Huang W, Guo Y, Du W, Zhang X, Li A, Miao X. Global transcriptome analysis identifies differentially expressed genes related to lipid metabolism in Wagyu and Holstein cattle. Sci Rep. 2017;7:5278.
Article
PubMed
PubMed Central
CAS
Google Scholar
Miao X, Luo Q, Zhao H, Qin X. Co-expression analysis and identification of fecundity-related long non-coding RNAs in sheep ovaries. Sci Rep. 2016;6:39398.
Article
CAS
PubMed
PubMed Central
Google Scholar
Flores-Sandoval E, Romani F, Bowman JL. Co-expression and transcriptome analysis of Marchantia polymorpha transcription factors supports class C ARFs as independent actors of an ancient auxin regulatory module. Front Plant Sci. 2018;9:1345.
Article
PubMed
PubMed Central
Google Scholar
de la Fuente A. From ‘differential expression’ to ‘differential networking’ – identification of dysfunctional regulatory networks in diseases. Trends Genet. 2010;26:326–33.
Article
PubMed
CAS
Google Scholar
Zuloaga FO, Morrone O. Revisión de las especies de Paspalum para América del Sur austral. Ann Mo Bot Garden Monogr Syst Bot. 2005;102:1–297.
Google Scholar
Ortiz JPA, Quarin CL, Pessino SC, Acuña C, Martínez EJ, Espinoza F, et al. Harnessing apomictic reproduction in grasses: what we have learned from Paspalum. Ann Bot. 2013;112:767–87.
Article
PubMed
PubMed Central
Google Scholar
Burton GW. The method of reproduction in common Bahia grass, Paspalum notatum. Agron J. 1948;40:443–52.
Article
Google Scholar
Quarin CL, Urbani MH, Blount AR, Martinez EJ, Hack CM, Burton GW, et al. Registration of Q4188 and Q4205, sexual tetraploid germplasm lines of Bahiagrass. Crop Sci. 2003;43:745–6.
Article
Google Scholar
Asker S, Jerling L. Apomixis in plants. Boca Raton, FL: CRC Press; 1992.
Google Scholar
Podio M, Cáceres ME, Samoluk SS, Seijo JG, Pessino SC, Ortiz JPA, et al. A methylation status analysis of the apomixis-specific region in Paspalum spp. suggests an epigenetic control of parthenogenesis. J Exp Bot. 2014;65:6411–24.
Article
CAS
PubMed
Google Scholar
Adams KL, Wendel JF. Polyploidy and genome evolution in plants. Curr Opin Plant Biol. 2005;8:135–41.
Article
CAS
PubMed
Google Scholar
Pupilli F, Martinez EJ, Busti A, Calderini O, Quarin CL, Arcioni S. Comparative mapping reveals partial conservation of synteny at the apomixis locus in Paspalum spp. Mol Gen Genomics. 2004;270:539–48.
Article
CAS
Google Scholar
Hojsgaard DH, Martínez EJ, Acuña CA, Quarin CL, Pupilli F. A molecular map of the apomixis-control locus in Paspalum procurrens and its comparative analysis with other species of Paspalum. Theor Appl Genet. 2011;123:959–71.
Article
CAS
PubMed
Google Scholar
Pupilli F, Labombarda P, Caceres ME, Quarín CL, Arcioni S. The chromosome segment related to apomixis in Paspalum simplex is homoeologous to the telomeric region of the long arm of rice chromosome 12. Mol Breed. 2001;8:53–61.
Article
CAS
Google Scholar
Martínez EJ, Hopp HE, Stein J, Ortiz JPA, Quarin CL. Genetic characterization of apospory in tetraploid Paspalum notatum based on the identification of linked molecular markers. Mol Breed. 2003;12:319–27.
Article
Google Scholar
Stein J, Pessino SC, Martínez EJ, Rodriguez MP, Siena LA, Quarin CL, et al. A genetic map of tetraploid Paspalum notatum Flügge (Bahiagrass) based on single-dose molecular markers. Mol Breed. 2007;20:153–66.
Article
CAS
Google Scholar
Podio M, Rodríguez MP, Felitti S, Stein J, Martínez EJ, Siena LA, et al. Sequence characterization, in silico mapping and cytosine methylation analysis of markers linked to apospory in Paspalum notatum. Genet Mol Biol. 2012;35:827–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Conner JA, Mookkan M, Huo H, Chae K, Ozias-Akins P. A parthenogenesis gene of apomict origin elicits embryo formation from unfertilized eggs in a sexual plant. Proc Natl Acad Sci U S A. 2015;112:11205–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hojsgaard D, Klatt S, Baier R, Carman JG, Hörandl E. Taxonomy and biogeography of apomixis in angiosperms and associated biodiversity characteristics. CRC Crit Rev Plant Sci. 2014;33:414–27.
Article
PubMed
PubMed Central
Google Scholar
Polegri L, Calderini O, Arcioni S, Pupilli F. Specific expression of apomixis-linked alleles revealed by comparative transcriptomic analysis of sexual and apomictic Paspalum simplex Morong flowers. J Exp Bot. 2010;61:1869–83.
Article
CAS
PubMed
Google Scholar
Selva J-P, Pessino SC, Meier MS, Echenique VC. Identification of candidate genes related to polyploidy and/or apomixis in Eragrostis curvula. Am J Plant Sci. 2012;3:403–16.
Article
CAS
Google Scholar
Albertini E, Marconi G, Barcaccia G, Raggi L, Falcinelli M. Isolation of candidate genes for apomixis in Poa pratensis L. Plant Mol Biol. 2004;56:879–94.
Article
CAS
PubMed
Google Scholar
Pessino SC, Espinoza F, Martínez EJ, Ortiz JPA, Valle EM, Quarín CL. Isolation of cDNA clones differentially expressed in flowers of apomictic and sexual Paspalum notatum. Hereditas. 2004;134:35–42.
Article
Google Scholar
Calderini O, Chang SB, Jong H, Busti A, Paolocci F, Arcioni S, et al. Molecular cytogenetics and DNA sequence analysis of an apomixis-linked BAC in Paspalum simplex reveal a non pericentromere location and partial microcolinearity with rice. Theor Appl Genet. 2006;112:1179–91.
Article
CAS
PubMed
Google Scholar
Laspina NV, Vega T, Seijo JG, González AM, Martelotto LG, Stein J, et al. Gene expression analysis at the onset of aposporous apomixis in Paspalum notatum. Plant Mol Biol. 2008;67:615–28.
Article
CAS
PubMed
Google Scholar
Yamada-Akiyama H, Akiyama Y, Ebina M, Xu Q, Tsuruta S-I, Yazaki J, et al. Analysis of expressed sequence tags in apomictic guineagrass (Panicum maximum). J Plant Physiol. 2009;166:750–61.
Article
CAS
PubMed
Google Scholar
Sharbel TF, Voigt ML, Corral JM, Galla G, Kumlehn J, Klukas C, et al. Apomictic and sexual ovules of boechera display heterochronic global gene expression patterns. Plant Cell. 2010;22:655–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Felitti SA, Seijo JG, González AM, Podio M, Laspina NV, Siena L, et al. Expression of lorelei-like genes in aposporous and sexual Paspalum notatum plants. Plant Mol Biol. 2011;77:337–54.
Article
CAS
PubMed
Google Scholar
Okada T, Hu Y, Tucker MR, Taylor JM, Johnson SD, Spriggs A, et al. Enlarging cells initiating apomixis in hieracium praealtum transition to an embryo sac program prior to entering mitosis. Plant Physiol. 2013;163:216–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Podio M, Felitti SA, Siena LA, Delgado L, Mancini M, Seijo JG, et al. Characterization and expression analysis of somatic embryogenesis receptor kinase (SERK) genes in sexual and apomictic Paspalum notatum. Plant Mol Biol. 2014;84:479–95.
Article
CAS
PubMed
Google Scholar
Siena LA, Ortiz JP, Leblanc O, Pessino S. PnTgs1-like expression during reproductive development supports a role for RNA methyltransferases in the aposporous pathway. BMC Plant Biol. 2014;14:297.
Article
PubMed
PubMed Central
CAS
Google Scholar
Siena LA, Ortiz JPA, Calderini O, Paolocci F, Cáceres ME, Kaushal P, et al. An apomixis-linked ORC3-like pseudogene is associated with silencing of its functional homolog in apomictic Paspalum simplex. J Exp Bot. 2016;67:1965–78.
Article
CAS
PubMed
Google Scholar
Ortiz JPA, Revale S, Siena LA, Podio M, Delgado L, Stein J, et al. A reference floral transcriptome of sexual and apomictic Paspalum notatum. BMC Genomics. 2017;18:318.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bocchini M, Galla G, Pupilli F, Bellucci M, Barcaccia G, Ortiz JPA, et al. The vesicle trafficking regulator PN_SCD1 is demethylated and overexpressed in florets of apomictic Paspalum notatum genotypes. Sci Rep. 2018;8:3030.
Article
PubMed
PubMed Central
CAS
Google Scholar
Calderini O, Donnison I, Polegri L, Panara F, Thomas A, Arcioni S, et al. Partial isolation of the genomic region linked with apomixis in Paspalum simplex. Mol Breed. 2011;28:265–76.
Article
Google Scholar
Dahmer N, Schifino-Wittmann MT, Dall'Agnol M, Castro BD. Cytogenetic data for Paspalum notatum Flügge accessions. Sci Agric. 2008;65:381–8.
Article
Google Scholar
Pagliarini MS, Carraro LR, Freitas PM, Adamowski EV, Batista LAR, Valls JFM. Cytogenetic characterization of Brazilian Paspalum accessions. Hereditas. 2004;135:27–34.
Article
Google Scholar
Forbes I, Burton GW. Cytology of diploids, natural and induced tetraploids, and intra-species hybrids of Bahiagrass, Paspalum notatum Flugge. Crop Sci. 1961;1:402–6.
Article
Google Scholar
Pozzobon MT, Valls JFM. Chromosome number in germplasm accessions of Paspalum notatum (Gramineae). Braz J Genet. 1997;20:29–34.
Article
Google Scholar
Brukhin V. Molecular and genetic regulation of apomixis. Russ J Genet. 2017;53:943–64.
Article
CAS
Google Scholar
Schmidt A, Schmid MW, Klostermeier UC, Qi W, Guthörl D, Sailer C, et al. Apomictic and sexual germline development differ with respect to cell cycle, transcriptional, hormonal and epigenetic regulation. PLoS Genet. 2014;10:e1004476.
Article
PubMed
PubMed Central
CAS
Google Scholar
Albertini E, Marconi G, Reale L, Barcaccia G, Porceddu A, Ferranti F, et al. SERK and APOSTART. Candidate genes for apomixis in Poa pratensis. Plant Physiol. 2005;138:2185–99.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stuart JM, Segal E, Koller D, Kim SK. A gene-coexpression network for global discovery of conserved genetic modules. Science. 2003;302:249–55.
Article
CAS
PubMed
Google Scholar
Mancini M, Permingeat H, Colono C, Siena L, Pupilli F, Azzaro C, et al. The MAP3K-coding QUI-GON JINN (QGJ) gene is essential to the formation of unreduced embryo sacs in Paspalum. Front Plant Sci. 2018;9:1547.
Article
PubMed
PubMed Central
Google Scholar
Cidade FW, Vigna BBZ, de Souza FHD, Valls JFM, Dall’Agnol M, Zucchi MI, et al. Genetic variation in polyploid forage grass: assessing the molecular genetic variability in the Paspalum genus. BMC Genet. 2013;14:50.
Article
PubMed
PubMed Central
Google Scholar
Quarin CL, Burson BL, Burton GW. Cytology of intra- and interspecific hybrids between two cytotypes of Paspalum notatum and P. cromyorrhizon. Bot Gaz. 1984;145:420–6.
Article
Google Scholar
CEPAGRI/UNICAMP. Centro de Pesquisas Meteorológicas e Climáticas Aplicadas à Agricultura - CEPAGRI/UNICAMP. 2010. https://www.cpa.unicamp.br/o-cepagri. Accessed 14 Nov 2017.
Oliveira RR, Viana AJC, Reátegui ACE, Vincentz MGA. Short communication an efficient method for simultaneous extraction of high-quality RNA and DNA from various plant tissues. Genet Mol Biol. 2015;14:18828–38.
CAS
Google Scholar
Young BA, Sherwood RT, Bashaw EC. Cleared-pistil and thick-sectioning techniques for detecting aposporous apomixis in grasses. Can J Bot. 1979;57:1668–72.
Article
Google Scholar
Greilhuber J, Temsch EM, Loureiro JCM. Nuclear DNA content measurements. In: Dolezel J, Greilhuber J, Suda J, editors. Flow cytometry with plant cells: analysis of genes, chromosomes and genomes. Weinheim: Wiley-VCH Verlag; 2007. p. 67–101.
Chapter
Google Scholar
Dolezel J. Flow cytometry, its application and potential for plant breeding. In: Lelley T, editor. Current topics in plant cytogenetics related to plant improvement. Vienna: WUV-Universitätsverlag; 1997. p. 80–90.
Google Scholar
Patel RK, Jain M. NGS QC toolkit: a toolkit for quality control of next generation sequencing data. PLoS One. 2012;7:e30619.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29:644–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:R25.
Article
PubMed
PubMed Central
CAS
Google Scholar
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–2.
Article
CAS
PubMed
Google Scholar
Supek F, Bošnjak M, Škunca N, Šmuc T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One. 2011;6:e21800.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kanehisa M. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12:323.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leng N, Dawson JA, Thomson JA, Ruotti V, Rissman AI, Smits BMG, et al. EBSeq: an empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics. 2013;29:1035–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Young MD, Wakefield MJ, Smyth GK, Oshlack A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol. 2010;11:R14.
Article
PubMed
PubMed Central
CAS
Google Scholar
Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JAM. Primer3Plus, an enhanced web interface to primer3. Nucleic Acids Res. 2007;35:W71–4.
Article
PubMed
PubMed Central
Google Scholar
Labombarda P, Busti A, Caceres ME, Pupilli F, Arcioni S. An AFLP marker tightly linked to apomixis reveals hemizygosity in a portion of the apomixis-controlling locus in Paspalum simplex. Genome. 2002;45:513–9.
Article
CAS
PubMed
Google Scholar
Mutwil M, Usadel B, Schutte M, Loraine A, Ebenhoh O, Persson S. Assembly of an interactive correlation network for the arabidopsis genome using a novel heuristic clustering algorithm. Plant Physiol. 2009;152:29–43.
Article
PubMed
CAS
Google Scholar
Shannon P. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.
Article
CAS
PubMed
PubMed Central
Google Scholar