Gray WM. Hormonal regulation of plant growth and development. PLoS Biol. 2004;2(9):e311 https://doi.org/10.1371/journal.pbio.0020311.
Article
PubMed
PubMed Central
CAS
Google Scholar
Vanstraelen M, Benková E. Hormonal interactions in the regulation of plant development. Annu Rev Cell Dev Biol. 2012;28:463–87 https://doi.org/10.1146/annurev-cellbio-101011-155741.
Article
CAS
PubMed
Google Scholar
Evans ML, Cleland RE. The action of auxin on plant cell elongation. Crit Rev Plant Sci. 1985;2(4):317–65 https://doi.org/10.1080/07352688509382200.
Article
CAS
PubMed
Google Scholar
Huttly AK, Phillips AL. Gibberellin-regulated plant genes. Physiol Plant. 1995;95(2):310–7 https://doi.org/10.1111/j.1399-3054.1995.tb00843.x.
Article
CAS
Google Scholar
Liu F, Xing S, Ma H, Du Z, Ma B. Cytokinin-producing, plant growth-promoting rhizobacteria that confer resistance to drought stress in Platycladus orientalis container seedlings. Appl Microbiol Biotechnol. 2013;97(20):9155–64 https://doi.org/10.1007/s00253-013-5193-2.
Article
CAS
PubMed
Google Scholar
Rai MK, Shekhawat N, Gupta AK, Phulwaria M, Ram K, Jaiswal U. The role of abscisic acid in plant tissue culture: a review of recent progress. Plant Cell Tissue Organ Cult. 2011;106(2):179–90 https://doi.org/10.1007/s11240-011-9923-9.
Article
CAS
Google Scholar
Yu Z, Song M, Pei H, Jiang L, Hou Q, Nie C, Zhang L. The effects of combined agricultural phytohormones on the growth, carbon partitioning and cell morphology of two screened algae. Bioresour Technol. 2017;239:87–96 https://doi.org/10.1016/j.biortech.2017.04.120.
Article
CAS
PubMed
Google Scholar
Sun Y, Fan X-Y, Cao D-M, Tang W, He K, Zhu J-Y, He J-X, Bai M-Y, Zhu S, Oh E, et al. Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Dev Cell. 2010;19(5):765–77 https://doi.org/10.1016/j.devcel.2010.10.010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Giese G, Velasco-Cruz C, Roberts L, Heitman J, Wolf TK. Complete vineyard floor cover crops favorably limit grapevine vegetative growth. Sci Hortic. 2014;170:256–66 https://doi.org/10.1016/j.scienta.2014.03.011.
Article
Google Scholar
Yeshitela T, Robbertse P, Stassen P. Paclobutrazol suppressed vegetative growth and improved yield as well as fruit quality of ‘Tommy Atkins’ mango (Mangifera indica) in Ethiopia. N Z J Crop Hortic Sci. 2004;32(3):281–93 https://doi.org/10.1080/01140671.2004.9514307.
Article
Google Scholar
Wang N, Wang X, Shi J, Liu X, Xu Q, Zhou H, Song M, Yan G. Mepiquat chloride-priming induced salt tolerance during seed germination of cotton (Gossypium hirsutum L.) through regulating water transport and K+/Na+ homeostasis. Environ Exp Bot. 2019;159:168–78 https://doi.org/10.1016/j.envexpbot.2018.12.024.
Article
CAS
Google Scholar
Gwathmey CO, Clement JD. Alteration of cotton source–sink relations with plant population density and mepiquat chloride. Field Crop Res. 2010;116(1):101–7 https://doi.org/10.1016/j.fcr.2009.11.019.
Article
Google Scholar
Wang L, Mu C, Du M, Chen Y, Tian X, Zhang M, Li Z. The effect of mepiquat chloride on elongation of cotton (Gossypium hirsutum L.) internode is associated with low concentration of gibberellic acid. Plant Sci. 2014;225:15–23 https://doi.org/10.1016/j.plantsci.2014.05.005.
Article
CAS
PubMed
Google Scholar
Yeates S, Constable G, McCumstie T. Developing management options for mepiquat chloride in tropical winter season cotton. Field Crop Res. 2002;74(2–3):217–30 https://doi.org/10.1016/S0378-4290(02)00005-9.
Article
Google Scholar
Davis TD, Curry EA, Steffens GL. Chemical regulation of vegetative growth. Crit Rev Plant Sci. 1991;10(2):151–88 https://doi.org/10.1080/07352689109382310.
Article
CAS
Google Scholar
Rademacher W. Chemical regulators of gibberellin status and their application in plant production. Ann Plant Rev Online. 2018:359–403 https://doi.org/10.1002/9781119312994.apr0541.
Reddy AR, Reddy KR, Hodges H. Mepiquat chloride (PIX)-induced changes in photosynthesis and growth of cotton. Plant Growth Regul. 1996;20(3):179–83 https://doi.org/10.1007/BF00043305.
Article
CAS
Google Scholar
Tung SA, Huang Y, Ali S, Hafeez A, Shah AN, Song X, Ma X, Luo D, Yang G. Mepiquat chloride application does not favor leaf photosynthesis and carbohydrate metabolism as well as lint yield in late-planted cotton at high plant density. Field Crop Res. 2018;221:108–18 https://doi.org/10.1016/j.fcr.2018.02.027.
Article
Google Scholar
Xu X, Taylor HM. Increase in drought resistance of cotton seedlings treated with mepiquat chloride. Agron J. 1992;84(4):569–74 https://doi.org/10.2134/agronj1992.00021962008400040005x.
Article
CAS
Google Scholar
Matsoukis A, Gasparatos D, Chronopoulou-Sereli A. Mepiquat chloride and shading effects on specific leaf area and K, P, Ca, Fe and Mn content of Lantana camara L. Emirates J Food Agricult. 2015:121–5 https://doi.org/10.9755/ejfa.v27i1.17450.
Zhang S, Cothren J, Lorenz E. Mepiquat chloride seed treatment and germination temperature effects on cotton growth, nutrient partitioning, and water use efficiency. J Plant Growth Regul. 1990;9(1–4):195 https://doi.org/10.1007/BF02041962.
Article
CAS
Google Scholar
Roussos PA, Archimandriti A, Beldekou I. Improving in vitro multiplication of juvenile European chestnut (Castanea sativa mill) explants by the use of growth retardants. Sci Hortic. 2016;198:254–6 https://doi.org/10.1016/j.scienta.2015.11.039.
Article
CAS
Google Scholar
Goldemberg J, Coelho ST, Guardabassi P. The sustainability of ethanol production from sugarcane. Energy Policy. 2008;36(6):2086–97 https://doi.org/10.1016/j.enpol.2008.02.028.
Article
Google Scholar
Ukoskit K, Posudsavang G, Pongsiripat N, Chatwachirawong P, Klomsa-ard P, Poomipant P, Tragoonrung S. Detection and validation of EST-SSR markers associated with sugar-related traits in sugarcane using linkage and association mapping. Genomics. 2019;111(1):9 https://doi.org/10.1016/j.ygeno.2018.03.019.
Article
CAS
Google Scholar
Fickett N, Gutierrez A, Verma M, Pontif M, Hale A, Kimbeng C, Baisakh N. Genome-wide association mapping identifies markers associated with cane yield components and sucrose traits in the Louisiana sugarcane core collection. Genomics. 2019;111(6):1794–801 https://doi.org/10.1016/j.ygeno.2018.12.002.
Article
CAS
PubMed
Google Scholar
Sindhu R, Gnansounou E, Binod P, Pandey A. Bioconversion of sugarcane crop residue for value added products–an overview. Renew Energy. 2016;98:203–15 https://doi.org/10.1016/j.renene.2016.02.057.
Article
CAS
Google Scholar
Han Y, Watson M. Production of microbial Levan from sucrose, sugarcane juice and beet molasses. J Ind Microbiol. 1992;9(3–4):257–60 https://doi.org/10.1007/BF01569633.
Article
CAS
Google Scholar
Waclawovsky AJ, Sato PM, Lembke CG, Moore PH, Souza GM. Sugarcane for bioenergy production: an assessment of yield and regulation of sucrose content. Plant Biotechnol J. 2010;8(3):263–76 https://doi.org/10.1111/j.1467-7652.2009.00491.x.
Article
CAS
PubMed
Google Scholar
Chong BF, Mills E, Bonnett GD, Gnanasambandam A. Early exposure to ethylene modifies shoot development and increases sucrose accumulation rate in sugarcane. J Plant Growth Regul. 2010;29(2):149–63 https://doi.org/10.1007/s00344-009-9118-3.
Article
CAS
Google Scholar
Kuhnle J, Moore P, Haddon W, Fitch M. Identification of gibberellins from sugarcane plants. J Plant Growth Regul. 1983;2(1–4):59 https://doi.org/10.1007/BF02042234.
Article
CAS
Google Scholar
Rae AL, Grof CP, Casu RE, Bonnett GD. Sucrose accumulation in the sugarcane stem: pathways and control points for transport and compartmentation. Field Crop Res. 2005;92(2–3):159–68 https://doi.org/10.1016/j.fcr.2005.01.027.
Article
Google Scholar
Glassop D, Roessner U, Bacic A, Bonnett GD. Changes in the sugarcane metabolome with stem development. Are they related to sucrose accumulation? Plant Cell Physiol. 2007;48(4):573–84 https://doi.org/10.1093/pcp/pcm027.
Article
CAS
PubMed
Google Scholar
Jung J. Plant bioregulators: overview, use, and development. In: ACS Publications. 1985. https://doi.org/10.1021/bk-1985-0276.ch007.
Zummo G, Benedict J, Segers J. Effect of the plant growth regulator mepiquat chloride on host plant resistance in cotton to bollworm (Lepidoptera: Noctuidae). J Econ Entomol. 1984;77(4):922–4 https://doi.org/10.1093/jee/77.4.922.
Article
CAS
Google Scholar
Nuti RC, Viator RP, Casteel SN, Edmisten KL, Wells R. Effect of planting date, mepiquat chloride, and glyphosate application to glyphosate-resistant cotton. Agron J. 2006;98(6):1627–33 https://doi.org/10.2134/agronj2005.0360.
Article
Google Scholar
Bottino MC, Rosario S, Grativol C, Thiebaut F, Rojas CA, Farrineli L, Hemerly AS, Ferreira PCG. High-throughput sequencing of small RNA transcriptome reveals salt stress regulated microRNAs in sugarcane. PLoS One. 2013;8(3):e59423 https://doi.org/10.1371/journal.pone.0059423.
Article
Google Scholar
Ferreira TH, Gentile A, Vilela RD, Costa GGL, Dias LI, Endres L, Menossi M. microRNAs associated with drought response in the bioenergy crop sugarcane (Saccharum spp.). 2012. 7(10): e46703. Published online 2012 Oct 11. doi: https://doi.org/10.1371/journal.pone.0046703.
Zhou Y, Liu Y, Luo Y, Zhong H, Huang T, Liang W, Xiao J, Wu W, Li L, Chen M. Large-scale profiling of the proteome and dual transcriptome in Nile tilapia (Oreochromis niloticus) challenged with low- and high-virulence strains of Streptococcus agalactiae. Fish Shellfish Immunol. 2020;100:386–96 https://doi.org/10.1016/j.fsi.2020.03.008.
Article
PubMed
CAS
Google Scholar
Wang M, Wang L, Pu L, Li K, Feng T, Zheng P, Li S, Sun M, Yao Y, Jin L. LncRNAs related key pathways and genes in ischemic stroke by weighted gene co-expression network analysis (WGCNA). Genomics. 2020;112(3):2302–8 https://doi.org/10.1016/j.ygeno.2020.01.001.
Article
CAS
PubMed
Google Scholar
Do DN, Dudemaine P-L, Fomenky BE, Ibeagha-Awemu EM. Integration of miRNA weighted gene co-expression network and miRNA-mRNA co-expression analyses reveals potential regulatory functions of miRNAs in calf rumen development. Genomics. 2019;111(4):849–59 https://doi.org/10.1016/j.ygeno.2018.05.009.
Article
CAS
PubMed
Google Scholar
Qiu L, Chen R, Fan Y, Huang X, Luo H, Xiong F, Liu J, Zhang R, Lei J, Zhou H, et al. Integrated mRNA and small RNA sequencing reveals microRNA regulatory network associated with internode elongation in sugarcane (Saccharum officinarum L.). BMC Genomics. 2019;20(1):817 https://doi.org/10.1186/s12864-019-6201-4.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gonzalez-Garay ML. Introduction to isoform sequencing using pacific biosciences technology (Iso-Seq). In: Transcriptomics and gene regulation: Springer; 2016. p. 141–160. https://doi.org/10.1007/978-94-017-7450-5_6.
Wang L, Liao J, Tan F, Tang S, Huang J, Li X, Yang R, Li Y, Huang H, Jing Y. Breeding of new high-yield, high-sugar and lodging-resistant sugarcane variety Guitang 42 and its high-yield cultivation technique. J Southern Agricult. 2015;46(8):1361–6.
Google Scholar
Zhang J, Zhang X, Tang H, Zhang Q, Hua X, Ma X, Zhu F, Jones T, Zhu X, Bowers J. Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L. Nat Genet. 2018;50(11):1565–73 https://doi.org/10.1038/s41588-018-0237-2.
Article
CAS
PubMed
Google Scholar
Yang X, Luo Z, Todd J, Sood S, Wang J. Genome-wide association study of multiple yield traits in a diversity panel of polyploid sugarcane (Saccharum spp.). Plant Genome. 2020:e20006 https://doi.org/10.1002/tpg2.20006.
Garsmeur O, Droc G, Antonise R, Grimwood J, Potier B, Aitken K, Jenkins J, Martin G, Charron C, Hervouet C. A mosaic monoploid reference sequence for the highly complex genome of sugarcane. Nat Commun. 2018;9(1):1–10 https://doi.org/10.1038/s41467-018-05051-5.
Article
CAS
Google Scholar
Zhang D, Ren L, Yue J, Shi Y, Zhuo L, Wang L, Shen X. RNA-Seq-based transcriptome analysis of stem development and dwarfing regulation in Agapanthus praecox ssp. orientalis (Leighton) Leighton. Gene. 2015;565(2):252–67 https://doi.org/10.1016/j.gene.2015.04.013.
Article
CAS
PubMed
Google Scholar
Douglas CJ. Phenylpropanoid metabolism and lignin biosynthesis: from weeds to trees. Trends Plant Sci. 1996;1(6):171–8 https://doi.org/10.1016/1360-1385(96)10019-4.
Article
Google Scholar
Herrmann K. Flavonols and flavones in food plants: a review. Int J Food Sci Technol. 1976;11(5):433–48 https://doi.org/10.1111/j.1365-2621.1976.tb00743.x.
Article
CAS
Google Scholar
Ringli C, Bigler L, Kuhn BM, Leiber R-M, Diet A, Santelia D, Frey B, Pollmann S, Klein M. The modified flavonol glycosylation profile in the Arabidopsis rol1 mutants results in alterations in plant growth and cell shape formation. Plant Cell. 2008;20(6):1470–81 https://doi.org/10.1105/tpc.107.053249.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu Y, Wang G, Cao F, Zhu C, Wang G, El-Kassaby YA. Light intensity affects the growth and flavonol biosynthesis of Ginkgo (Ginkgo biloba L.). New For. 2014;45(6):765–76 https://doi.org/10.1007/s11056-014-9435-7.
Article
Google Scholar
Pék Z, Daood H, Nagyné MG, Berki M, Tóthné MM, Neményi A, Helyes L. Yield and phytochemical compounds of broccoli as affected by temperature, irrigation, and foliar sulfur supplementation. HortScience. 2012;47(11):1646–52 https://doi.org/10.21273/HORTSCI.47.11.1646.
Article
Google Scholar
Hirschmann F, Krause F, Papenbrock J. The multi-protein family of sulfotransferases in plants: composition, occurrence, substrate specificity, and functions. Front Plant Sci. 2014:5(556) https://doi.org/10.3389/fpls.2014.00556.
Boycheva I, Vassileva V, Revalska M, Zehirov G, Iantcheva A. Cyclin-like F-box protein plays a role in growth and development of the three model species Medicago truncatula, Lotus japonicus, and Arabidopsis thaliana. Res Reports Biol. 2015;6:117 https://doi.org/10.2147/RRB.S84753.
Google Scholar
Gao S, Fang J, Xu F, Wang W, Chu C. Rice HOX12 regulates panicle exsertion by directly modulating the expression of ELONGATED UPPERMOST INTERNODE1. Plant Cell. 2016;28(3):680–95 https://doi.org/10.1105/tpc.15.01021.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 2009;25(9):1105–11 https://doi.org/10.1093/bioinformatics/btp120.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 2008;9(1):559 https://doi.org/10.1186/1471-2105-9-559.
Article
CAS
Google Scholar