Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes: The unseen majority. Proc Natl Acad Sci. 1998;95:6578–83. https://doi.org/10.1073/pnas.95.12.6578.
Article
CAS
PubMed
PubMed Central
Google Scholar
Torsvik VL, Øvreås L. DNA Reassociation Yields Broad-Scale Information on Metagenome Complexity and Microbial Diversity. In: Handbook of Molecular Microbial Ecology I: Metagenomics and Complementary Approaches. 2011. p. 3–16.
Berg JM, Tymoczko JL SL. Prokaryotic DNA-Binding Proteins Bind Specifically to Regulatory Sites in Operons. In: Biochemistry. 5th edition. 2002. p. 1282–1284.
Rajewsky N. MicroRNAs and the operon paper. J Mol Biol. 2011;409:70–5. https://doi.org/10.1016/j.jmb.2011.03.021.
Article
CAS
PubMed
Google Scholar
Price MN, Arkin AP, Alm EJ. OpWise: operons aid the identification of differentially expressed genes in bacterial microarray experiments. BMC Bioinformatics. 2006;7:19.
Article
PubMed
PubMed Central
Google Scholar
Chen X, Su Z, Dam P, Palenik B, Xu Y, Jiang T. Operon prediction by comparative genomics: An application to the Synechococcus sp. WH8102 genome. Nucleic Acids Res. 2004;32:2147–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yaniv M. The 50th anniversary of the publication of the operon theory in the journal of molecular biology: Past, present and future. J Mol Biol. 2011;409:1–6. https://doi.org/10.1016/j.jmb.2011.03.041.
Article
CAS
PubMed
Google Scholar
Jacob F. The birth of the operon. Science. 2011;332:767.
Article
CAS
PubMed
Google Scholar
Fortino V, Smolander O-P, Auvinen P, Tagliaferri R, Greco D. Transcriptome dynamics-based operon prediction in prokaryotes. BMC Bioinformatics. 2014;15:145. https://doi.org/10.1186/1471-2105-15-145.
Article
CAS
PubMed
PubMed Central
Google Scholar
Turnbaugh PJ, Ph D. Moving towards a metagenomic basis of therapeutics. 2013.
SSA Z, Zhang X. Computational operon prediction in whole-genomes and metagenomes. Brief Funct Genomics. 2016:elw034. https://doi.org/10.1093/bfgp/elw034.
Brouwer RWW, Kuipers OP, Van Hijum SA. The relative value of operon predictions. Brief Bioinform. 2008;9:367–75.
Article
CAS
PubMed
Google Scholar
Li G, Che D, Xu Y. A universal operon predictor for prokaryotic genomes. J Bioinform Comput Biol. 2009;7:19–38 doi: S0219720009003984 [pii].
Article
CAS
PubMed
Google Scholar
Chuang LY, Chang HW, Tsai JH, Yang CH. Features for computational operon prediction in prokaryotes. Brief Funct Genomics. 2012;11:291–9.
Article
CAS
PubMed
Google Scholar
Inglis DO, Binkley J, Skrzypek MS, Arnaud MB, Cerqueira GC, Shah P, et al. Comprehensive annotation of secondary metabolite biosynthetic genes and gene clusters of Aspergillus nidulans, A. fumigatus, A. niger and A. oryzae. BMC Microbiol. 2013;13:91. https://doi.org/10.1186/1471-2180-13-91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Biggins JB, Liu X, Feng Z, Brady SF. Metabolites from the induced expression of cryptic single operons found in the genome of burkholderia pseudomallei. J Am Chem Soc. 2011;133:1638–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dumont MG, Radajewski SM, Miguez CB, Mcdonald IR, Murrell JC. Identification of a complete methane monooxygenase operon from soil by combining stable isotope probing and metagenomic analysis. Environ Microbiol. 2006;8(7):1240–50. https://doi.org/10.1111/j.1462-2920.2006.01018.
Cuadrat RRC, Ionescu D, Dávila AMR, Grossart HP. Recovering Genomics Clusters of Secondary Metabolites from Lakes Using Genome-Resolved Metagenomics. Front Microbiol. 2018; 20;9:251. https://doi.org/10.3389/fmicb.2018.00251.
Iqbal HA, Low-Beinart L, Obiajulu JU, Brady SF. Natural Product Discovery through Improved Functional Metagenomics in Streptomyces. J Am Chem Soc. 2016;138:9341–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gomes ES, Schuch V, de Macedo Lemos EG. Biotechnology of polyketides: new breath of life for the novel antibiotic genetic pathways discovery through metagenomics. Braz J Microbiol. 2013;44:1007–34 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3958165&tool=pmcentrez&rendertype=abstract.
Article
CAS
PubMed
Google Scholar
Trindade M, van Zyl LJ, Navarro-Fernández J, Abd Elrazak A. Targeted metagenomics as a tool to tap into marine natural product diversity for the discovery and production of drug candidates. Front Microbiol. 2015;28(6):890. https://doi.org/10.3389/fmicb.2015.00890.
Article
Google Scholar
Cui H, Li Y, Zhang X. An overview of major metagenomic studies on human microbiomes in health and disease. Quant Biol. 2016:1–15. https://doi.org/10.1007/s40484-016-0078-x.
Zhang Y, Zhang H. Microbiota associated with type 2 diabetes and its related complications. Food Sci Hum Wellness. 2013;2:167–72. https://doi.org/10.1016/j.fshw.2013.09.002.
Article
Google Scholar
Karlsson FH, Tremaroli V, Nookaew I, Bergström G, Behre CJ, Fagerberg B, et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature. 2013;498:99–103. https://doi.org/10.1038/nature12198.
Article
CAS
PubMed
Google Scholar
Nováková J, Farkašovský M. Bioprospecting microbial metagenome for natural products. Biologia (Bratisl). 2013;68:1079–80. https://doi.org/10.2478/s11756-013-0246-7.
Article
CAS
Google Scholar
Goecks J, Nekrutenko A, Taylor J, Afgan E, Ananda G, Baker D, et al. Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol. 2010;11.
Seshadri R, Kravitz SA, Smarr L, Gilna P, Frazier M. CAMERA: a community resourcee for metagenomics. PLoS Biol. 2007;5:e75. https://doi.org/10.1371/journal.pbio.0050075.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kultima JR, Sunagawa S, Li J, Chen W, Chen H, Mende DR, et al. MOCAT: a metagenomics assembly and gene prediction toolkit. PLoS One. 2012;7:e47656. https://doi.org/10.1371/journal.pone.0047656.
Article
CAS
PubMed
PubMed Central
Google Scholar
Markowitz VM, Chen IM, Chu K, Szeto E, Palaniappan K, Grechkin Y, et al. IMG/M: The integrated metagenome data management and comparative analysis system. Nucleic Acids Res. 2012;40(November):123–9.
Article
Google Scholar
Arumugam M, Harrington ED, Foerstner KU, Raes J, Bork P. SmashCommunity: A metagenomic annotation and analysis tool. Bioinformatics. 2010;26:2977–8.
Article
CAS
PubMed
Google Scholar
Peng Y, Leung HCM, Yiu SM, Chin FYL. IDBA - A practical iterative De Bruijn graph De Novo assembler. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2010. p. 426–40.
Hyatt D, Chen G, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal : prokaryotic gene recognition and translation initiation site identification. 2010.
Moreno-Hagelsieb G. The power of operon rearrangements for predicting functional associations. Comput Struct Biotechnol J. 2015;13:402–6. https://doi.org/10.1016/j.csbj.2015.06.002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chuang L-Y, Tsai J-H, Yang C-H. Operon Prediction Using Particle Swarm Optimization and Reinforcement Learning. 2010 Int Conf Technol Appl Artif Intell. 2010;:366–72.
Salgado H, Moreno-Hagelsieb G, Smith TF, Collado-Vides J. Operons in Escherichia coli: genomic analyses and predictions. Proc Natl Acad Sci U S A. 2000;97:6652–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jacob E, Sasikumar R, Nair KNR. A fuzzy guided genetic algorithm for operon prediction. Bioinformatics. 2005;21:1403–7.
Article
CAS
PubMed
Google Scholar
Reese MG. Application of a time-delay neural network to promoter annotation in the Drosophila melanogaster genome. Comput Chem. 2001;26:51–6.
Article
CAS
PubMed
Google Scholar
Weber T, Blin K, Duddela S, Krug D, Kim HU, Bruccoleri R, et al. AntiSMASH 3.0-A comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res. 2015;43:W237–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(February):357–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–9.
Article
PubMed
PubMed Central
Google Scholar
Kim J, Kim MS, Koh AY, Xie Y, Zhan X. FMAP : Functional Mapping and Analysis Pipeline for metagenomics and metatranscriptomics studies. BMC Bioinformatics. 2016:1–8. https://doi.org/10.1186/s12859-016-1278-0.
Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 2012;40(Database issue):D109–14. https://doi.org/10.1093/nar/gkr988.
Article
CAS
PubMed
Google Scholar
Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. The KEGG resource for deciphering the genome. Nucleic Acids Res. 2004;32(suppl_1):D277–80. https://doi.org/10.1093/nar/gkh063.
Article
CAS
PubMed
PubMed Central
Google Scholar
Suzek BE, Wang Y, Huang H, McGarvey PB, Wu CH, Consortium U. UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches. Bioinformatics. 2015;31:926–32. https://doi.org/10.1093/bioinformatics/btu739.
Article
CAS
PubMed
Google Scholar
Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat eMethods 2014;12:59. https://doi.org/https://doi.org/10.1038/nmeth.3176.
Price MN, Huang KH, Alm EJ, Arkin AP. A novel method for accurate operon predictions in all sequenced prokaryotes. Nucleic Acids Res. 2005;33:880–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen X, Su Z, Xu Y, Jiang T. Computational Prediction of Operons in Synechococcus sp. WH8102. Genome Inform. 2004;15(2):211–22.
Bergman NH, Passalacqua KD, Hanna PC, Qin ZS. Operon prediction for sequenced bacterial genomes without experimental information. Appl Environ Microbiol. 2007;73:846–54.
Article
CAS
PubMed
Google Scholar
Chuang L, Yang C, Tsai J, Yang C. Operon prediction using chaos embedded particle swarm optimization. IEEE/ACM Trans Comput Biol Bioinform. 2013;10(5):1299–309. https://doi.org/10.1109/TCBB.2013.63.
Edwards MT, Rison SCG, Stoker NG, Wernisch L. A universally applicable method of operon map prediction on minimally annotated genomes using conserved genomic context. Nucleic Acids Res. 2005;33:3253–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tran TT, Dam P, Su Z, Poole FL, Adams MWW, Zhou GT, et al. Operon prediction in Pyrococcus furiosus. Nucleic Acids Res. 2007;35:11–20.
Article
CAS
PubMed
Google Scholar
Taboada B, Verde C, Merino E. High accuracy operon prediction method based on STRING database scores. Nucleic Acids Res. 2010;38.
Vey G. Metagenoic guilt by association: an operonic perspective. Plos One. 2013;8(8):e71484.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490:55–60. https://doi.org/10.1038/nature11450.
Article
CAS
PubMed
Google Scholar
Peng Y, Leung HCM, Yiu SM, Chin FYL. IDBA-UD: A de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics. 2012;28:1420–8.
Article
CAS
PubMed
Google Scholar
Vey G, Charles TC. MetaProx: the database of metagenomic proximons. Database. 2014;2014:bau097–bau097. doi:https://doi.org/10.1093/database/bau097.
Vey G, Charles TC. An analysis of the validity and utility of the proximon proposition. 2012;:215–20.
Detlev G, Vey A. The Proximon : Representation , Evaluation , and Applications of Metagenomic Functional Interactions by.
Salgado H, Gama-Castro S, Peralta-Gil M, Díaz-Peredo E, Sánchez-Solano F, Santos-Zavaleta A, et al. RegulonDB (version 5.0): Escherichia coli K-12 transcriptional regulatory network, operon organization, and growth conditions. Nucleic Acids Res. 2006;34(Database issue):D394–7. https://doi.org/10.1093/nar/gkj156.
Mao F, Dam P, Chou J, Olman V, Xu Y. DOOR: A database for prokaryotic operons. Nucleic Acids Res. 2009;37(SUPPL. 1):459–63.
Article
Google Scholar
Dam P, Olman V, Harris K, Su Z, Xu Y. Operon prediction using both genome-specific and general genomic information. Nucleic Acids Res. 2007;35(December):288–98.
Article
CAS
PubMed
Google Scholar
Mao X, Ma Q, Zhou C, Chen X, Zhang H, Yang J, et al. DOOR 2.0: Presenting operons and their functions through dynamic and integrated views. Nucleic Acids Res. 2014;42:654–9.
Article
Google Scholar
Conway T, Creecy JP, Maddox SM, Grissom JE, Conkle TL, Shadid TM, et al. Unprecedented high-resolution view of bacterial operon architecture revealed by RNA sequencing. MBio. 2014;5.
Zheng Y, Szustakowski JD, Fortnow L, Roberts RJ, Kasif S. Computational identification of operons in microbial genomes. Genome Res. 2002;12(8):1221–30. https://doi.org/10.1101/gr.200602.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rinninella E, Raoul P, Cintoni M, Franceschi F, Miggiano GAD, Gasbarrini A, Mele MC. What is the healthy gut microbiota composition? a changing ecosystem across age, environment, diet, and diseases. Microorganisms. 2019;7(1):14. https://doi.org/10.3390/microorganisms7010014.
Article
CAS
PubMed Central
Google Scholar
Jia B, Xuan L, Cai K, Hu Z, Ma L, Wei C. NeSSM: A Next-Generation Sequencing Simulator for Metagenomics. PLoS One. 2013;8.
Bratlie MS, Johansen J, Drabløs F. Relationship between operon preference and functional properties of persistent genes in bacterial genomes. BMC Genomics. 2010;28(11):71. https://doi.org/10.1186/1471-2164-11-71.
Article
CAS
Google Scholar
Price MN, Arkin AP, Alm EJ. The life-cycle of operons. PLoS Genet. 2006;2(June):0859–73.
CAS
Google Scholar
Nuñez PA, Romero H, Farber MD, EPC R. Natural selection for operons depends on genome size. Genome Biol Evol. 2013;5:2242–54.
Article
PubMed
PubMed Central
Google Scholar
Ermolaeva MD, White O, Salzberg SL. Prediction of operons in microbial genomes. Nucleic Acids Res. 2001;29:1216–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rahman A, Nahar N, Nawani NN, Jass J, Hossain K, Saud ZA, et al. Bioremediation of hexavalent chromium (VI) by a soil-borne bacterium, Enterobacter cloacae B2-DHA. J Environ Sci Heal A Tox Hazard Subst Environ Eng. 2015;50:1136–47.
Article
CAS
Google Scholar
Ptilovanciv EON, Fernandes GS, Teixeira LC, Reis LA, Pessoa EA, Convento MB, et al. Heme oxygenase 1 improves glucoses metabolism and kidney histological alterations in diabetic rats. Diabetol Metab Syndr. 2013;5:3. https://doi.org/10.1186/1758-5996-5-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chandrakumar L, Bagyánszki M, Szalai Z, Mezei D, Bódi N. Diabetes-Related Induction of the Heme Oxygenase System and Enhanced Colocalization of Heme Oxygenase 1 and 2 with Neuronal Nitric Oxide Synthase in Myenteric Neurons of Different Intestinal Segments. 2017;2017.
NAKAJIMA O, SAITOH S, KIMURA T, OSAKI T, VINCENT KP, TAKAHASHI K, et al. Heme deficiency causes impaired glycogen synthesis in skeletal muscle leading to insulin resistance. Diabetes. 2018;67(Supplement 1):1716. https://doi.org/10.2337/db18-1716-P.
Article
Google Scholar
Simcox JA, Mitchell TC, Gao Y, Just SF, Cooksey R, Cox J, et al. Dietary iron controls circadian hepatic glucose metabolism through heme synthesis. Diabetes. 2015;64:1108–19. https://doi.org/10.2337/db14-0646.
Article
CAS
PubMed
Google Scholar
Wei M, Wang PG. Chapter Two - Desialylation in physiological and pathological processes: New target for diagnostic and therapeutic development. In: Zhang LBT-P in MB and TS, editor. Glycans and Glycosaminoglycans as Clinical Biomarkers and Therapeutics - Part A. Academic Press; 2019. p. 25–57. doi:https://doi.org/https://doi.org/10.1016/bs.pmbts.2018.12.001.
Wijnhoven TJ, van den Hoven MJ, Ding H, van Kuppevelt TH, van der Vlag J, Berden JH, Prinz RA, Lewis EJ, Schwartz M, Xu X. Heparanase induces a differential loss of heparan sulphate domains in overt diabetic nephropathy. Diabetologia. 2008;51(2):372–82. https://doi.org/10.1007/s00125-007-0879-6.
Article
CAS
PubMed
Google Scholar
Yokoyama H, Sato K, Okudaira M, Morita C, Takahashi C, Suzuki D, Sakai H, Iwamoto Y. Serum and urinary concentrations of heparan sulfate in patients with diabetic nephropathy. Kidney Int. 1999;56(2):650–8. https://doi.org/10.1046/j.1523-1755.1999.00591.x.
Article
CAS
PubMed
Google Scholar
Lauer ME, Hascall VC, Wang A. Heparan sulfate analysis from diabetic rat glomeruli. J Biol Chem. 2007;12;282(2):843–52. https://doi.org/10.1074/jbc.M608823200.
Bishop JR, Foley E, Lawrence R, Esko JD. Insulin-dependent diabetes mellitus in mice does not alter liver heparan sulfate. J Biol Chem. 2010;285(19):14658–62. https://doi.org/10.1074/jbc.M110.112391.
Article
CAS
PubMed
PubMed Central
Google Scholar
UniProt Consortium. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 2019;47(D1):D506-15. https://doi.org/10.1093/nar/gky1049.
Article
CAS
Google Scholar
Baker DJ, Timmons JA, Greenhaff PL. Glycogen phosphorylase inhibition in type 2 diabetes therapy: A systematic evaluation of metabolic and functional effects in rat skeletal muscle. Diabetes. 2005.
Treadway JL, Mendys P, Hoover DJ. Glycogen phosphorylase inhibitors for treatment of type 2 diabetes mellitus. Expert Opin Investig Drugs. 2001;10(3):439–54. https://doi.org/10.1517/13543784.10.3.439.
Article
CAS
PubMed
Google Scholar