Chase CD. Cytoplasmic male sterility: a window to the world of plant mitochondrial-nuclear interactions. Trends Genet. 2007;23(2):81–90.
Article
CAS
PubMed
Google Scholar
Wu J, Gong Y, Cui M, Qi T, Guo L, Zhang J, Xing C. Molecular characterization of cytoplasmic male sterility conditioned by Gossypium harknessii cytoplasm (CMS-D2) in upland cotton. Euphytica. 2011;181(1):17–29.
Article
CAS
Google Scholar
Linke B, Börner TJM. Mitochondrial effects on flower and pollen development. Mitochondrion. 2005;5(6):389–402.
Article
CAS
PubMed
Google Scholar
Hanson MR. Plant mitochondrial mutations and male sterility. Annu Rev Genet. 1991;25:461–86.
Article
CAS
PubMed
Google Scholar
Bohra A, Jha UC, Adhimoolam P, Bisht D, Singh NP. Cytoplasmic male sterility (CMS) in hybrid breeding in field crops. Plant Cell Rep. 2016;35(5):967–93.
Article
CAS
PubMed
Google Scholar
Laughnan JR, Gabay-Laughnan S. Cytoplasmic male sterility in maize. Annu Rev Genet. 1983;17:27–48.
Article
CAS
PubMed
Google Scholar
Jaqueth JS, Hou Z, Zheng P, Ren R, Nagel BA, Cutter G, Niu X, Vollbrecht E, Greene TW, Kumpatla SP. Fertility restoration of maize CMS-C altered by a single amino acid substitution within the Rf4 bHLH transcription factor. Plant J. 2020;101(1):101–111. https://onlinelibrary.wiley.com/doi/full/10.1111/tpj.14521.
Akagi H, Sakamoto M, Shinjyo C, Shimada H, Fujimura TJCG. A unique sequence located downstream from the rice mitochondrial atp6 may cause male sterility. Curr Genet. 1994;25(1):52–8.
Article
CAS
PubMed
Google Scholar
Chang Z, Chen Z, Wang N, Xie G, Lu J, Yan W, Zhou J, Tang X, Deng X. Construction of a male sterility system for hybrid rice breeding and seed production using a nuclear male sterility gene. Proc Natl Acad Sci U S A. 2016;113(49):14145–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ma Y, Huang W, Ji J, Gong Z, Yin C, Ahmed SS, Zhao Z. Maintaining and restoring cytoplasmic male sterility systems in pepper (Capsicum annuum L.). Genet Mol Res. 2013;12(3):2320–31.
Article
CAS
PubMed
Google Scholar
Tang HV, Pring DR, Shaw LC, Salazar RA, Muza FR, Yan B, Schertz KFJPJ. Transcript processing internal to a mitochondrial open reading frame is correlated with fertility restoration in male-sterile sorghum. Plant J. 2010;10(1):123–33.
Article
Google Scholar
Zheng J, Kong X, Li B, Khan A, Li Z, Liu Y, Kang H, Ullah Dawar F, Zhou R. Comparative Transcriptome Analysis between a Novel Allohexaploid Cotton Progeny CMS Line LD6A and Its Maintainer Line LD6B. Int J Mol Sci. 2019;20(24):6127. https://pubmed.ncbi.nlm.nih.gov/31817342/.
Meyer VG. Male Sterility From Gossypium harknessii. J Hered. 1975;66: 23– 27. http://scholar.google.com/scholar_lookup?hl=en&volume=66&publication_year=1975&pages=23-27&journal=J.+Hered.&author=V.G.+Meyer&title=+Male+sterility+from+G.+harknessii.
Weaver DB, Weaver JB. Inheritance of pollen fertility restoration in cytoplasmic male-sterile upland Cotton1. Crop Sci. 1977;17(4):497–9.
Article
Google Scholar
Stewart J.McD. A new cytoplasmic male sterile and restorer for cotton. Proc. Beltwide Cotton Conf. Memphis: National Cotton Council; 1992. p. 610. http://scholar.google.com/scholar_lookup?hl=en&publication_year=1992&pages=610&author=J.McD.+Stewart&title=A+new+cytoplasmic+male+sterile+and+restorer+for+cotton.
Zhang C. Preliminary studies and breeding on cytoplasmic male sterility three-line of Gossypium hirsutum L. Wuhan: HuaZhong Agricultural University; 2005. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CMFD&dbname=CMFD2007&filename=2006191887.nh&v=gfVw8rj3146kpRMJr7Y85%25mmd2BaZVMnko88LtIWptpqukdFelfGJrUAyurF%25mmd2FV2cwtzDC.
Zhang J, Stewart JM. Inheritance and Genetic Relationships of the D8 and D2–2 Restorer Genes for Cotton Cytoplasmic Male Sterility. Crop Sci. 2001;41:289–294. https://www.researchgate.net/publication/228428061_Inheritance_and_Genetic_Relationships_of_the_D8_and_D2-2_Restorer_Genes_for_Cotton_Cytoplasmic_Male_Sterility.
Liu L, Guo W, Zhu X, Zhang T. Inheritance and fine mapping of fertility restoration for cytoplasmic male sterility in Gossypium hirsutum L. Theor Appl Genet. 2003;106(3):461–9.
Article
CAS
PubMed
Google Scholar
Feng CD, Stewart JMD, Zhang J. STS markers linked to the Rf1 fertility restorer gene of cotton. Theor Appl Genet. 2005;110(2):237–43.
Article
CAS
PubMed
Google Scholar
Yin J, Guo W, Yang L, Liu L, Zhang T. Physical mapping of the Rf1 fertility-restoring gene to a 100 kb region in cotton. Theor Appl Genet. 2006;112(7):1318–25.
Article
CAS
PubMed
Google Scholar
Wu J, Cao X, Guo L, Qi T, Wang H, Tang H, Zhang J, Xing C. Development of a candidate gene marker for Rf 1 based on a PPR gene in cytoplasmic male sterile CMS-D2 upland cotton. Mol Breed. 2014;34(1):231–40.
Article
CAS
Google Scholar
Wu J, Meng Z, Zhang X, Guo L, Qi T, Wang H, Tang H, Zhang J, Xing C. Development of InDel markers for the restorer gene Rf1 and assessment of their utility for marker-assisted selection in cotton. Euphytica. 2017;213(11):251.
Article
CAS
Google Scholar
Zhao C, Zhao G, Geng Z, Wang Z, Wang K, Liu S, Zhang H, Guo B, Geng J. Physical mapping and candidate gene prediction of fertility restorer gene of cytoplasmic male sterility in cotton. BMC Genomics. 2018;19(1):6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cui X, Wise RP, Schnable PS. The rf2 nuclear restorer gene of male-sterile T-cytoplasm maize. Science (New York, NY). 1996;272(5266):1334–6.
Article
CAS
Google Scholar
Bentolila S, Alfonso AA, Hanson MR. A pentatricopeptide repeat-containing gene restores fertility to cytoplasmic male-sterile plants. PNAS. 2002;99(16):10887–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brown GG, Formanova N, Jin H, Wargachuk R, Dendy C, Patil P, Laforest M, Zhang J, Cheung WY, Landry BS. The radish Rfo restorer gene of Ogura cytoplasmic male sterility encodes a protein with multiple pentatricopeptide repeats. Plant J. 2003;35(2):262–72.
Article
CAS
PubMed
Google Scholar
Desloire S, Gherbi H, Laloui W, Marhadour S, Clouet V, Cattolico L, Falentin C, Giancola S, Renard M, Budar F, et al. Identification of the fertility restoration locus, Rfo, in radish, as a member of the pentatricopeptide-repeat protein family. EMBO Rep. 2003;4(6):588–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu J, Wang K, Huang W, Liu G, Gao Y, Wang J, Huang Q, Ji Y, Qin X, Wan L, et al. The rice pentatricopeptide repeat protein RF5 restores fertility in Hong-Lian cytoplasmic male-sterile lines via a complex with the glycine-rich protein GRP162. Plant Cell. 2012;24(1):109–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang W, Yu C, Hu J, Wang L, Dan Z, Zhou W, He C, Zeng Y, Yao G, Qi J, et al. Pentatricopeptide-repeat family protein RF6 functions with hexokinase 6 to rescue rice cytoplasmic male sterility. PNAS. 2015;112(48):14984–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kazama T, Toriyama K. A pentatricopeptide repeat-containing gene that promotes the processing of aberrant atp6 RNA of cytoplasmic male-sterile rice. FEBS Lett. 2003;544(1–3):99–102.
Article
CAS
PubMed
Google Scholar
Komori T, Ohta S, Murai N, Takakura Y, Kuraya Y, Suzuki S, Hiei Y, Imaseki H, Nitta N. Map-based cloning of a fertility restorer gene, Rf-1, in rice (Oryza sativa L.). Plant J. 2004;37(3):315–25.
Article
CAS
PubMed
Google Scholar
Klein RR, Klein PE, Mullet JE, Minx P, Rooney WL, Schertz KF. Fertility restorer locus Rf1 of sorghum (Sorghum bicolor L.) encodes a pentatricopeptide repeat protein not present in the colinear region of rice chromosome 12. Theor Appl Genet. 2006;112(2):388.
Article
CAS
Google Scholar
Matsuhira H, Kagami H, Kurata M, Kitazaki K, Matsunaga M, Hamaguchi Y, Hagihara E, Ueda M, Harada M, Muramatsu A, et al. Unusual and typical features of a novel restorer-of-fertility gene of sugar beet (Beta vulgaris L.). Genetics. 2012;192(4):1347–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fujii S, Toriyama K. Suppressed expression of retrograde-regulated male sterility restores pollen fertility in cytoplasmic male sterile rice plants. PNAS. 2009;106(23):9513–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Itabashi E, Iwata N, Fujii S, Kazama T, Toriyama K. The fertility restorer gene, Rf2, for Lead Rice-type cytoplasmic male sterility of rice encodes a mitochondrial glycine-rich protein. Plant J. 2011;65(3):359–67.
Article
CAS
PubMed
Google Scholar
Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S, et al. QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J. 2013;74(1):174–83.
Article
CAS
PubMed
Google Scholar
Schneeberger K, Ossowski S, Lanz C, Juul T, Petersen AH, Nielsen KL, Jorgensen JE, Weigel D, Andersen SU. SHOREmap: simultaneous mapping and mutation identification by deep sequencing. Nat Methods. 2009;6(8):550–1.
Article
CAS
PubMed
Google Scholar
Cai Z, Jia P, Zhang J, Gan P, Shao Q, Jin G, Wang L, Jin J, Yang J, Luo J. Genetic analysis and fine mapping of a qualitative trait locus wpb1 for albino panicle branches in rice. PLoS One. 2019;14(9):e0223228.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun J, Yang L, Wang J, Liu H, Zheng H, Xie D, Zhang M, Feng M, Jia Y, Zhao H, et al. Identification of a cold-tolerant locus in rice (Oryza sativa L.) using bulked segregant analysis with a next-generation sequencing strategy. Rice (New York, NY). 2018;11(1):24.
Google Scholar
Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M, et al. Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol. 2012;30(2):174–8.
Article
CAS
PubMed
Google Scholar
Klein H, Xiao Y, Conklin PA, Govindarajulu R, Kelly JA, Scanlon MJ, Whipple CJ, Bartlett M. Bulked-Segregant Analysis Coupled to Whole Genome Sequencing (BSA-Seq) for Rapid Gene Cloning in Maize. G3 (Bethesda, Md). 2018;8(11):3583–92.
Article
CAS
Google Scholar
Liu G, Zhao T, You X, Jiang J, Li J, Xu X. Molecular mapping of the Cf-10 gene by combining SNP/InDel-index and linkage analysis in tomato (Solanum lycopersicum). BMC Plant Biol. 2019;19(1):15.
Article
PubMed
PubMed Central
Google Scholar
Rafalski A. Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol. 2002;5(2):94–100.
Article
CAS
PubMed
Google Scholar
Weber JL, David D, Heil J, Fan Y, Zhao C, Marth G. Human diallelic insertion/deletion polymorphisms. Am J Hum Genet. 2002;71(4):854–62.
Article
PubMed
PubMed Central
Google Scholar
Flint-Garcia SA, Thuillet AC, Yu J, Pressoir G, Romero SM, Mitchell SE, Doebley J, Kresovich S, Goodman MM, Buckler ES. Maize association population: a high-resolution platform for quantitative trait locus dissection. Plant J. 2005;44(6):1054–64.
Article
CAS
PubMed
Google Scholar
Simko I, Haynes KG, Ewing EE, Costanzo S, Christ BJ, Jones RW. Mapping genes for resistance to Verticillium albo-atrum in tetraploid and diploid potato populations using haplotype association tests and genetic linkage analysis. Mol Gen Genomics. 2004;271(5):522–31.
Article
CAS
Google Scholar
Szalma SJ, Buckler ES, Snook ME, McMullen MD. Association analysis of candidate genes for maysin and chlorogenic acid accumulation in maize silks. Theor Appl Genet. 2005;110(7):1324–33.
Article
CAS
PubMed
Google Scholar
Li F, Fan G, Lu C, Xiao G, Zou C, Kohel RJ, Ma Z, Shang H, Ma X, Wu J, et al. Genome sequence of cultivated upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat Biotechnol. 2015;33(5):524–30.
Article
CAS
PubMed
Google Scholar
Zhang T, Hu Y, Jiang W, Fang L, Guan X, Chen J, Zhang J, Saski CA, Scheffler BE, Stelly DM, et al. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol. 2015;33(5):531–7.
Article
CAS
PubMed
Google Scholar
Wang M, Tu L, Yuan D, Zhu, Shen C, Li J, Liu F, Pei L, Wang P, Zhao G, et al. Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense. Nat Genet. 2019;51(2):224–9.
Article
CAS
PubMed
Google Scholar
De la Vega FM, Lazaruk KD, Rhodes MD, Wenz MH. Assessment of two flexible and compatible SNP genotyping platforms: TaqMan SNP genotyping assays and the SNPlex genotyping system. Mutat Res. 2005;573(1–2):111–35.
Article
PubMed
CAS
Google Scholar
Shen R, Fan JB, Campbell D, Chang W, Chen J, Doucet D, Yeakley J, Bibikova M, Wickham Garcia E, McBride C, et al. High-throughput SNP genotyping on universal bead arrays. Mutat Res. 2005;573(1–2):70–82.
Article
CAS
PubMed
Google Scholar
Zhang JF, Stewart JMD. CMS-D8 restoration in cotton is conditioned by one dominant gene. Crop Sci. 2001;41(2):283–8.
Article
Google Scholar
Ma J, Liu J, Pei W, Ma Q, Wang N, Zhang X, Cui Y, Li D, Liu G, Wu M, et al. Genome-wide association study of the oil content in upland cotton (Gossypium hirsutum L.) and identification of GhPRXR1, a candidate gene for a stable QTLqOC-Dt5-1. Plant Sci. 2019;286:89–97.
Article
CAS
PubMed
Google Scholar
Touzet P, Meyer EH. Cytoplasmic male sterility and mitochondrial metabolism in plants. Mitochondrion. 2014;19:166–71.
Article
CAS
PubMed
Google Scholar
Tang M, Chen Z, Grover CE, Wang Y, Li S, Liu G, Ma Z, Wendel JF, Hua J. Rapid evolutionary divergence of Gossypium barbadense and G hirsutum mitochondrial genomes. BMC Genomics. 2015;16:770.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yang L. Map-based cloning of fertility restoring gene of CMS and analysis of PPR gene family in cotton. Nanjing: Nanjing agricultural university; 2009.
Google Scholar
Zhang B, Zhang X, Guo L, Qi T, Wang H, Tang H, Qiao X, Kashif S, Xing C, Wu J. Genome-wide analysis of Rf-PPR-like (RFL) genes and a new InDel marker development for Rf1 gene in cytoplasmic male sterile CMS-D2 upland cotton. J Cotton Res. 2018;1(03):12–22.
Article
Google Scholar
Wang F, Yue B, Hu JG, Stewart JM, Zhang JF. A target region amplified polymorphism marker for fertility restorer gene Rf1 and chromosomal localization of rf1 and Rf2 in cotton. Crop Sci. 2009;49(5):1602–8.
Article
CAS
Google Scholar
Zuo W, Chao Q, Zhang N, Ye J, Tan G, Li B, Xing Y, Zhang B, Liu H, Fengler KA, et al. A maize wall-associated kinase confers quantitative resistance to head smut. Nat Genet. 2015;47(2):151–7.
Article
CAS
PubMed
Google Scholar
Lu X, Xiong Q, Cheng T, Li QT, Liu XL, Bi YD, Li W, Zhang WK, Ma B, Lai YC, et al. A PP2C-1 allele underlying a quantitative trait locus enhances soybean 100-seed weight. Mol Plant. 2017;10(5):670–84.
Article
CAS
PubMed
Google Scholar
Zhang Z, Li J, Pan Y, Li J, Zhou L, Shi H, Zeng Y, Guo H, Yang S, Zheng W, et al. Natural variation in CTB4a enhances rice adaptation to cold habitats. Nat Commun. 2017;8:14788.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu Z, Tan L, Fu Y, Liu F, Cai H, Xie D, Wu F, Wu J, Matsumoto T, Sun C. Genetic control of inflorescence architecture during rice domestication. Nat Commun. 2013;4:2200.
Article
PubMed
CAS
Google Scholar
Schneeberger K. Using next-generation sequencing to isolate mutant genes from forward genetic screens. Nat Rev Genet. 2014;15(10):662–76.
Article
CAS
PubMed
Google Scholar
Haase NJ, Beissinger T, Hirsch CN, Vaillancourt B, Deshpande S, Barry K, Buell CR, Kaeppler SM, de Leon N. Shared Genomic Regions Between Derivatives of a Large Segregating Population of Maize Identified Using Bulked Segregant Analysis Sequencing and Traditional Linkage Analysis. G3 (Bethesda, Md). 2015;5(8):1593–602.
Article
CAS
Google Scholar
Geng X, Jiang C, Yang J, Wang L, Wu X, Wei W. Rapid identification of candidate genes for seed weight using the SLAF-Seq method in Brassica napus. PLoS One. 2016;11(1):e0147580.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kayam G, Brand Y, Faigenboim-Doron A, Patil A, Hedvat I, Hovav R. Fine-mapping the branching habit trait in cultivated Peanut by combining bulked Segregant analysis and high-throughput sequencing. Front Plant Sci. 2017;8:467.
Article
PubMed
PubMed Central
Google Scholar
Song J, Li Z, Liu Z, Guo Y, Qiu LJ. Next-generation sequencing from bulked-Segregant analysis accelerates the simultaneous identification of two qualitative genes in soybean. Front Plant Sci. 2017;8:919.
Article
PubMed
PubMed Central
Google Scholar
Gu A, Meng C, Chen Y, Wei L, Dong H, Lu Y, Wang Y, Chen X, Zhao J, Shen S. Coupling Seq-BSA and RNA-Seq analyses reveal the molecular pathway and genes associated with heading type in Chinese cabbage. Front Genet. 2017;8:176.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ohnishi Y, Tanaka T, Ozaki K, Yamada R, Suzuki H, Nakamura YJJHG. A high-throughput SNP typing system for genome-wide association studies. Gan to kagaku ryoho Cancer Chemother. 2002;29(11):2031–6.
CAS
Google Scholar
Grattapaglia D, Silva-Junior OB, Kirst M, de Lima BM, Faria DA, Pappas GJ. High-throughput SNP genotyping in the highly heterozygous genome of Eucalyptus: assay success, polymorphism and transferability across species. BMC Plant Biol. 2011;11(1):65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yan J, Yang X, Shah T, Sánchez-Villeda H, Li J, Warburton M, Zhou Y, Crouch JH, Xu Y. High-throughput SNP genotyping with the GoldenGate assay in maize. Mol Breed. 2010;25(3):441–51.
Article
CAS
Google Scholar
Yang X, Yan J, Shah T, Warburton ML, Li Q, Li L, Gao Y, Chai Y, Fu Z, Zhou Y, et al. Genetic analysis and characterization of a new maize association mapping panel for quantitative trait loci dissection. Theor Appl Genet. 2010;121(3):417–31.
Article
PubMed
Google Scholar
Xu Y, Crouch JH. Marker-assisted selection in plant breeding: from publications to practice. Crop Sci. 2008;48(2):391–407.
Article
Google Scholar
Vasemägi A, Gross R, Palm D, Paaver T, Primmer CR. Discovery and application of insertion-deletion (INDEL) polymorphisms for QTL mapping of early life-history traits in Atlantic salmon. BMC Genomics. 2010;11(1):156.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chen L, Liu YG. Male sterility and fertility restoration in crops. Annu Rev Plant Biol. 2014;65:579–606.
Article
CAS
PubMed
Google Scholar
Koizuka N, Imai R, Fujimoto H, Hayakawa T, Kimura Y, Kohno-Murase J, Sakai T, Kawasaki S, Imamura J. Genetic characterization of a pentatricopeptide repeat protein gene, orf687, that restores fertility in the cytoplasmic male-sterile Kosena radish. Plant J. 2003;34(4):407–15.
Article
CAS
PubMed
Google Scholar
Wang Z, Zou Y, Li X, Zhang Q, Chen L, Wu H, Su D, Chen Y, Guo J, Luo D, et al. Cytoplasmic male sterility of rice with boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing. Plant Cell. 2006;18(3):676–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Z, Dong F, Wang X, Wang T, Su R, Hong D, Yang G. A pentatricopeptide repeat protein restores nap cytoplasmic male sterility in Brassica napus. J Exp Bot. 2017;68(15):4115–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang JF, Stewart JM. Economical and rapid method for extracting cotton genomic DNA. J Cotton Sci. 2000;4(3):193–201.
CAS
Google Scholar
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics (Oxford, England). 2009;25(14):1754–60.
Article
CAS
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan JJB. The Sequence Alignment-Map format and SAMtools. Bioinformatics (Oxford, England). 2009;25(16):2078–9.
Article
CAS
Google Scholar
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297–303.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38(16):e164.
Article
PubMed
PubMed Central
CAS
Google Scholar
Reumers J, De Rijk P, Zhao H, Liekens A, Smeets D, Cleary J, Van Loo P, Van Den Bossche M, Catthoor K, Sabbe B, et al. Optimized filtering reduces the error rate in detecting genomic variants by short-read sequencing. Nat Biotechnol. 2011;30(1):61–8.
Article
PubMed
CAS
Google Scholar
Siepel A, Magwene PM, Willis JH, Kelly JK. The Statistics of Bulk Segregant Analysis Using Next Generation Sequencing. PLoS Comput Biol. 2011;7(11):e1002255. https://journals.plos.org/ploscompbiol/article/metrics?id=10.1371/journal.pcbi.1002255#citedHeader. https://pubmed.ncbi.nlm.nih.gov/22072954/.
Mansfeld BN, Grumet R. QTLseqr: An R Package for Bulk Segregant Analysis with Next-Generation Sequencing. Plant Genome. 2018;11(2). https://pubmed.ncbi.nlm.nih.gov/30025013/.
Rychlik W. OLIGO 7 primer analysis software. Methods in molecular biology (Clifton, NJ) 2007;402:35–60. https://link.springer.com/protocol/10.1007%2F978-1-59745-528-2_2.
Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;3(6):1101–8.
Article
CAS
PubMed
Google Scholar
Wu J, Zhang M, Zhang B, Zhang X, Guo L, Qi T, Wang H, Zhang J, Xing C. Genome-wide comparative transcriptome analysis of CMS-D2 and its maintainer and restorer lines in upland cotton. BMC Genomics. 2017;18(1):454.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang M, Guo L, Qi T, Zhang X, Tang H, Wang H, Qiao X, Zhang B, Feng J, Zuo Z, et al. Integrated Methylome and Transcriptome Analysis between the CMS-D2 Line ZBA and Its Maintainer Line ZB in Upland Cotton. Int J Mol Sci. 2019;20(23).6070. https://www.mdpi.com/1422-0067/20/23/6070.
Zhang M, Zhang X, Guo L, Qi T, Liu G, Feng J, Shahzad K, Zhang B, Li X, Wang H, et al. Single-base resolution methylome of cotton cytoplasmic male sterility system reveals epigenomic changes in response to high-temperature stress during anther development. J Exp Bot. 2020;71(3):951–69.
CAS
PubMed
Google Scholar