Lieberman J, Ashish L. Desperately seeking microRNA targets. Nat Struct Mol Biol. 2010;17:1169–74.
Article
CAS
PubMed
Google Scholar
Hansen T, Jensen T, Clausen B. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495:384–8.
Article
CAS
PubMed
Google Scholar
Picard D. Heat-shock protein 90, a chaperone for folding and regulation. Cell Mol Life Sci. 2002;59:1640e8.
Article
Google Scholar
Yang Y, Liu B, Dai J, Srivastava P, Zammit D, Lefrançois L. Heat shock protein gp96 is a master chaperone for toll-like receptors and is important in the innate function of macrophages. Immunity. 2007;26:215e26.
Article
CAS
Google Scholar
Choi Y, Jo P, Choi C. Cadmium affects the expression of heat shock protein 90 and metallothionein mRNA in the Pacific oyster, Crassostrea gigas. Comp Biochem Physiol C. 2008;147:286e92.
Google Scholar
Huang C, Pai P, Kuo C. p53-mediated miR-18 repression activates HSF2 for IGF-IIR-dependent myocyte hypertrophy in hypertension-induced heart failure. Cell Death Dis. 2017;8:e2990.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shimizu S, Tanaka T, Takeda T. The Kampo medicine Yokukansan decreases MicroRNA-18 expression and recovers glucocorticoid receptors protein expression in the hypothalamus of stressed mice. Biomed Res Int. 2015;2:797280.
Google Scholar
Rausch M, Sertil A. A stressful microenvironment: opposing effects of the endoplasmic reticulum stress response in the suppression and enhancement of adaptive tumor immunity. Int Rev Immunol. 2015;34:104–22.
Article
CAS
PubMed
Google Scholar
Moberg G. Resource: when does stress become distress? Lab Animal. 1999;28:22–6.
Google Scholar
Rothenberger N, Somasundaram A, Stabile L. The role of the estrogen pathway in the tumor microenvironment. Int J Mol Sci. 2018;19:611.
Kang Y, Liu Z, Shi H, et al. Label-free quantification of protein expression in the rainbow trout (Oncorhynchus mykiss) in response to short-term exposure to heat stress. Comp Biochem Physiol Part D Genomics Proteomics. 2019;30:158–68.
Article
CAS
PubMed
Google Scholar
Vrtačnik P, Ostanek B, Mencej S, Marc J. The many faces of estrogen signaling. Biochem Med (Zagreb). 2014;24:329–42.
Article
Google Scholar
Wu M, Liu D, Zeng R. Epigallocatechin-3-gallate inhibits adipogenesis through down-regulation of PPARgamma and FAS expression mediated by PI3K-AKT signaling in 3T3-L1 cells. Eur J Pharmacol. 2017;795:134–42.
Article
CAS
PubMed
Google Scholar
Shu K, Zhang Y. Protodioscin protects PC12 cells against oxygen and glucose deprivation-induced injury through miR-124/AKT/Nrf2 pathway. Cell Stress Chaperones. 2019;24:1091-9.
Alabaster J, Gough P. The dissolved oxygen and temperature requirements of Atlantic salmon, Salmo salar L in the Thames estuary. J Fish Biol. 1986;29:613–21.
Article
Google Scholar
Lu Y, Wang B, Shi Q. Brusatol inhibits HIF-1 signaling pathway and suppresses glucose uptake under hypoxic conditions in HCT116 cells. Sci Rep. 2016;6:39123.
Article
CAS
PubMed
PubMed Central
Google Scholar