Olaniyi J, Akanbi W, Adejumo T, Ak OJ. Growth, fruit yield and nutritional quality of tomato varieties. Afr J Food Sci. 2010;4:398–402.
CAS
Google Scholar
Dias MP, Bastos MS, Xavier VB, Cassel E, Astarita LV, Santarem ER. Plant growth and resistance promoted by Streptomyces spp. in tomato. Plant Physiol Biochem. 2017;118:479–93.
Article
CAS
PubMed
Google Scholar
Asaka O, Shoda MJAEM. Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Appl Environ Microbiol. 1996;62:4081–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barea JM, Pozo MJ, Azcon R, Azcon-Aguilar C. Microbial co-operation in the rhizosphere. J Exp Bot. 2005;56:1761–78.
Article
CAS
PubMed
Google Scholar
Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y. The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil. 2009;321:341–61.
Article
CAS
Google Scholar
Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH. Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol. 2013;11:789–99.
Article
CAS
PubMed
Google Scholar
Lynch J, Whipps JJP. Substrate flow in the rhizosphere. Plant Soil. 1990;129:1–10.
Article
CAS
Google Scholar
Whipps JM. Microbial interactions and biocontrol in the rhizosphere. J Exper Botany. 2001;52:487–511.
Article
CAS
Google Scholar
Silo-Suh LA, Lethbridge BJ, Raffel SJ, He H, Clardy J, Handelsman J. Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85. Appl Environ Microbiol. 1994;60:2023–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang S, Wu H, Qiao J, Ma L, Liu J, Xia Y, Gao X. Molecular mechanism of plant growth promotion and induced systemic resistance to tobacco mosaic virus by Bacillus spp. J Microbiol Biotechnol. 2009;19:1250–8.
Article
CAS
PubMed
Google Scholar
Ryu C-M, Farag MA, Hu C-H, Reddy MS, Kloepper JW, Paré PW. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol. 2004;134:1017–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Choudhary DK, Johri BN. Interactions of Bacillus spp. and plants--with special reference to induced systemic resistance (ISR). Microbiol Res. 2009;164:493–513.
Article
CAS
PubMed
Google Scholar
Ongena M, Duby F, Jourdan E, Beaudry T, Jadin V, Dommes J, Thonart P. Bacillus subtilis M4 decreases plant susceptibility towards fungal pathogens by increasing host resistance associated with differential gene expression. Appl Microbiol Biotechnol. 2005;67:692–8.
Article
CAS
PubMed
Google Scholar
Perez-Garcia A, Romero D, de Vicente A. Plant protection and growth stimulation by microorganisms: biotechnological applications of bacilli in agriculture. Curr Opin Biotechnol. 2011;22:187–93.
Article
CAS
PubMed
Google Scholar
Caulier S, Nannan C, Gillis A, Licciardi F, Bragard C, Mahillon J. Overview of the antimicrobial compounds produced by members of the Bacillus subtilis group. Front Microbiol. 2019;10:302.
Article
PubMed
PubMed Central
Google Scholar
Crits-Christoph A, Diamond S, Butterfield CN, Thomas BC, Banfield JF. Novel soil bacteria possess diverse genes for secondary metabolite biosynthesis. Nature. 2018;558:440–4.
Article
CAS
PubMed
Google Scholar
Alippi A, Bó ED, Ronco L, Casanova P, Aguilar O. Tomato as a new host of Erwinia carotovora subsp. carotovora in Argentina. Plant Dis. 1997;81:230.
Article
CAS
PubMed
Google Scholar
Buell CR, Joardar V, Lindeberg M, Selengut J, Paulsen IT, Gwinn ML, Dodson RJ, Deboy RT, Durkin AS, Kolonay JF. The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000. Proc Natl Acad Sci. 2003;100:10181–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
El Oirdi M, Abd El Rahman T, Rigano L, El Hadrami A, Rodriguez MC, Daayf F, Vojnov A, Bouarab K. Botrytis cinerea manipulates the antagonistic effects between immune pathways to promote disease development in tomato. Plant Cell. 2011;23:2405–21.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bhat R, Subbarao K. Host range specificity in Verticillium dahliae. Phytopathology. 1999;89:1218–25.
Article
CAS
PubMed
Google Scholar
Legard D, Lee T, Fry W. Pathogenic specialization in Phytophthora infestans: aggressiveness on tomato. Phytopathology. 1995;85:1356–61.
Article
Google Scholar
Zhou L, Song C, de Jong A, Kuipers OP. Draft Genome Sequences of 10 Paenibacillus and Bacillus sp. Strains Isolated from Healthy Tomato Plants and Rhizosphere Soil. Microbiol Resour Announc. 2019;8:e00055–19.
Article
PubMed
PubMed Central
Google Scholar
Orata FD, Meier-Kolthoff JP, Sauvageau D, Stein LY. Phylogenomic analysis of the Gammaproteobacterial Methanotrophs (order Methylococcales) calls for the reclassification of members at the genus and species levels. Front Microbiol. 2018;9:3162.
Article
PubMed
PubMed Central
Google Scholar
Koumoutsi A, Chen XH, Henne A, Liesegang H, Hitzeroth G, Franke P, Vater J, Borriss R. Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic Lipopeptides in Bacillus amyloliquefaciens strain FZB42. J Bacteriol. 2004;186:1084–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen XH, Koumoutsi A, Scholz R, Borriss R. More than anticipated - production of antibiotics and other secondary metabolites by Bacillus amyloliquefaciens FZB42. J Mol Microbiol Biotechnol. 2009;16:14–24.
CAS
PubMed
Google Scholar
Kawulka KE, Sprules T, Diaper CM, Whittal RM, McKay RT, Mercier P, Zuber P, Vederas JCJB. Structure of subtilosin a, a cyclic antimicrobial peptide from Bacillus subtilis with unusual sulfur to α-carbon cross-links: formation and reduction of α-thio-α-amino acid derivatives. Biochemistry. 2004;43:3385–95.
Article
CAS
PubMed
Google Scholar
Moldenhauer J, Chen XH, Borriss R, Piel J. Biosynthesis of the antibiotic bacillaene, the product of a giant polyketide synthase complex of the trans-AT family. Angew Chem Int Ed Engl. 2007;46:8195–7.
Article
CAS
PubMed
Google Scholar
Schneider K, Chen X-H, Vater J, Franke P, Nicholson G, Borriss R, Süssmuth RD. Macrolactin is the Polyketide Biosynthesis Product of the pks2 Cluster of Bacillus amyloliquefaciens FZB42. J Nat Prod. 2007;70(9):1417–23.
Article
CAS
PubMed
Google Scholar
Chen XH, Vater J, Piel J, Franke P, Scholz R, Schneider K, Koumoutsi A, Hitzeroth G, Grammel N, Strittmatter AW, et al. Structural and functional characterization of three polyketide synthase gene clusters in Bacillus amyloliquefaciens FZB 42. J Bacteriol. 2006;188:4024–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Klein C, Kaletta C, Entian K. Biosynthesis of the lantibiotic subtilin is regulated by a histidine kinase/response regulator system. Appl Environ Microbiol. 1993;59:296–303.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kautsar SA, Blin K, Shaw S, Navarro-Muñoz JC, Terlouw BR, van der Hooft JJ, Van Santen JA, Tracanna V, Suarez Duran HG, Pascal Andreu V. MIBiG 2.0: a repository for biosynthetic gene clusters of known function. Nucleic Acids Res. 2020;48:D454–8.
PubMed
Google Scholar
Garcia-Gonzalez E, Muller S, Hertlein G, Heid N, Sussmuth RD, Genersch E. Biological effects of paenilamicin, a secondary metabolite antibiotic produced by the honey bee pathogenic bacterium Paenibacillus larvae. Microbiologyopen. 2014;3:642–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fiers WD, Dodge GJ, Sherman DH, Smith JL, Aldrich CC. Vinylogous dehydration by a Polyketide Dehydratase domain in Curacin biosynthesis. J Am Chem Soc. 2016;138:16024–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jahns C, Hoffmann T, Muller S, Gerth K, Washausen P, Hofle G, Reichenbach H, Kalesse M, Muller R. Pellasoren: structure elucidation, biosynthesis, and total synthesis of a cytotoxic secondary metabolite from Sorangium cellulosum. Angew Chem Int Ed Engl. 2012;51:5239–43.
Article
CAS
PubMed
Google Scholar
Reimer D, Luxenburger E, Brachmann AO, Bode HB. A new type of pyrrolidine biosynthesis is involved in the late steps of xenocoumacin production in Xenorhabdus nematophila. Chembiochem. 2009;10:1997–2001.
Article
CAS
PubMed
Google Scholar
Zhao X, Kuipers OP. Identification and classification of known and putative antimicrobial compounds produced by a wide variety of Bacillales species. BMC Genomics. 2016;17:882.
Article
PubMed
PubMed Central
CAS
Google Scholar
Xin B, Zheng J, Liu H, Li J, Ruan L, Peng D, Sajid M, Sun M. Thusin, a novel two-component Lantibiotic with potent antimicrobial activity against several gram-positive pathogens. Front Microbiol. 2016;7:1115.
Article
PubMed
PubMed Central
Google Scholar
Navaratna MA, Sahl H-G, Tagg JR. Identification of genes encoding two-component lantibiotic production in Staphylococcus aureus C55 and other phage group II S. aureus strains and demonstration of an association with the exfoliative toxin B gene. Infect Immun. 1999;67:4268–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ryan MP, Jack RW, Josten M, Sahl H-G, Jung G, Ross RP, Hill C. Extensive post-translational modification, including serine to D-alanine conversion, in the two-component lantibiotic, lacticin 3147. J Biol Chem. 1999;274:37544–50.
Article
CAS
PubMed
Google Scholar
Holo H, Jeknic Z, Daeschel M, Stevanovic S, Nes IF. Plantaricin W from lactobacillus plantarum belongs to a new family of two-peptide lantibiotics. Microbiology. 2001;147:643–51.
Article
CAS
PubMed
Google Scholar
Lawton EM, Cotter PD, Hill C, Ross RP. Identification of a novel two-peptide lantibiotic, haloduracin, produced by the alkaliphile Bacillus halodurans C-125. FEMS Microbiol Lett. 2007;267:64–71.
Article
CAS
PubMed
Google Scholar
Zhang Q, Yu Y, Velasquez JE, van der Donk WA. Evolution of lanthipeptide synthetases. Proc Natl Acad Sci U S A. 2012;109:18361–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Luo C, Liu X, Zhou H, Wang X, Chen Z. Nonribosomal peptide synthase gene clusters for lipopeptide biosynthesis in Bacillus subtilis 916 and their phenotypic functions. Appl Environ Microbiol. 2015;81:422–31.
Article
CAS
PubMed
Google Scholar
Zhu S, Hegemann JD, Fage CD, Zimmermann M, Xie X, Linne U, Marahiel MA. Insights into the unique phosphorylation of the lasso peptide Paeninodin. J Biol Chem. 2016;291:13662–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ongena M, Jacques P. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 2008;16:115–25.
Article
CAS
PubMed
Google Scholar
Cendrowski S, MacArthur W, Hanna P. Bacillus anthracis requires siderophore biosynthesis for growth in macrophages and mouse virulence. Mol Microbiol. 2004;51:407–17.
Article
CAS
PubMed
Google Scholar
Veith B, Herzberg C, Steckel S, Feesche J, Maurer KH, Ehrenreich P, Bäumer S, Henne A, Liesegang H, Merkl R. The complete genome sequence of Bacillus licheniformis DSM13, an organism with great industrial potential. J Mol Microbiol Biotechnol. 2004;7:204–11.
CAS
PubMed
Google Scholar
Schneider K, Chen X-H, Vater J, Franke P, Nicholson G, Borriss R, Süssmuth RD. Macrolactin is the polyketide biosynthesis product of the pks2 cluster of Bacillus amyloliquefaciens FZB42. J Nat Prod. 2007;70:1417–23.
Article
CAS
PubMed
Google Scholar
Weissman KJ. The structural biology of biosynthetic megaenzymes. Nat Chem Biol. 2015;11:660–70.
Article
CAS
PubMed
Google Scholar
Tsuge K, Akiyama T, Shoda M. Cloning, sequencing, and characterization of the iturin a operon. J Bacteriol. 2001;183:6265–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bloudoff K, Fage CD, Marahiel MA, Schmeing TM. Structural and mutational analysis of the nonribosomal peptide synthetase heterocyclization domain provides insight into catalysis. Proc Natl Acad Sci U S A. 2017;114:95–100.
Article
CAS
PubMed
Google Scholar
Kumawat MK. Thiazole containing heterocycles with antimalarial activity. Curr Drug Discov Technol. 2018;15:196–200.
Article
CAS
PubMed
Google Scholar
Rouf A, Tanyeli C. Bioactive thiazole and benzothiazole derivatives. Eur J Med Chem. 2015;97:911–27.
Article
CAS
PubMed
Google Scholar
Ongey EL, Neubauer P. Lanthipeptides: chemical synthesis versus in vivo biosynthesis as tools for pharmaceutical production. Microb Cell Factories. 2016;15:97.
Article
CAS
Google Scholar
Barbosa J, Caetano T, Mendo S. Class I and class II Lanthipeptides produced by Bacillus spp. J Nat Prod. 2015;78:2850–66.
Article
CAS
PubMed
Google Scholar
Tietz JI, Schwalen CJ, Patel PS, Maxson T, Blair PM, Tai HC, Zakai UI, Mitchell DA. A new genome-mining tool redefines the lasso peptide biosynthetic landscape. Nat Chem Biol. 2017;13:470–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Inokoshi J, Matsuhama M, Miyake M, Ikeda H, Tomoda H. Molecular cloning of the gene cluster for lariatin biosynthesis of Rhodococcus jostii K01-B0171. Appl Microbiol Biotechnol. 2012;95:451–60.
Article
CAS
PubMed
Google Scholar
Gavrish E, Sit CS, Cao S, Kandror O, Spoering A, Peoples A, Ling L, Fetterman A, Hughes D, Bissell A, et al. Lassomycin, a ribosomally synthesized cyclic peptide, kills mycobacterium tuberculosis by targeting the ATP-dependent protease ClpC1P1P2. Chem Biol. 2014;21:509–18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wilson K-A, Kalkum M, Ottesen J, Yuzenkova J, Chait BT, Landick R, Muir T, Severinov K, Darst SA. Structure of microcin J25, a peptide inhibitor of bacterial RNA polymerase, is a lassoed tail. J Am Chem Soc. 2003;125:12475–83.
Article
CAS
PubMed
Google Scholar
Grubbs KJ, Bleich RM, Santa Maria KC, Allen SE, Farag S, AgBiome T, Shank EA, Bowers AA. Large-Scale Bioinformatics Analysis of Bacillus Genomes Uncovers Conserved Roles of Natural Products in Bacterial Physiology. mSystems. 2017;2:e00040–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mohamad OAA, Li L, Ma JB, Hatab S, Xu L, Guo JW, Rasulov BA, Liu YH, Hedlund BP, Li WJ. Evaluation of the antimicrobial activity of Endophytic bacterial populations from Chinese traditional medicinal plant licorice and characterization of the bioactive secondary metabolites produced by Bacillus atrophaeus against Verticillium dahliae. Front Microbiol. 2018;9:924.
Article
PubMed
PubMed Central
Google Scholar
Chen Y, Yan F, Chai Y, Liu H, Kolter R, Losick R, Guo JH. Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation. Environ Microbiol. 2013;15:848–64.
Article
PubMed
Google Scholar
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35:1547–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Letunic I, Bork P. Interactive tree of life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;47:W256–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meier-Kolthoff JP, Goker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun. 2019;10:2182.
Article
PubMed
PubMed Central
CAS
Google Scholar
Richter M, Rossello-Mora R, Oliver Glockner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics. 2016;32:929–31.
Article
CAS
PubMed
Google Scholar
Agren J, Sundstrom A, Hafstrom T, Segerman B. Gegenees: fragmented alignment of multiple genomes for determining phylogenomic distances and genetic signatures unique for specified target groups. PLoS One. 2012;7:e39107.
Article
PubMed
PubMed Central
CAS
Google Scholar
Huson DH, Bryant D. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol. 2006;23:254–67.
Article
CAS
PubMed
Google Scholar
Bosi E, Donati B, Galardini M, Brunetti S, Sagot M-F, Lió P, Crescenzi P, Fani R, Fondi M. MeDuSa: a multi-draft based scaffolder. Bioinformatics. 2015;31:2443–51.
Article
CAS
PubMed
Google Scholar
Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, Medema MH, Weber T. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 2019;47:W81–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
van Heel AJ, de Jong A, Song C, Viel JH, Kok J, Kuipers OP. BAGEL4: a user-friendly web server to thoroughly mine RiPPs and bacteriocins. Nucleic Acids Res. 2018;46:W278–81.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yeong M. BiG-SCAPE: exploring biosynthetic diversity through gene cluster similarity networks; 2016.
Google Scholar
Saito R, Smoot ME, Ono K, Ruscheinski J, Wang P-L, Lotia S, Pico AR, Bader GD, Ideker T. A travel guide to Cytoscape plugins. Nat Methods. 2012;9:1069.
Article
CAS
PubMed
PubMed Central
Google Scholar