Ahmad P, Ahanger MA, Egamberdieva D, Alam P, Alyemeni MN, Ashraf M. Modification of osmolytes and antioxidant enzymes by 24-epibrassinolide in chickpea seedlings under mercury (hg) toxicity. J Plant Growth Regul. 2018;37:309–22.
Article
CAS
Google Scholar
Gupta AD, Karthikeyan S. Individual and combined toxic effect of nickel and chromium on biochemical constituents in E. coli using FTIR spectroscopy and principle component analysis. Ecotoxicol Environ Saf. 2016;130:289–94.
Article
CAS
PubMed
Google Scholar
Jan S, Alyemeni MN, Wijaya L, Alam P, Siddique KH, Ahmad P. Interactive effect of 24-epibrassinolide and silicon alleviates cadmium stress via the modulation of antioxidant defense and glyoxalase systems and macronutrient content in Pisum sativum L. seedlings. BMC Plant Biol. 2018;18(1):146.
Article
PubMed
PubMed Central
Google Scholar
Saidi I, Ayouni M, Dhieb A, Chtourou Y, Chaïbi W, Djebali W. Oxidative damages induced by short-term exposure to cadmium in bean plants: protective role of salicylic acid. S Afr J Bot. 2013;85:32–8.
Article
CAS
Google Scholar
Khan MR, Nazir F, Asgher M, Per TS, Khan NA. Selenium and sulfur influence ethylene formation and alleviate cadmium-induced oxidative stress by improving proline and glutathione production in wheat. J Plant Physiol. 2015;173:9–18.
Article
CAS
PubMed
Google Scholar
Zouari M, Elloumi N, Ahmed CB, Delmail D, Rouina BB, Abdallah FB, et al. Exogenous proline enhances growth, mineral uptake, antioxidant defense, and reduces cadmium-induced oxidative damage in young date palm (Phoenix dactylifera L.). Ecol Eng. 2016;86:202–9.
Article
Google Scholar
Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem. 2010;48(12):909–30.
Article
CAS
PubMed
Google Scholar
Srikanth K, Pereira E, Duarte AC, Ahmad I. Glutathione and its dependent enzymes’ modulatory responses to toxic metals and metalloids in fish—a review. Environ Sci Pollut Res Int. 2013;20(4):2133–49.
Article
CAS
PubMed
Google Scholar
Kimura H. Production and physiological effects of hydrogen sulfide. Antioxid Redox Signal. 2014;20(5):783–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang H, Tan ZQ, Hu LY, Wang SH, Luo JP, Jones RL. Hydrogen sulfide alleviates aluminum toxicity in germinating wheat seedlings. J Integr Plant Biol. 2010;52(6):556–67.
Article
CAS
PubMed
Google Scholar
Sun J, Wang R, Zhang X, Yu Y, Zhao R, Li Z, et al. Hydrogen sulfide alleviates cadmium toxicity through regulations of cadmium transport across the plasma and vacuolar membranes in Populus euphratica cells. Plant Physiol Biochem. 2013;65:67–74.
Article
CAS
PubMed
Google Scholar
Zhang L, Pei Y, Wang H, Jin Z, Liu Z, Qiao Z, et al. Hydrogen sulfide alleviates cadmium-induced cell death through restraining ROS accumulation in roots of Brassica rapa L. ssp. pekinensis. Oxidative Med Cell Longev. 2015;2015:804603.
Article
Google Scholar
Mostofa MG, Rahman A, Ansary MM, Watanabe A, Fujita M, Tran LS. Hydrogen sulfide modulates cadmium-induced physiological and biochemical responses to alleviate cadmium toxicity in rice. Sci Rep. 2015;5:14078.
Article
PubMed
PubMed Central
Google Scholar
Gutiérrez JC, Amaro F, Martín-González A. From heavy metal-binders to biosensors: ciliate metallothioneins discussed. Bioessays. 2009;31(7):805–16.
Article
PubMed
Google Scholar
Twagilimana L, Bohatier J, Groliere CA, Bonnemoy F, Sargos D. A new low-cost microbiotest with the protozoan Spirostomum teres: culture conditions and assessment of sensitivity of the ciliate to 14 pure chemicals. Ecotoxicol Environ Saf. 1998;41(3):231–44.
Article
CAS
PubMed
Google Scholar
Gilron G, Gransden SG, Lynn DH, Broadfoot J, Scroggins R. A behavioral toxicity test using the ciliated protozoan Tetrahymena thermophila. I. Method description. Environ Toxicol Chem. 1999;18(8):1813–6.
Article
CAS
Google Scholar
Fu C, Xiong J, Miao W. Genome-wide identification and characterization of cytochrome P450 monooxygenase genes in the ciliate Tetrahymena thermophila. BMC Genomics. 2009;10:208.
Article
PubMed
PubMed Central
Google Scholar
Xiong J, Feng L, Yuan D, Fu C, Miao W. Genome-wide identification and evolution of ATP-binding cassette transporters in the ciliate Tetrahymena thermophila: a case of functional divergence in a multigene family. BMC Evol Biol. 2010;10:330.
Article
PubMed
PubMed Central
Google Scholar
Üstüntanır Dede AF, Arslanyolu M. Genome-wide analysis of the Tetrahymena thermophila glutathione S-transferase gene superfamily. Genomics. 2019;111(4):534–48.
Article
PubMed
Google Scholar
Fu C, Yu T, Miao W, Shen Y. Tetrahymena: a good model organism for toxicology and ecotoxicology. Chin J Zool. 2005;40:108–13.
CAS
Google Scholar
Somasundaram S, Abraham JS, Maurya S, Toteja R, Gupta R, Makhija S. Expression and molecular characterization of stress-responsive genes (hsp70 and Mn-sod) and evaluation of antioxidant enzymes (CAT and GPx) in heavy metal exposed freshwater ciliate, Tetmemena sp. Mol Biol Rep. 2019;46(5):4921–31.
Article
CAS
PubMed
Google Scholar
Martín-González A, Díaz S, Borniquel S, Gallego A, Gutiérrez JC. Cytotoxicity and bioaccumulation of heavy metals by ciliated protozoa isolated from urban wastewater treatment plants. Res Microbiol. 2006;157(2):108–18.
Article
PubMed
Google Scholar
Noever DA, Matsos HC, Looger LL. Bioconvective indicators in Tetrahymena: nickel and copper protection from cadmium poisoning. J Environ Sci Health, Part A: Environ Sci Eng. 1992;27(2):403–17.
Google Scholar
Dayeh VR, Lynn DH, Bols NC. Cytotoxicity of metals common in mining effluent to rainbow trout cell lines and to the ciliated protozoan, Tetrahymena thermophila. Toxicol in Vitro. 2005;19(3):399–410.
Article
CAS
PubMed
Google Scholar
Ali B, Gill RA, Yang S, Gill MB, Ali S, Rafiq MT, et al. Hydrogen sulfide alleviates cadmium-induced morpho-physiological and ultrastructural changes in Brassica napus. Ecotoxicol Environ Saf. 2014;110:197–207.
Article
CAS
PubMed
Google Scholar
Jia H, Wang X, Dou Y, Liu D, Si W, Fang H, et al. Hydrogen sulfide-cysteine cycle system enhances cadmium tolerance through alleviating cadmium-induced oxidative stress and ion toxicity in Arabidopsis roots. Sci Rep. 2016;6:39702.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fu MM, Dawood M, Wang NH, Wu F. Exogenous hydrogen sulfide reduces cadmium uptake and alleviates cadmium toxicity in barley. J Plant Growth Regul. 2019;89:227–37.
Article
CAS
Google Scholar
Lv H, Xu J, Bo T, Wang W. Characterization of cystathionine β-synthase TtCbs1 and cysteine synthase TtCsa1 involved in cysteine biosynthesis in Tetrahymena thermophila. J Eukaryot Microbiol. 2020. https://doi.org/10.1111/jeu.12834.
Yang L, Zeng J, Wang P, Zhu J. Sodium hydrosulfide alleviates cadmium toxicity by changing cadmium chemical forms and increasing the activities of antioxidant enzymes in Salix. Environ Exp Bot. 2018;156:161–9.
Article
CAS
Google Scholar
Krumov N, Oder S, Perner-Nochta I, Angelov A, Posten C. Accumulation of CdS nanoparticles by yeasts in a fed-batch bioprocess. J Biotechnol. 2007;132(4):481–6.
Article
CAS
PubMed
Google Scholar
Juganson K, Mortimer M, Ivask A, Kasemets K, Kahru A. Extracellular conversion of silver ions into silver nanoparticles by protozoan Tetrahymena thermophila. Environ Sci Process Impacts. 2013;15(1):244–50.
Article
CAS
PubMed
Google Scholar
Juganson K, Mortimer M, Ivask A, Pucciarelli S, Miceli C, Orupõld K, et al. Mechanisms of toxic action of silver nanoparticles in the protozoan Tetrahymena thermophila: from gene expression to phenotypic events. Environ Pollut. 2017;225:481–9.
Article
CAS
PubMed
Google Scholar
Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 2009;25(9):1105–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chasapis CT, Andreini C, Georgiopolou AK, Stefanidou ME, Vlamis-Gardikas A. Identification of the zinc, copper and cadmium metalloproteome of the protozoon Tetrahymena thermophila by systematic bioinformatics. Arch Microbiol. 2017;199(8):1141–9.
Article
CAS
PubMed
Google Scholar
Ogawa I, Nakanishi H, Mori S, Nishizawa NK. Time course analysis of gene regulation under cadmium stress in rice. Plant Soil. 2009;325:97–108.
Article
CAS
Google Scholar
Wang J, Lv Z, Lei Z, Chen Z, Lv B, Yang H, et al. Expression and functional analysis of cytochrome P450 genes in the wolf spider Pardosa pseudoannulata under cadmium stress. Ecotoxicol Environ Saf. 2019;172:19–25.
Article
CAS
PubMed
Google Scholar
Armstrong RN. Glutathione S-transferases: reaction mechanism, structure, and function. Chem Res Toxicol. 1991;4(2):131–40.
Article
CAS
PubMed
Google Scholar
García-Mata C, Lamattina L. Hydrogen sulphide, a novel gasotransmitter involved in guard cell signalling. New Phytol. 2010;188(4):977–84.
Article
PubMed
Google Scholar
Toteja R, Makhija S, Sripoorna S, Abraham JS, Gupta R. Influence of copper and cadmium toxicity on antioxidant enzyme activity in freshwater ciliates. Indian J Exp Biol. 2017;55(10):694–701.
CAS
Google Scholar
de Francisco P, Martin-Gonzalez A, Turkewitz AP, Gutierrez JC. Extreme metal adapted, knockout and knockdown strains reveal a coordinated gene expression among different Tetrahymena thermophila metallothionein isoforms. PLoS One. 2017;12(12):e0189076.
Article
PubMed
PubMed Central
Google Scholar
Zhang H, Hu LY, Hu KD, He YD, Wang SH, Luo JP. Hydrogen sulfide promotes wheat seed germination and alleviates oxidative damage against copper stress. J Integr Plant Biol. 2008;50(12):1518–29.
Article
CAS
PubMed
Google Scholar
Bharwana SA, Ali S, Farooq MA, Ali B, Iqbal N, Abbas F, et al. Hydrogen sulfide ameliorates lead-induced morphological, photosynthetic, oxidative damages and biochemical changes in cotton. Environ Sci Pollut Res Int. 2014;21(1):717–31.
Article
CAS
PubMed
Google Scholar
Kim JS, Kim H, Yim B, Rhee JS, Won EJ, Lee YM. Identification and molecular characterization of two cu/Zn-SODs and Mn-SOD in the marine ciliate Euplotes crassus: modulation of enzyme activity and transcripts in response to copper and cadmium. Aquat Toxicol. 2018;199:296–304.
Article
CAS
PubMed
Google Scholar
Xie ZZ, Liu Y, Bian JS. Hydrogen sulfide and cellular redox homeostasis. Oxidative Med Cell Longev. 2016;2016:6043038.
Article
Google Scholar
Zhang YY, Yang J, Yin XX, Yang SP, Zhu YG. Arsenate toxicity and stress responses in the freshwater ciliate Tetrahymena pyriformis. Eur J Protistol. 2012;48(3):227–36.
Article
PubMed
Google Scholar
Zhang Y, Li Z, Kholodkevich S, Sharov A, Feng Y, Ren N, et al. Cadmium-induced oxidative stress, histopathology, and transcriptome changes in the hepatopancreas of freshwater crayfish (Procambarus clarkii). Sci Total Environ. 2019;666:944–55.
Article
CAS
PubMed
Google Scholar
Díaz S, Amaro F, Rico D, Campos V, Benítez L, Martín-González A, et al. Tetrahymena metallothioneins fall into two discrete subfamilies. PLoS One. 2007;2(3):e291.
Article
PubMed
PubMed Central
Google Scholar
Viarengo A, Burlando B, Ceratto N, Panfoli I. Antioxidant role of metallothioneins: a comparative overview. Cell Mol Biol (Noisy-le-grand). 2000;46(2):407–17.
CAS
Google Scholar
Rustichelli C, Visioli G, Kostecka D, Vurro E, di Toppi LS, Marmiroli N. Proteomic analysis in the lichen Physcia adscendens exposed to cadmium stress. Environ Pollut. 2008;156(3):1121–7.
Article
CAS
PubMed
Google Scholar
Pocsi I, Prade RA, Penninckx MJ. Glutathione, altruistic metabolite in fungi. Adv Microb Physiol. 2004;49:1–76.
Article
CAS
PubMed
Google Scholar
Zhang F, Li J, Huang J, Lin L, Wan X, Zhao J, et al. Transcriptome profiling reveals the important role of exogenous nitrogen in alleviating cadmium toxicity in poplar plants. J Plant Growth Regul. 2017;36:942–56.
Article
CAS
Google Scholar
Nair PM, Park SY, Choi J. Expression of catalase and glutathione S-transferase genes in Chironomus riparius on exposure to cadmium and nonylphenol. Comp Biochem Physiol C Toxicol Pharm. 2011;154(4):399–408.
Article
CAS
Google Scholar
Kim SH, Jung MY, Lee YM. Effect of heavy metals on the antioxidant enzymes in the marine ciliate Euplotes crassus. Toxicol Environ Heal Sci. 2011;3(4):213–9.
Article
Google Scholar
Pastore A, Federici G, Bertini E, Piemonte F. Analysis of glutathione: implication in redox and detoxification. Clin Chim Acta. 2003;333(1):19–39.
Article
CAS
PubMed
Google Scholar
Wang X, Wang C, Sheng H, Wang Y, Zeng J, Kang H, et al. Transcriptome-wide identification and expression analyses of ABC transporters in dwarf polish wheat under metal stresses. Biol Plant. 2017;61:293–304.
Article
CAS
Google Scholar
Bovet L, Feller U, Martinoia E. Possible involvement of plant ABC transporters in cadmium detoxification: a cDNA sub-microarray approach. Environ Int. 2005;31(2):263–7.
Article
CAS
PubMed
Google Scholar
Li ZS, Lu YP, Zhen RG, Szczypka M, Thiele DJ, Rea PA. A new pathway for vacuolar cadmium sequestration in Saccharomyces cerevisiae: YCF1-catalyzed transport of bis (glutathionato) cadmium. PNAS. 1997;94(1):42–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
McAleer MA, Breen MA, White NL, Matthews N. pABC11 (also known as MOAT-C and MRP5), a member of the ABC family of proteins, has anion transporter activity but does not confer multidrug resistance when overexpressed in human embryonic kidney 293 cells. J Biol Chem. 1999;274(33):23541–8.
Article
CAS
PubMed
Google Scholar
Long Y, Li Q, Wang Y, Cui Z. MRP proteins as potential mediators of heavy metal resistance in zebrafish cells. Comp Biochem Physiol C Toxicol Pharmacol. 2011;153(3):310–7.
Article
PubMed
Google Scholar
Ning Y, Dang H, Liu G, Xiong J, Yuan D, Feng L, et al. ATP-binding cassette transporter enhances tolerance to DDT in Tetrahymena. Sci China Life Sci. 2015;58(3):297–304.
Article
CAS
PubMed
Google Scholar
Einicker-Lamas M, Morales MM, Miranda K, Garcia-Abreu J, Oliveira AJ, Silva FL, et al. P-glycoprotein-like protein contributes to cadmium resistance in Euglena gracilis. J Comp Physiol B. 2003;173(7):559–64.
Article
CAS
PubMed
Google Scholar
Ivanina AV, Sokolova IM. Effects of cadmium exposure on expression and activity of P-glycoprotein in eastern oysters, Crassostrea virginica Gmelin. Aquat Toxicol. 2008;88(1):19–28.
Article
CAS
PubMed
Google Scholar
Xu J, Tian H, Liu X, Wang W, Liang A. Localization and functional analysis of HmgB3p, a novel protein containing high-mobility-group-box domain from Tetrahymena thermophila. Gene. 2013;526(2):87–95.
Article
CAS
PubMed
Google Scholar
Gaitonde MK. A spectrophotometric method for the direct determination of cysteine in the presence of other naturally occurring amino acids. Biochem J. 1967;104(2):627–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Heath RL, Packer L. Photoperoxidation in isolated chloroplasts: I. kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys. 1968;125(1):189–98.
Article
CAS
PubMed
Google Scholar
Peskin AV, Winterbourn CC. A microtiter plate assay for superoxide dismutase using a water-soluble tetrazolium salt (WST-1). Clin Chim Acta. 2000;293(1–2):157–66.
Article
CAS
PubMed
Google Scholar
Ozmen B, Ozmen D, Erkin E, Güner I, Habif S, Bayındır O. Lens superoxide dismutase and catalase activities in diabetic cataract. Clin Biochem. 2002;35(1):69–72.
Article
CAS
PubMed
Google Scholar
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat Biotechnol. 2011;29(7):644–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011;12:323.
Article
CAS
Google Scholar
Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2007;36:D480–4.
Article
PubMed
PubMed Central
Google Scholar
Mao X, Cai T, Olyarchuk JG, Wei L. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics. 2005;21(19):3787–93.
Article
CAS
PubMed
Google Scholar
Larionov A, Krause A, Miller W. A standard curve based method for relative real time PCR data processing. BMC Bioinform. 2005;6:62.
Article
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25(4):402–8.
Article
CAS
PubMed
Google Scholar