Verma V, Ravindran P, Kumar PP. Plant hormone-mediated regulation of stress responses. BMC Plant Biol. 2016;16(1):86.
Article
PubMed
PubMed Central
CAS
Google Scholar
Nakaminami K, Seki M. RNA regulation in plant cold stress response. Adv Exp Med Biol. 2018;1081:23–44.
Article
CAS
PubMed
Google Scholar
Luo QC, Wei QH, Wang RB, Zhang Y, Zhang F, He Y, et al. Ectopic expression of BdCIPK31 confers enhanced low-temperature tolerance in transgenic tobacco plants. Acta Biochim Biophys Sin. 2018;50(2):199–208.
Article
CAS
PubMed
Google Scholar
Olate E, Jiménez-Gómez JM, Holuigue L, Salinas J. NPR1 mediates a novel regulatory pathway in cold acclimation by interacting with HSFA1 factors. Nat Plants. 2018;4(10):811–23.
Article
CAS
PubMed
Google Scholar
Wang SQ, Tang J, Hu KD, Huang ZQ, Yang F, Zhang HY, et al. Antioxidative system in sweet potato root is activated by low-temperature storage. J Sci Food Agric. 2019;99(8):3824–33.
Article
CAS
PubMed
Google Scholar
Matapérez C, Begaramorales JC, Mounira C, Sánchezcalvo B, Raquel V, Padilla MN, et al. Protein tyrosine nitration during development and abiotic stress response in plants. Front Plant Sci. 2016;7:1699.
Google Scholar
Hu J, Rampitsch C, Bykova NV. Advances in plant proteomics toward improvement of crop productivity and stress resistancex. Front Plant Sci. 2015;6:209.
Article
PubMed
PubMed Central
Google Scholar
Akiko H, Setsuko K. Impact of post-translational modifications of crop proteins under abiotic stress. Proteomes. 2016;4(4):42.
Article
CAS
Google Scholar
Strasser R. Plant protein glycosylation. Glycobiology. 2016;26(9):926–39.
Article
CAS
PubMed
PubMed Central
Google Scholar
John W, Xinnian D. Post-translational regulation of plant immunity. Curr Opin Plant Biol. 2017;38:124–32.
Article
CAS
Google Scholar
Yu FF, Wu YR, Xie Q. Precise protein post-translational modifications modulate ABI5 activity. Trends Plant Sci. 2015;20(9):569–75.
Article
CAS
PubMed
Google Scholar
Han ZJ, Feng YH, Gu BH, Li YM, Chen H. The post-translational modification, SUMOylation, and cancer (review). Int J Oncol. 2018;52(4):1081–94.
CAS
PubMed
PubMed Central
Google Scholar
Sabari BR, Zhang D, Allis CD, Zhao YM. Metabolic regulation of gene expression through histone acylations. Nat Rev Mol Cell Biol. 2016;18(2):90–101.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tan M, Luo H, Lee S, Jin FL, Yang JS, Emilie MF, et al. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell. 2011;146:1016–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ruizandres O, Sanchezniño MD, Cannataortiz P, Ruizortega M, Egido J, Ortiz A, et al. Histone lysine crotonylation during acute kidney injury in mice. Dis Model Mech. 2016;9(6):633–45.
CAS
Google Scholar
Wei W, Mao A, Tang B, Zeng QF, Gao SN, Liu XG, et al. Large-scale identification of protein Crotonylation reveals its role in multiple cellular functions. J Proteome Res. 2017;16(4):1743–52.
Article
CAS
PubMed
Google Scholar
Xu WZ, Wan JH, Zhan J, Li XY, He HY, Shi ZM, et al. Global profiling of crotonylation on non-histone proteins. Cell Res. 2017;27:946–9.
Article
PubMed
PubMed Central
Google Scholar
Sabari B, Tang ZY, He H, Yong-Gonzalez V, Molina H, Kong H, et al. Intracellular crotonyl-CoA stimulates transcription through p300-catalyzed histone crotonylation. Mol Cell. 2015;58:203–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu XG, Wei W, Liu YT, Yang XL, Wu J, Zhang Y, et al. MOF as an evolutionarily conserved histone crotonyltransferase and transcriptional activation by histone acetyltransferase-deficient and crotonyltransferase-competent CBP/p300. Cell Discov. 2017;3:17016.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bao XC, Wang Y, Li X, Li XM, Liu Z, Yang TP, et al. Identification of ‘erasers’ for lysine crotonylated histone marks using a chemical proteomics approach. Elife. 2014;3:e02999.
Article
PubMed Central
Google Scholar
Madsen AS, Olsen CA. Profiling of substrates for zinc-dependent lysine Deacylase enzymes: HDAC3 exhibits Decrotonylase activity in vitro. Angew Chem. 2012;124(36):9217–21.
Article
Google Scholar
Sun HJ, Liu XW, Li FF, Li W, Zhang J, Xiao ZX, et al. First comprehensive proteome analysis of lysine crotonylation in seedling leaves of Nicotiana tabacum. Sci Rep. 2017;7(1):3013.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liu KD, Yuan CC, Li HL, Chen KY, Lu LS, Shen CJ, et al. A qualitative proteome-wide lysine crotonylation profiling of papaya (Carica papaya L.). Sci Rep. 2018;8(1):8230.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liu S, Xue C, Fang Y, Chen G, Peng XJ, Zhou Y, et al. Global involvement of lysine crotonylation in protein modification and transcription regulation in rice. Mol Cell Proteomics. 2017;17(10):1922–36.
Article
Google Scholar
Lu Y, Xu QT, Liu Y, Yu Y, Cheng ZY, Zhao Y, Zhou DX. Dynamics and functional interplay of histone lysine butyrylation, crotonylation, and acetylation in rice under starvation and submergence. Genome Biol. 2018;19(1):10–2.
Article
CAS
Google Scholar
Sun JH, Qiu C, Qian WJ, Wang Y, Sun LT, Li YS, et al. Ammonium triggered the response mechanism of lysine crotonylome in tea plants. BMC Genomics. 2019;20(1):10–4.
Article
Google Scholar
Begaramorales JC, Sanchezcalvo B, Chaki M, Valderrama R, Matapérez C, Lópezjaramillo J, et al. Dual regulation of cytosolic ascorbate peroxidase (apx) by tyrosine nitration and s-nitrosylation. J Exp Botany. 2014;65(2):527–38.
Article
CAS
Google Scholar
Aroca A, Serna A, Gotor C, Romero LC. S\r, −sulfhydration: a cysteine posttranslational modification in plant systems. Plant Physiol. 2015;168(1):334–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grimaud F, Renaut J, Dumont E, Sergeant K, Lucaudanila A, Blervacq AS, et al. Exploring chloroplastic changes related to chilling and freezing tolerance during cold acclimation of pea (Pisum sativum, L.). J Proteome. 2013;80(6):145–59.
Article
CAS
Google Scholar
Rogalski M, Schottler MA, Thiele W, Schulze WX, Bock R. Rpl33, a nonessential plastid-encoded ribosomal protein in tobacco, is required under cold stress conditions. Plant Cell Online. 2008;20(8):2221–37.
Article
CAS
Google Scholar
Zhang JX, Yuan H, Yang Y, Fish T, Lyi SM, Thannhauser TW, et al. Plastid ribosomal protein S5 is involved in photosynthesis, plant development, and cold stress tolerance in Arabidopsis. J Exp Bot. 2016;67(9):2731–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang WJ, Zheng KL, Gong XD, Xu JL, Huang JR, Lin DZ, et al. The rice, TCD11, encoding plastid ribosomal protein S6 is essential for chloroplast development at low-temperature. Plant Sci. 2017;259:1–11.
Article
CAS
PubMed
Google Scholar
Hang R, Wang Z, Deng X, Liu CY, Yan B, Yang C, et al. Ribosomal RNA biogenesis and its response to chilling stress in Oryza sativa L. Plant Physiol. 2018;177(1):381–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grennan AK. High light and low-temperature effect on D1 synthesis and turnover in the chilling sensitive plant lycopersicun esculentum. Thesis (Ph.D.). University of Illinois at Urbana. 2002:1–80. https://www.ideals.illinois.edu/handle/2142/87032. .
Wang K, Wu YH, Tian XQ, Bai ZY, Liang QY, Liu QL, et al. Overexpression of DgWRKY4 enhances salt tolerance in Chrysanthemum seedlings. Front Plant Sci. 2017;8:1592.
Article
PubMed
PubMed Central
Google Scholar
Guo Y, Wang Z, Guan X, Hu Z, Lu Y. Proteomic analysis of Potentilla fruticosa L. leaves by iTRAQ reveals responses to heat stress. PLoS One. 2017;12(8):e0182917.
Article
PubMed
PubMed Central
CAS
Google Scholar
Khannachopra R. Leaf senescence and abiotic stresses share reactive oxygen species-mediated chloroplast degradation. Protoplasma. 2012;249(3):469–81.
Article
CAS
Google Scholar
Makino A, Mae T, Ohira K. Purification and storage of Ribulose 1,5-bisphosphate Carboxylase from Rice leaves. Plant Cell Physiol. 1983;24(6):1169–73.
CAS
Google Scholar
Sharwood RE. Engineering chloroplasts to improve Rubisco catalysis: prospects for translating improvements into food and fiber crops. New Phytol. 2017;213(2):494–510.
Article
CAS
PubMed
Google Scholar
Scafaro AP, Vleesschauwer DD, Bautsoens N, Hannah MA, Rie JV. A single point mutation in the C-terminal extension of wheat Rubisco activase dramatically reduces ADP inhibition via enhanced ATP binding affinity. J Biol Chem. 2019;294(47):17931–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu Y, Sun WB, Zhou Y, Zhuge Q. Cloning and functional analysis of Rubisco Activase gene from Populus trichocarpa. Sci Silvae Sinicae. 2017;53(04):83–95.
Google Scholar
Carmosilva AE, Gore MA, Andradesanchez P, French AN, Hunsaker DJ, Salvucci ME. Decreased CO2 availability and inactivation of Rubisco limit photosynthesis in cotton plants under heat and drought stress in the field. Environ Exp Botany. 2012;83(none):1–11.
Article
CAS
Google Scholar
Soengas P, Víctor M. Rodríguez, Velasco P, et al. effect of temperature stress on antioxidant defenses in Brassica oleracea. Acs Omega. 2018;3(5):5237–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yan SP, Zhang QY, Tang ZC, Su WA, Sun WN. Comparative proteomic analysis provides new insights into chilling stress responses in rice. Mol Cell Proteomics. 2006;5(3):484–96.
Article
CAS
PubMed
Google Scholar
Hajheidari M, Abdollahiannoghabi M, Askari H, Heidari M, Salekdeh GH. Proteome analysis of sugar beet leaves under drought stress. Proteomics. 2005;5(4):950–60.
Article
CAS
PubMed
Google Scholar
Costa P, Bahrman N, Frigerio JM, Kremer A, Plomion C. Water-deficit-responsive proteins in maritime pine. Plant Mol Biol. 1998;38(4):587–96.
Article
CAS
PubMed
Google Scholar
Pietrzykowska M. The roles of Lhcb1 och Lhcb2 in regulation of photosynthetic light harvesting. Arch Biochem Biophys. 2015;306(2):420–6.
Google Scholar
Yang DH, Paulsen H, Andersson B. The N-terminal domain of the light-harvesting chlorophyll a/b -binding protein complex (LHCII) is essential for its acclimative proteolysis. FEBS Lett. 2000;466(2):385–8.
Article
CAS
PubMed
Google Scholar
Li XG, Meng QW, Jiang GQ, Zou Q. The susceptibility of cucumber and sweet pepper to chilling under low irradiance is related to energy dissipation and water-water cycle. Photosynthetica. 2003;41(2):259–65.
Article
CAS
Google Scholar
Xuexia W, Jianlin C, Dingshi Z. Effects of low-temperature stress on gas exchange photochemical efficiency of PS II and light energy allocation in egglant seedling leaves. Acta Agriculturae Zhejiangensis. 2009;21(02):139–43.
Google Scholar
Zhang ZS, Zhang LT, Gao HY. Research of the photoinhibition of PS I and PS II in leaves of cucumber under chilling stress combined with different light intensities. Sci Agric Sin. 2009;42(12):4288–93.
CAS
Google Scholar
Zhu YY, Wang M, Li X, Zhang XL, Sun GY. Adaptive mechanism of PS II function in young and mature leaves of flue-cured tobacco seedlings under low-temperature and high light during transplanting stage. Acta Agriculturae Boreali-Sinica. 2017;32(02):138–44.
Google Scholar
Cui LR, Cao K, Zou ZR. Effects of exogenous 24-epibrassinolide on photosynthesis and ATP synthase Β subunit of tomato under low-temperature/ poor light. Pakistan J botany. 2017;49(1):57–62.
CAS
Google Scholar
Zhao M, Zhou RL, Liu JF. The relationship between freeze-tolerance and changes in activities of antioxidant enzymes and osmolyte content in the leaves of white clover during early winter freeze-thaw cycles. Acta Ecol Sin. 2011;31(2):306–15.
CAS
Google Scholar
Jan N, Majeed U, Andrabi KI, John R. Cold stress modulates osmolytes and antioxidant system in Calendula officinalis. Acta Physiol Plant. 2018;40(4):73.
Article
CAS
Google Scholar
Li J, Zhou P, Zhu Y, Liu F, Li R, Qiu Y. Proteomic analysis of Rice seedlings under cold stress. Protein J. 2017;36(4):299–307.
Article
PubMed
CAS
Google Scholar
Gao F, Zhou YJ, Zhu WP, Li XF, Fan LM, Zhang GF. Proteomic analysis of cold stress-responsive proteins in Thellungiella rosette leaves. Planta. 2009;230(5):1033–46.
Article
CAS
PubMed
Google Scholar
Luo Y, Tang HR, Zhang Y. Effect of low-temperature stress on activities of SOD and enzymes of Ascorbate-glutathione cycle. Acta Horticulturae Sinica. 2007;06:1405–10.
Google Scholar
Zhang HN, Gu JT, Lu WJ, Li GD, Xiao K. Improvement of low-temperature stress tolerant capacities in transgenic tobacco plants from overexpression of wheat TaSOD1.1 and TaSOD1.2 genes. Sci Agric Sin. 2009;42(01):10–6.
CAS
Google Scholar
Ma NL, Lah WAC, Kadir NA, Mustaqim M, Ismail MR. Susceptibility and tolerance of rice crop to salt threat: physiological and metabolic inspections. PLoS One. 2018;13(2):e0192732.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yang XW, He K, Chi XY, Chai GH, Wang YP, Jia CL, et al. Miscanthus NAC transcription factor MlNAC12 positively mediates abiotic stress tolerance in transgenic Arabidopsis. Plant Sci. 2018;277:229–41.
Article
CAS
PubMed
Google Scholar
Zhang TG, Mo JN, Zhou K, Chang Y, Liu ZG. Overexpression of Brassica campestris BcICE1 gene increases abiotic stress tolerance in tobacco. Plant Physiol Biochem. 2018;132:515–23.
Article
CAS
PubMed
Google Scholar
Ye YY, Lin RY, Su HX, Chen HF, Zhang M. The functional identification of glycine-rich TtASR from Tetragonia tetragonoides (pall.) Kuntze involving in plant abiotic stress tolerance. Plant Physiol Biochem. 2019;143:212–23.
Article
CAS
PubMed
Google Scholar
Ding Y, Miao JL, Li GY, Wang QF, Kan GF, Wang GD. Effect of cd on GSH and GSH-related enzymes of Chlamydomonas sp. ICE-L existing in Antarctic ICE. J Environ Sci. 2005;17(4):667–71.
CAS
Google Scholar
Li ZQ, Li JT, Bing J, Zhang GF. The role analysis of APX gene family in the growth and developmental processes and in response to abiotic stresses in Arabidopsis thaliana. Hereditas (Beijing). 2019;41(6):534–47.
Google Scholar
Suza WP, Avila CA, Carruthers K, Kulkarni S, Goggin FL, Lorence A. Exploring the impact of wounding and jasmonates on ascorbate metabolism. Plant Physiology & Biochemistry. 2010;48(5):337.
Article
CAS
Google Scholar
Zhang ZG, Zhang Q, Wu JX, Zheng X, Zheng S, Sun XH, et al. Gene knockout study reveals that cytosolic ascorbate peroxidase 2(OsAPX2) Plays a critical role in growth and reproduction in rice under drought, Salt and Cold Stresses. Plos One. 2013;8(2):e57472.
Article
CAS
PubMed
PubMed Central
Google Scholar
Agrawal GK, Jwa NS, Iwahashi H, Rakwal R. Importance of ascorbate peroxidases OsAPX1 and OsAPX2 in the rice pathogen response pathways and growth and reproduction revealed by their transcriptional profiling. Gene. 2003;322(none):–0–103.
Wang K, Bai ZY, Liang QY, Liu QL, Zhang L, Pan YZ, et al. Transcriptome analysis of chrysanthemum (Dendranthema grandiflorum) in response to low temperature stress. Bmc Genomics. 2018;19(1):319.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ma B, Gao L, Zhang H, Cui J, Shen Z. Aluminum-induced oxidative stress and changes in antioxidant defenses in the roots of rice varieties differing in Al tolerance. Plant Cell Rep. 2012;31(4):687–96.
Article
CAS
PubMed
Google Scholar
Chou MF, Schwartz D. Biological sequence motif discovery using motif-x. Curr Protoc Bioinformatics. 2011;35(1):13.15.1–13.15.24.
Article
Google Scholar