Carr FJ, Chill D, Maida N. The lactic acid Bacteria: a literature survey. Crit Rev Microbiol. 2002;28:281–370.
CAS
PubMed
Google Scholar
Singh VP. Recent approaches in food bio-preservation - a review. Open Vet J. 2018;8:104–11.
PubMed
PubMed Central
Google Scholar
Remenant B, Jaffrès E, Dousset X, Pilet M-F, Zagorec M. Bacterial spoilers of food: behavior, fitness and functional properties. Food Microbiol. 2015;45:45–53.
CAS
PubMed
Google Scholar
Nieminen TT, Koskinen K, Laine P, Hultman J, Säde E, Paulin L, et al. Comparison of microbial communities in marinated and unmarinated broiler meat by metagenomics. Int J Food Microbiol. 2012;157:142–9.
CAS
PubMed
Google Scholar
Ercolini D, Ferrocino I, Nasi A, Ndagijimana M, Vernocchi P, La Storia A, et al. Monitoring of microbial metabolites and bacterial diversity in beef stored under different packaging conditions. Appl Environ Microbiol. 2011;77:7372–81.
CAS
PubMed
PubMed Central
Google Scholar
Björkroth KJ, Geisen R, Schillinger U, Weiss N, Vos PD, Holzapfel WH, et al. Characterization of Leuconostoc gasicomitatum sp. nov., associated with spoiled raw tomato-marinated broiler meat strips packaged under modified-atmosphere conditions. Appl Environ Microbiol. 2000;66:3764–72.
PubMed
PubMed Central
Google Scholar
Vihavainen EJ, Björkroth KJ. Spoilage of value-added, high-oxygen modified-atmosphere packaged raw beef steaks by Leuconostoc gasicomitatum and Leuconostoc gelidum. Int J Food Microbiol. 2007;119:340–5.
CAS
PubMed
Google Scholar
Rahkila R, Nieminen T, Johansson P, Säde E, Björkroth J. Characterization and evaluation of the spoilage potential of Lactococcus piscium isolates from modified atmosphere packaged meat. Int J Food Microbiol. 2012;156:50–9.
CAS
PubMed
Google Scholar
Jääskeläinen E, Johansson P, Kostiainen O, Nieminen T, Schmidt G, Somervuo P, et al. Significance of heme-based respiration in meat spoilage caused by Leuconostoc gasicomitatum. Appl Environ Microbiol. 2013;79:1078–85.
PubMed
PubMed Central
Google Scholar
Doulgeraki AI, Ercolini D, Villani F, Nychas G-JE. Spoilage microbiota associated to the storage of raw meat in different conditions. Int J Food Microbiol. 2012;157:130–41.
PubMed
Google Scholar
Koort J, Murros A, Coenye T, Eerola S, Vandamme P, Sukura A, et al. Lactobacillus oligofermentans sp. nov., associated with spoilage of modified-atmosphere-packaged poultry products. Appl Environ Microbiol. 2005;71:4400–6.
CAS
PubMed
PubMed Central
Google Scholar
Johansson P, Paulin L, Säde E, Salovuori N, Alatalo ER, Björkroth KJ, et al. Genome sequence of a food spoilage lactic acid bacterium, Leuconostoc gasicomitatum LMG 18811T, in association with specific spoilage reactions. Appl Environ Microbiol. 2011;77:4344–51.
CAS
PubMed
PubMed Central
Google Scholar
Andreevskaya M, Hultman J, Johansson P, Laine P, Paulin L, Auvinen P, et al. Complete genome sequence of Leuconostoc gelidum subsp. gasicomitatum KG16–1, isolated from vacuum-packaged vegetable sausages. Stand Genomic Sci. 2016;11:40.
PubMed
PubMed Central
Google Scholar
Andreevskaya M, Johansson P, Laine P, Smolander O-P, Sonck M, Rahkila R, et al. Genome sequence and transcriptome analysis of meat-spoilage-associated lactic acid bacterium Lactococcus piscium MKFS47. Appl Environ Microbiol. 2015;81:3800–11.
CAS
PubMed
PubMed Central
Google Scholar
Andreevskaya M, Johansson P, Jääskeläinen E, Rämö T, Ritari J, Paulin L, et al. Lactobacillus oligofermentans glucose, ribose and xylose transcriptomes show higher similarity between glucose and xylose catabolism-induced responses in the early exponential growth phase. BMC Genomics. 2016;17:539.
PubMed
PubMed Central
Google Scholar
Andreevskaya M, Jääskeläinen E, Johansson P, Ylinen A, Paulin L, Björkroth J, et al. Food spoilage-associated Leuconostoc, Lactococcus, and Lactobacillus species display different survival strategies in response to competition. Appl Environ Microbiol. 2018;84. https://doi.org/10.1128/AEM.00554-18.
Zeikus JG. Thermophilic bacteria: ecology, physiology and technology. Enzym Microb Technol. 1979;1:243–52.
CAS
Google Scholar
D’Amico S, Collins T, Marx J-C, Feller G, Gerday C, Gerday C. Psychrophilic microorganisms: challenges for life. EMBO Rep. 2006;7:385–9.
PubMed
PubMed Central
Google Scholar
Morita RY. Psychrophilic bacteria. Bacteriol Rev. 1975;39:144–67.
CAS
PubMed
PubMed Central
Google Scholar
Hébraud M, Potier P. Cold shock response and low temperature adaptation in psychrotrophic bacteria. J Mol Microbiol Biotechnol. 1999;1:211–9.
PubMed
Google Scholar
De Maayer P, Anderson D, Cary C, Cowan DA. Some like it cold: understanding the survival strategies of psychrophiles. EMBO Rep. 2014;15:508–17.
PubMed
PubMed Central
Google Scholar
Barria C, Malecki M, Arraiano CM. Bacterial adaptation to cold. Microbiology. 2013;159(Pt_12):2437–43.
CAS
PubMed
Google Scholar
Tribelli PM, López NI. Reporting key features in cold-adapted bacteria. Life. 2018;8:8.
PubMed Central
Google Scholar
Zhang Y, Burkhardt DH, Rouskin S, Li G-W, Weissman JS, Gross CA. A Stress response that monitors and regulates mRNA structure is central to cold shock adaptation. Mol Cell. 2018;70:274–86 e7.
CAS
PubMed
PubMed Central
Google Scholar
Phadtare S. Recent developments in bacterial cold-shock response. Curr Issues Mol Biol. 2004;6:125–36.
CAS
PubMed
Google Scholar
Mogk A, Tomoyasu T, Goloubinoff P, Rüdiger S, Röder D, Langen H, et al. Identification of thermolabile Escherichia coli proteins: prevention and reversion of aggregation by DnaK and ClpB. EMBO J. 1999;18:6934–49.
CAS
PubMed
PubMed Central
Google Scholar
Wouters JA, Rombouts FM, Kuipers OP, de Vos WM, Abee T. The role of cold-shock proteins in low-temperature adaptation of food-related bacteria. Syst Appl Microbiol. 2000;23:165–73.
CAS
PubMed
Google Scholar
Kim WS, Dunn NW. Identification of a cold shock gene in lactic acid bacteria and the effect of cold shock on Cryotolerance. Curr Microbiol. 1997;35:59–63.
CAS
PubMed
Google Scholar
Varmanen P, Savijoki K. Responses of lactic acid Bacteria to heat stress. In: Tsakalidou E, Papadimitriou K, editors. Stress responses of lactic acid bacteria. Boston, MA: Springer US; 2011. p. 55–66. https://doi.org/10.1007/978-0-387-92771-8_3.
Chapter
Google Scholar
Saraoui T, Leroi F, Björkroth J, Pilet MF. Lactococcus piscium: a psychrotrophic lactic acid bacterium with bioprotective or spoilage activity in food—a review. J Appl Microbiol. 2016;121:907–18.
CAS
PubMed
Google Scholar
Matamoros S, Pilet MF, Gigout F, Prévost H, Leroi F. Selection and evaluation of seafood-borne psychrotrophic lactic acid bacteria as inhibitors of pathogenic and spoilage bacteria. Food Microbiol. 2009;26:638–44.
CAS
PubMed
Google Scholar
Brandi A, Giangrossi M, Paoloni S, Spurio R, Giuliodori AM, Pon CL, et al. Transcriptional and post-transcriptional events trigger de novo infB expression in cold stressed Escherichia coli. Nucleic Acids Res. 2019;47:4638–51.
CAS
PubMed
PubMed Central
Google Scholar
Graumann P, Marahiel MA. The major cold shock protein of Bacillus subtilis CspB binds with high affinity to the ATTGG- and CCAAT sequences in single stranded oligonucleotides. FEBS Lett. 1994;338:157–60.
CAS
PubMed
Google Scholar
Münch R, Hiller K, Barg H, Heldt D, Linz S, Wingender E, et al. PRODORIC: prokaryotic database of gene regulation. Nucleic Acids Res. 2003;31:266–9.
PubMed
PubMed Central
Google Scholar
Robison K, McGuire AM, Church GM. A comprehensive library of DNA-binding site matrices for 55 proteins applied to the complete Escherichia coli K-12 genome. J Mol Biol. 1998;284:241–54.
CAS
PubMed
Google Scholar
Novichkov PS, Kazakov AE, Ravcheev DA, Leyn SA, Kovaleva GY, Sutormin RA, et al. RegPrecise 3.0 – a resource for genome-scale exploration of transcriptional regulation in bacteria. BMC Genomics. 2013;14:745.
CAS
PubMed
PubMed Central
Google Scholar
Yamanaka K, Fang L, Inouye M. The CspA family in Escherichia coli : multiple gene duplication for stress adaptation. Mol Microbiol. 1998;27:247–55.
CAS
PubMed
Google Scholar
Woufers JA, Sander J-W, Kok J, de Vos WM, Kuipers OP, Abee T. Clustered organization and transcriptional analysis of a family of five csp genes of Lactococcus lactis MGl363. Microbiology. 1998;144:2885–93.
PubMed
Google Scholar
Hunger K, Beckering CL, Wiegeshoff F, Graumann PL, Marahiel MA. Cold-induced putative DEAD box RNA helicases CshA and CshB are essential for cold adaptation and interact with cold shock protein B in Bacillus subtilis. J Bacteriol. 2006;188:240–8.
CAS
PubMed
PubMed Central
Google Scholar
Giuliodori AM, Brandi A, Gualerzi CO, Pon CL. Preferential translation of cold-shock mRNAs during cold adaptation. RNA. 2004;10:265–76.
CAS
PubMed
PubMed Central
Google Scholar
Giuliodori AM, Brandi A, Giangrossi M, Gualerzi CO, Pon CL. Cold-stress-induced de novo expression of infC and role of IF3 in cold-shock translational bias. RNA. 2007;13:1355–65.
CAS
PubMed
PubMed Central
Google Scholar
Schiffthaler B, Serrano A, Street N, Delhomme N. Seidr: a gene meta-network calculation toolkit. bioRxiv. 2019:250696.
Luo F, Yang Y, Zhong J, Gao H, Khan L, Thompson DK, et al. Constructing gene co-expression networks and predicting functions of unknown genes by random matrix theory. BMC Bioinformatics. 2007;8:299.
PubMed
PubMed Central
Google Scholar
van Dam S, Võsa U, van der Graaf A, Franke L, de Magalhães JP. Gene co-expression analysis for functional classification and gene–disease predictions. Brief Bioinform. 2018;19:575–92.
PubMed
Google Scholar
Schlitt T, Palin K, Rung J, Dietmann S, Lappe M, Ukkonen E, et al. From gene networks to gene function. Genome Res. 2003;13:2568–76.
CAS
PubMed
PubMed Central
Google Scholar
Greene NP, Kaplan E, Crow A, Koronakis V. Antibiotic resistance mediated by the MacB ABC transporter family: a structural and functional perspective. Front Microbiol. 2018;9. https://doi.org/10.3389/fmicb.2018.00950.
Hesami S, Metcalf DS, Lumsden JS, MacInnes JI. Identification of cold-temperature-regulated genes in Flavobacterium psychrophilum. Appl Environ Microbiol. 2011;77:1593–600.
CAS
PubMed
PubMed Central
Google Scholar
Su Y, Jiang X, Wu W, Wang M, Hamid MI, Xiang M, et al. Genomic, transcriptomic, and proteomic analysis provide insights into the cold adaptation mechanism of the obligate psychrophilic fungus Mrakia psychrophila. G3 (Bethesda). 2016;6:3603–13.
CAS
Google Scholar
Connolly K, Rife JP, Culver G. Mechanistic insight into the ribosome biogenesis functions of the ancient protein KsgA. Mol Microbiol. 2008;70:1062–75.
CAS
PubMed
PubMed Central
Google Scholar
Puri P, Wetzel C, Saffert P, Gaston KW, Russell SP, Varela JAC, et al. Systematic identification of tRNAome and its dynamics in Lactococcus lactis. Mol Microbiol. 2014;93:944–56.
CAS
PubMed
PubMed Central
Google Scholar
Ishida K, Kunibayashi T, Tomikawa C, Ochi A, Kanai T, Hirata A, et al. Pseudouridine at position 55 in tRNA controls the contents of other modified nucleotides for low-temperature adaptation in the extreme-thermophilic eubacterium Thermus thermophilus. Nucleic Acids Res. 2011;39:2304–18.
CAS
PubMed
Google Scholar
Masuda I, Matsubara R, Christian T, Rojas ER, Yadavalli SS, Zhang L, et al. tRNA methylation is a global determinant of bacterial multi-drug resistance. Cell Syst. 2019;8:302–14 e8.
CAS
PubMed
PubMed Central
Google Scholar
Aguilar PS, Hernandez-Arriaga AM, Cybulski LE, Erazo AC, de Mendoza D. Molecular basis of thermosensing: a two-component signal transduction thermometer in Bacillus subtilis. EMBO J. 2001;20:1681–91.
CAS
PubMed
PubMed Central
Google Scholar
Dubrac S, Boneca IG, Poupel O, Msadek T. New insights into the WalK/WalR (YycG/YycF) essential signal transduction pathway reveal a major role in controlling cell wall metabolism and biofilm formation in Staphylococcus aureus. J Bacteriol. 2007;189:8257–69.
CAS
PubMed
PubMed Central
Google Scholar
Geiger O, Sohlenkamp C, López-Lara IM. Formation of bacterial glycerol-based membrane lipids: pathways, enzymes, and reactions. In: Geiger O, editor. Biogenesis of fatty acids, lipids and membranes. Cham: Springer International Publishing; 2019. p. 87–107. https://doi.org/10.1007/978-3-319-50430-8_8.
Chapter
Google Scholar
Varmanen P, Ingmer H, Vogensen FK. ctsR of Lactococcus lactis encodes a negative regulator of clp gene expression. Microbiology. 2000;146:1447–55.
CAS
PubMed
Google Scholar
Warner JB, Lolkema JS. CcpA-dependent carbon catabolite repression in bacteria. Microbiol Mol Biol Rev. 2003;67:475–90.
CAS
PubMed
PubMed Central
Google Scholar
Somervuo P, Koskinen P, Mei P, Holm L, Auvinen P, Paulin L. BARCOSEL: a tool for selecting an optimal barcode set for high-throughput sequencing. BMC Bioinformatics. 2018;19:257.
PubMed
PubMed Central
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.
CAS
PubMed
PubMed Central
Google Scholar
Kopylova E, Noé L, Touzet H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics. 2012;28:3211–7.
CAS
PubMed
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nat Methods. 2012;9:357–9.
CAS
PubMed
PubMed Central
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.
PubMed
PubMed Central
Google Scholar
Anders S, Pyl PT, Huber W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31:166–9.
CAS
PubMed
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol . 2014;15:550.
Törönen P, Medlar A, Holm L. PANNZER2: a rapid functional annotation web server. Nucleic Acids Res. 2018;46:W84–8.
PubMed
PubMed Central
Google Scholar
Alexa A, Rahnenfuhrer J. topGO: topGO: Enrichment analysis for Gene Ontology. Available at: https://bioconductor.org/packages/release/bioc/html/topGO.html.
Yu G, Wang L-G, Han Y, He Q-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16:284–7.
CAS
PubMed
PubMed Central
Google Scholar
Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016;44:D457–62.
CAS
PubMed
Google Scholar
Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 2007;35:W182–5.
PubMed
PubMed Central
Google Scholar
Karp PD, Latendresse M, Paley SM, Krummenacker M, Ong QD, Billington R, et al. Pathway tools version 19.0 update: software for pathway/genome informatics and systems biology. Brief Bioinform. 2016;17:877–90.
CAS
PubMed
Google Scholar
Rosvall M, Bergstrom CT. Maps of random walks on complex networks reveal community structure. PNAS. 2008;105:1118–23.
CAS
PubMed
PubMed Central
Google Scholar
Rosvall M, Axelsson D, Bergstrom CT. The map equation. Eur Phys J Spec Top. 2009;178:13–23.
Google Scholar
Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, et al. MEME suite: tools for motif discovery and searching. Nucleic Acids Res. 2009;37:W202–8.
CAS
PubMed
PubMed Central
Google Scholar
Kiliç S, White ER, Sagitova DM, Cornish JP, Erill I. CollecTF: a database of experimentally validated transcription factor-binding sites in Bacteria. Nucleic Acids Res. 2014;42(Database issue):D156–60.
PubMed
Google Scholar
Cipriano MJ, Novichkov PN, Kazakov AE, Rodionov DA, Arkin AP, Gelfand MS, et al. RegTransBase – a database of regulatory sequences and interactions based on literature: a resource for investigating transcriptional regulation in prokaryotes. BMC Genomics. 2013;14:213.
CAS
PubMed
PubMed Central
Google Scholar
Pachkov M, Erb I, Molina N, van Nimwegen E. SwissRegulon: a database of genome-wide annotations of regulatory sites. Nucleic Acids Res. 2007;35(suppl_1):D127–31.
CAS
PubMed
Google Scholar
Gupta S, Stamatoyannopoulos JA, Bailey TL, Noble WS. Quantifying similarity between motifs. Genome Biol. 2007;8:R24.
PubMed
PubMed Central
Google Scholar
McLeay RC, Bailey TL. Motif enrichment analysis: a unified framework and an evaluation on ChIP data. BMC Bioinformatics. 2010;11:165.
PubMed
PubMed Central
Google Scholar