Schowalter T, Ring D. Biology and Management of the Fall Webworm, Hyphantria cunea (Lepidoptera: Erebidae). J Integr Pest Manage. 2017;8(1):7.
Google Scholar
Ge X, He S, Zhu C, Wang T, Xu Z, Zong S. Projecting the current and future potential global distribution of Hyphantria cunea (Lepidoptera: Arctiidae) using CLIMEX[J]. Pest Manag Sci. 2019;75(1):160-69.
Article
PubMed
CAS
Google Scholar
Cocquempot C, Lindelöw A. BIORISK-biodiversity and ecosystem risk assessment, vol. 4. Sofia: Pensoft Publishers; 2010. p. 193–218.
Google Scholar
Sullivan GT, Karaca I, Ozman-Sullivan SK, Kara K. Tachinid (Diptera: Tachinidae) parasitoids of overwintered Hyphantria cunea (Drury)(Lepidoptera: Arctiidae) pupae in hazelnut plantations in Samsun province, Turkey. J Ent Res Soc. 2012;14:21–30.
Google Scholar
Chapman R. Chemosensory regulation of feeding. Regulatory mechanisms in insect feeding: Springer; 1995. p. 101–36.
Book
Google Scholar
Qin J, Wang C. The relation of interaction between insects and plants to evolution[J]. Acta Ecol Sin. 2001;44(3):360-65.
Ishikawa S, Hirao T, Arai N. Chemosensory basis of hostplant selection in the silkworm. Entomologia Experimentalis et Applicata. 1969;12(5):544–54.
Article
Google Scholar
CORBET SA. Insect chemosensory responses: a chemical legacy hypothesis. Ecol Entomol. 1985;10(2):143–53.
Article
Google Scholar
Sánchez-Gracia A, Vieira F, Rozas J. Molecular evolution of the major chemosensory gene families in insects. Heredity. 2009;103(3):208.
Article
PubMed
CAS
Google Scholar
Leal WS. Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Annu Rev Entomol. 2013;58(1):373–91.
Article
CAS
PubMed
Google Scholar
Benton R. Multigene family evolution: perspectives from insect chemoreceptors. Trends Ecol Evol. 2015;30(10):590–600.
Article
PubMed
Google Scholar
Simon J-C, d’Alencon E, Guy E, Jacquin-Joly E, Jaquiery J, Nouhaud P, et al. Genomics of adaptation to host-plants in herbivorous insects. Brief Function Genomics. 2015;14(6):413–23.
Article
CAS
Google Scholar
Gouin A, Bretaudeau A, Nam K, Gimenez S, Aury JM, Duvic B, et al. Two genomes of highly polyphagous lepidopteran pests (Spodoptera frugiperda, Noctuidae) with different host-plant ranges. Sci Rep. 2017;7(1):11816.
Article
PubMed
PubMed Central
CAS
Google Scholar
Robertson HM, Wanner KW. The chemoreceptor superfamily in the honey bee, Apis mellifera: expansion of the odorant, but not gustatory, receptor family. Genome Res. 2006;16(11):1395–403.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wanner K, Robertson H. The gustatory receptor family in the silkworm moth Bombyx mori is characterized by a large expansion of a single lineage of putative bitter receptors. Insect Mol Biol. 2008;17(6):621–9.
Article
CAS
PubMed
Google Scholar
Obiero GF, Mireji PO, Nyanjom SR, Christoffels A, Robertson HM, Masiga DK. Odorant and gustatory receptors in the tsetse fly Glossina morsitans morsitans. PLoS Negl Trop Dis. 2014;8(4):e2663.
Article
PubMed
PubMed Central
CAS
Google Scholar
Opachaloemphan C, Yan H, Leibholz A, Desplan C, Reinberg D. Recent advances in behavioral (Epi) genetics in Eusocial insects. Annu Rev Genet. 2018;52:489–510.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zeng Y, Yang YT, Wu QJ, Wang SL, Xie W, Zhang YJ. Genome-wide analysis of odorant-binding proteins and chemosensory proteins in the sweet potato whitefly, Bemisia tabaci. Insect Sci. 2019;26(4):620–34.
Article
CAS
PubMed
Google Scholar
Despres L, David J-P, Gallet C. The evolutionary ecology of insect resistance to plant chemicals. Trends Ecol Evol. 2007;22(6):298–307.
Article
PubMed
Google Scholar
Edger PP, Heidel-Fischer HM, Bekaert M, Rota J, Glöckner G, Platts AE, et al. The butterfly plant arms-race escalated by gene and genome duplications. Proc Natl Acad Sci. 2015;112(27):8362–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rane RV, Walsh TK, Pearce SL, Jermiin LS, Gordon KH, Richards S, et al. Are feeding preferences and insecticide resistance associated with the size of detoxifying enzyme families in insect herbivores? Curr Opin Insect Sci. 2016;13:70–6.
Article
PubMed
Google Scholar
Hidaka T. Adaptation and speciation in the fall webworm; 1977.
Google Scholar
Rajagopal R. Beneficial interactions between insects and gut bacteria. Indian J Microbiol. 2009;49(2):114–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Engel P, Moran NA. The gut microbiota of insects–diversity in structure and function. FEMS Microbiol Rev. 2013;37(5):699–735.
Article
CAS
PubMed
Google Scholar
Krishnan M, Bharathiraja C, Pandiarajan J, Prasanna VA, Rajendhran J, Gunasekaran P. Insect gut microbiome–An unexploited reserve for biotechnological application. Asian Pac J Trop Biomed. 2014;4:S16–21.
Article
PubMed
PubMed Central
Google Scholar
Dillon R, Dillon V. The gut bacteria of insects: nonpathogenic interactions. Annu Rev Entomol. 2004;49(1):71–92.
Article
CAS
PubMed
Google Scholar
Dillon R, Charnley K. Mutualism between the desert locust Schistocerca gregaria and its gut microbiota. Res Microbiol. 2002;153(8):503–9.
Article
CAS
PubMed
Google Scholar
Wernegreen JJ. Mutualism meltdown in insects: bacteria constrain thermal adaptation. Curr Opin Microbiol. 2012;15(3):255–62.
Article
PubMed
PubMed Central
Google Scholar
Mueller UG, Mikheyev AS, Hong E, Sen R, Warren DL, Solomon SE, et al. Evolution of cold-tolerant fungal symbionts permits winter fungiculture by leafcutter ants at the northern frontier of a tropical ant–fungus symbiosis. Proc Natl Acad Sci. 2011;108(10):4053–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Montllor CB, Maxmen A, Purcell AH. Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress. Ecol Entomol. 2002;27(2):189–95.
Article
Google Scholar
Russell JA, Moran NA. Costs and benefits of symbiont infection in aphids: variation among symbionts and across temperatures. Proc R Soc B Biol Sci. 2005;273(1586):603–10.
Article
Google Scholar
Perlman SJ, Kelly SE, Hunter MS. Population biology of cytoplasmic incompatibility: maintenance and spread of Cardinium symbionts in a parasitic wasp. Genetics. 2008;178(2):1003–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Loewy KJ, Flansburg AL, Grenis K, Kjeldgaard MK, Mccarty J, Montesano L, et al. Life history traits and rearing techniques for fall webworms (Hyphantria cunea Drury) in Colorado. J Lepidopterists' Soc. 2013;67(3):196–205.
Article
Google Scholar
Rehnberg BG. Heat retention by webs of the fall webworm Hyphantria cunea (Lepidoptera: Arctiidae): infrared warming and forced convective cooling. J Therm Biol. 2002;27(6):525–30.
Article
Google Scholar
Mondal M. The silk proteins, sericin and fibroin in silkworm, Bombyx mori Linn.,-a review. Caspian J Environ Sci. 2007;5(2):63–76.
Google Scholar
Devi R, Deori M, Devi D. Evaluation of antioxidant activities of silk protein sericin secreted by silkworm Antheraea assamensis (Lepidoptera: Saturniidae). J Pharm Res. 2011;4(12):4688–91.
Google Scholar
Zurovec M, Kludkiewicz B, Fedic R, Sulitkova J, Mach V, Kucerova L, et al. Functional conservation and structural diversification of silk sericins in two moth species. Biomacromolecules. 2013;14(6):1859–66.
Article
CAS
PubMed
Google Scholar
Stewart RJ, Wang CS. Adaptation of caddisfly larval silks to aquatic habitats by phosphorylation of H-fibroin serines. Biomacromolecules. 2010;11(4):969–74.
Article
CAS
PubMed
Google Scholar
Xia Q, Zhou Z, Lu C, Cheng D, Dai F, Li B, et al. A draft sequence for the genome of the domesticated silkworm (Bombyx mori). Science. 2004;306(5703):1937–40.
Article
PubMed
Google Scholar
Derks MF, Smit S, Salis L, Schijlen E, Bossers A, Mateman C, et al. The genome of winter moth (Operophtera brumata) provides a genomic perspective on sexual dimorphism and phenology. Genome Biol Evol. 2015;7(8):2321–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nishikawa H, Iijima T, Kajitani R, Yamaguchi J, Ando T, Suzuki Y, et al. A genetic mechanism for female-limited Batesian mimicry in Papilio butterfly. Nat Genet. 2015;47(4):405.
Article
CAS
PubMed
Google Scholar
Li X, Fan D, Zhang W, Liu G, Zhang L, Zhao L, et al. Outbred genome sequencing and CRISPR/Cas9 gene editing in butterflies. Nat Commun. 2015;6:8212.
Article
PubMed
Google Scholar
Kanost MR, Arrese EL, Cao X, Chen Y-R, Chellapilla S, Goldsmith MR, et al. Multifaceted biological insights from a draft genome sequence of the tobacco hornworm moth, Manduca sexta. Insect Biochem Mol Biol. 2016;76:118–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shen J, Cong Q, Kinch LN, Borek D, Otwinowski Z, Grishin NV. Complete genome of Pieris rapae, a resilient alien, a cabbage pest, and a source of anti-cancer proteins. F1000Res. 2016;5:2631.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pearce SL, Clarke DF, East PD, Elfekih S, Gordon K, Jermiin LS, et al. Genomic innovations, transcriptional plasticity and gene loss underlying the evolution and divergence of two highly polyphagous and invasive Helicoverpa pest species. BMC Biol. 2017;15(1):63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheng T, Wu J, Wu Y, Chilukuri RV, Huang L, Yamamoto K, et al. Genomic adaptation to polyphagy and insecticides in a major East Asian noctuid pest. Nat Ecol Evol. 2017;1(11):1747.
Article
PubMed
Google Scholar
Wu N, Zhang S, Li X, Cao Y, Liu X, Wang Q, et al. Fall webworm genomes yield insights into rapid adaptation of invasive species. Nat Ecol Evol. 2019;3(1):105–15.
Article
PubMed
Google Scholar
Zhang L, Liu B, Zheng W, Liu C, Zhang D, Zhao S, et al. High-depth resequencing reveals hybrid population and insecticide resistance characteristics of fall armyworm (Spodoptera frugiperda) invading China. bioRxiv. 2019:813154. https://doi.org/10.1101/813154.
Lu S, Yang J, Dai X, Xie F, He J, Dong Z, et al. Chromosomal-level reference genome of Chinese peacock butterfly (Papilio bianor) based on third-generation DNA sequencing and Hi-C analysis. GigaScience. 2019;8(11):giz128.
Article
PubMed
PubMed Central
Google Scholar
Misof B, Liu S, Meusemann K, Peters RS, Donath A, Mayer C, et al. Phylogenomics resolves the timing and pattern of insect evolution. Science. 2014;346(6210):763–7.
Article
CAS
PubMed
Google Scholar
Vogt RG, Große-Wilde E, Zhou J-J. The Lepidoptera odorant binding protein gene family: gene gain and loss within the GOBP/PBP complex of moths and butterflies. Insect Biochem Mol Biol. 2015;62:142–53.
Article
CAS
PubMed
Google Scholar
Kristensen NP, Scoble MJ, Karsholt O. Lepidoptera phylogeny and systematics: the state of inventorying moth and butterfly diversity. Mol Phylogenet Evol. 2009;43(57):237–44.
Google Scholar
Mutanen M, Wahlberg N, Kaila L. Comprehensive gene and taxon coverage elucidates radiation patterns in moths and butterflies. Proc Biol Sci. 2010;277(1695):2839–48.
Article
PubMed
PubMed Central
Google Scholar
Kawahara AY, Plotkin D, Espeland M, Meusemann K, Toussaint EF, Donath A, et al. Phylogenomics reveals the evolutionary timing and pattern of butterflies and moths. Proc Natl Acad Sci. 2019;116(45):22657–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haines T, Horley D. Walking with beasts: a prehistoric safari: DK Pub; 2001.
Google Scholar
Zhang L-W, Kang K, Jiang S-C, Zhang Y-N, Wang T-T, Zhang J, et al. Analysis of the antennal transcriptome and insights into olfactory genes in Hyphantria cunea (Drury). PLoS One. 2016;11(10):e0164729.
Article
PubMed
PubMed Central
CAS
Google Scholar
Faye I, Pye A, Rasmuson T, Boman HG, Boman I. Insect immunity. 11. Simultaneous induction of antibacterial activity and selection synthesis of some hemolymph proteins in diapausing pupae of Hyalophora cecropia and Samia cynthia. Infect Immun. 1975;12(6):1426–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Steiner H, Hultmark D, Engström Å, Bennich H, Boman H. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature. 1981;292(5820):246.
Article
CAS
PubMed
Google Scholar
Gorman MJ, Paskewitz SM. Serine proteases as mediators of mosquito immune responses. Insect Biochem Mol Biol. 2001;31(3):257–62.
Article
CAS
PubMed
Google Scholar
WIESNER A, LOSEN S, KOPÁČEK P, WEISE C, GÖTZ P. Isolated apolipophorin III from galleria mellonella stimulates the immune reactions of this insect. J Insect Physiol. 1997;43(4):383–91.
Article
CAS
PubMed
Google Scholar
Kamita S, Maeda S. Inhibition of Bombyx mori nuclear polyhedrosis virus (NPV) replication by the putative DNA helicase gene of Autographa californica NPV. J Virol. 1993;67(10):6239–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu Q, Brown MR. Signaling and function of insulin-like peptides in insects. Annu Rev Entomol. 2006;51:1–24.
Article
CAS
PubMed
Google Scholar
Riakhel A, Dhadialla T. Accumulation of yolk proteins in insects oocytes. Annu Rev Entomol. 1992;37:217–51.
Article
Google Scholar
Izumi S, Yano K, Yamamoto Y, Takahashi SY. Yolk proteins from insect eggs: structure, biosynthesis and programmed degradation during embryogenesis. J Insect Physiol. 1994;40(9):735–46.
Article
CAS
Google Scholar
Boman HG, Faye I, Gudmundsson GH, Lee JY, Lidholm DA. Cell-free immunity in Cecropia. A model system for antibacterial proteins. FEBS J. 2010;201(1):23–31.
Google Scholar
Dolezelova E, Zurovec M, Dolezal T, Simek P, Bryant PJ. The emerging role of adenosine deaminases in insects. Insect Biochem Mol Biol. 2005;35(5):381–9.
Article
CAS
PubMed
Google Scholar
Edgar BA. How flies get their size: genetics meets physiology. Nat Rev Genet. 2006;7(12):907.
Article
CAS
PubMed
Google Scholar
Sappington TW, Raikhel AS. Molecular characteristics of insect vitellogenins and vitellogenin receptors. Insect Biochem Mol Biol. 1998;28(5–6):277–300.
Article
CAS
PubMed
Google Scholar
Raubenheimer D, Simpson SJ. Integrative models of nutrient balancing: application to insects and vertebrates. Nutr Res Rev. 1997;10(1):151–79.
Article
CAS
PubMed
Google Scholar
Raubenheimer D, Simpson SJ. Nutrient balancing in grasshoppers: behavioural and physiological correlates of dietary breadth. J Exp Biol. 2003;206(10):1669–81.
Article
CAS
PubMed
Google Scholar
Feyereisen R, Koener JF, Cariño FA, Daggett AS. Biochemistry and Molecular Biology of Insect Cytochrome P450. US: Springer; 1990. p. 263–72.
Google Scholar
Zhang L, Lu Y, Xiang M, Shang Q, Gao X. The retardant effect of 2-Tridecanone, mediated by cytochrome P450, on the development of cotton bollworm, Helicoverpa armigera. BMC Genomics. 2016;17(1):954.
Article
PubMed
PubMed Central
CAS
Google Scholar
Niwa R, Matsuda T, Yoshiyama T, Namiki T, Mita K, Fujimoto Y, et al. CYP306A1, a cytochrome P450 enzyme, is essential for ecdysteroid biosynthesis in the prothoracic glands of Bombyx and Drosophila. J Biol Chem. 2004;279(34):35942–9.
Article
CAS
PubMed
Google Scholar
Zhou H, Chen K, Yao Q, Gao L, Wang Y. Molecular cloning of Bombyx mori cytochrome P450 gene and its involvement in fluoride resistance. J Hazard Mater. 2008;160(2–3):330–6.
Article
CAS
PubMed
Google Scholar
Nirmala X, ., Kodrík D, ., Zurovec M, ., Sehnal F, . Insect silk contains both a Kunitz-type and a unique Kazal-type proteinase inhibitor. FEBS J 2010;268(7):2064–2073.
Google Scholar
Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, et al. Silk-based biomaterials. Biomaterials. 2003;24(3):401–16.
Article
CAS
PubMed
Google Scholar
Zhao P, Dong Z, Duan J, Wang G, Wang L, Li Y, et al. Genome-wide identification and immune response analysis of serine protease inhibitor genes in the silkworm, Bombyx mori. Plos One. 2012;7(2):e31168.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yi Q, Zhao P, Wang X, Zou Y, Zhong X, Wang C, et al. Shotgun proteomic analysis of the Bombyx mori anterior silk gland: an insight into the biosynthetic fiber spinning process. Proteomics. 2013;13(17):2657–63.
Article
CAS
PubMed
Google Scholar
Inoue S, Tanaka K, Arisaka F, Kimura S, Ohtomo K, Mizuno S. Silk fibroin of Bombyx mori is secreted, assembling a high molecular mass elementary unit consisting of H-chain, L-chain, and P25, with a 6:6:1 molar ratio. J Biol Chem. 2000;275(51):40517–28.
Article
CAS
PubMed
Google Scholar
Sutherland TD, Young JH, Weisman S, Hayashi CY, Merritt DJ. Insect silk: one name, many materials. Annu Rev Entomol. 2010;55(1):171.
Article
CAS
PubMed
Google Scholar
Song F, Zhang P, Yi F, Hong X, Lu C, Yutaka B, et al. Study on fibroin heavy chain of the silkworm Bombyx mori by fluorescence in situ hybridization (FISH). Sci China. 2002;45(6):663–8.
CAS
Google Scholar
Wang X, Fang X, Yang P, Jiang X, Jiang F, Zhao D, et al. The locust genome provides insight into swarm formation and long-distance flight. Nat Commun. 2014;5(5):2957.
Article
PubMed
CAS
Google Scholar
Miller KG, Browning JV, Aubry MP, Wade BS, Katz ME, Kulpecz AA, et al. Eocene-Oligocene global climate and sea-level changes: St. Stephens quarry, Alabama. Geol Soc Am Bull. 2008;120(1):34–53.
Article
CAS
Google Scholar
Wolfe JA. A Paleobotanical interpretation of tertiary climates in the northern hemisphere: data from fossil plants make it possible to reconstruct tertiary climatic changes, which may be correlated with changes in the inclination of the earth's rotational axis. Am Sci. 1978;66(6):694–703.
Google Scholar
Berggren WA, Prothero DR. Eocene-Oligocene climatic and biotic evolution. Princeton: Princeton University Press; 1992.
Book
Google Scholar
Mei T, Fu W-B, Li B, He Z-B, Chen B. Comparative genomics of chemosensory protein genes (CSPs) in twenty-two mosquito species (Diptera: Culicidae): identification, characterization, and evolution. PLoS One. 2018;13(1):e0190412.
Article
PubMed
PubMed Central
CAS
Google Scholar
Xu W, Alexie P, Zhang HJ, Alisha A. Expansion of a bitter taste receptor family in a polyphagous insect herbivore. Sci Rep. 2016;6:23666.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li X, Schuler MA, Berenbaum MR. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu Rev Entomol. 2007;52(1):231.
Article
PubMed
CAS
Google Scholar
Tsubota T, Shiotsuki T. Genomic and phylogenetic analysis of insect carboxyl/cholinesterase genes. J Pestic Sci. 2010;35(2):310–4.
Article
CAS
Google Scholar
Ahn S, Vogel H, Heckel D. Comparative analysis of the UDP-glycosyltransferase multigene family in insects. Insect Biochem Mol Biol. 2012;42(2):133–47.
Article
CAS
PubMed
Google Scholar
Zhou D, Liu X, Sun Y, Ma L, Shen B, Zhu C. Genomic analysis of detoxification supergene families in the mosquito Anopheles sinensis. PLoS One. 2015;10(11):e0143387.
Article
PubMed
PubMed Central
CAS
Google Scholar
Claudianos C, Ranson H, Johnson R, Biswas S, Schuler M, Berenbaum M, et al. A deficit of detoxification enzymes: pesticide sensitivity and environmental response in the honeybee. Insect Mol Biol. 2006;15(5):615–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Duman JG, Xu L, Neven LG, Tursman D, Wu DW. Hemolymph proteins involved in insect subzero-temperature tolerance: ice nucleators and antifreeze proteins. Insects at low temperature: Springer; 1991. p. 94–127.
Google Scholar
Andreeva-Kovalevskaya ZI, Solonin A, Sineva E, Ternovsky V. Pore-forming proteins and adaptation of living organisms to environmental conditions. Biochem Mosc. 2008;73(13):1473–92.
Article
CAS
Google Scholar
Srinivasan A, Giri AP, Gupta VS. Structural and functional diversities in lepidopteran serine proteases. Cell Mol Biol Lett. 2006;11(1):132.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang J, Li DZ, Min SF, Mi F, Zhou SS, Wang MQ. Analysis of chemosensory gene families in the beetle Monochamus alternatus and its parasitoid Dastarcus helophoroides. Comp Biochem Physiol Part D Genomics Proteomics. 2014;11(9):1–8.
Article
PubMed
CAS
Google Scholar
do ARB N, Fresia P, Cônsoli FL, Omoto C. Comparative transcriptome analysis of lufenuron-resistant and susceptible strains of Spodoptera frugiperda (Lepidoptera: Noctuidae). BMC Genomics. 2015;16(1):985.
Article
CAS
Google Scholar
Yu QY, Fang SM, Zhang Z, Jiggins CD. The transcriptome response of Heliconius melpomene larvae to a novel host plant. Mol Ecol. 2016;25(19):4850–65.
Article
CAS
PubMed
Google Scholar
Dermauw W, Wybouw N, Rombauts S, Menten B, Vontas J, Grbić M, et al. A link between host plant adaptation and pesticide resistance in the polyphagous spider mite Tetranychus urticae. Proc Natl Acad Sci. 2013;110(2):E113–E22.
Article
CAS
PubMed
Google Scholar
Strode C, Steen K, Ortelli F, Ranson H. Differential expression of the detoxification genes in the different life stages of the malaria vector Anopheles gambiae. Insect Mol Biol. 2006;15(4):523–30.
Article
CAS
PubMed
Google Scholar
Rey D, Cuany A, Pautou M-P, Meyran J-C. Differential sensitivity of mosquito taxa to vegetable tannins. J Chem Ecol. 1999;25(3):537–48.
Article
CAS
Google Scholar
Hennigesjanssen K, Reineke A, Heckel DG, Groot AT. Complex inheritance of larval adaptation in Plutella xylostella to a novel host plant. Heredity. 2011;107(5):421.
Article
CAS
Google Scholar
JJMe X. Invited review: microbial ecology in the age of genomics and metagenomics: concepts, tools, and recent advances. Mol Ecol. 2006;15(7):1713–31.
Article
CAS
Google Scholar
Shi W, Syrenne R, Sun JZ, JSJIS Y. Molecular approaches to study the insect gut symbiotic microbiota at the ‘omics’ age. Insect Science. 2010;17(3):199–219.
Article
CAS
Google Scholar
Colman DR, Toolson EC, CJME T-V. Do diet and taxonomy influence insect gut bacterial communities? Mol Ecol. 2012;21(20):5124–37.
Article
CAS
PubMed
Google Scholar
Xiang H, Wei G-F, Jia S, Huang J, Miao X-X, Zhou Z, et al. Microbial communities in the larval midgut of laboratory and field populations of cotton bollworm (Helicoverpa armigera). Can J Microbiol. 2006;52(11):1085–92.
Article
CAS
PubMed
Google Scholar
Xiang H, Li M, Zhao Y, Zhao L, Zhang Y, Huang Y. Bacterial community in midguts of the silkworm larvae estimated by PCR/DGGE and 16S rDNA gene library analysis; 2007.
Google Scholar
Delalibera I Jr, Handelsman J, KFJEE R. Contrasts in cellulolytic activities of gut microorganisms between the wood borer, Saperda vestita (Coleoptera: Cerambycidae), and the bark beetles, Ips pini and Dendroctonus frontalis (Coleoptera: Curculionidae). Environ Entomol. 2005;34(3):541–7.
Article
Google Scholar
Dixon R, DJNRM K. Genetic regulation of biological nitrogen fixation. Nat Rev Microbiol. 2004;2(8):621.
Article
CAS
PubMed
Google Scholar
Behar A, Yuval B, EJME J. Enterobacteria-mediated nitrogen fixation in natural populations of the fruit fly Ceratitis capitata. Mol Ecol. 2005;14(9):2637–43.
Article
CAS
PubMed
Google Scholar
Delalibera I Jr, Handelsman J, Raffa KF. Contrasts in cellulolytic activities of gut microorganisms between the wood borer, Saperda vestita (Coleoptera: Cerambycidae), and the bark beetles, Ips pini and Dendroctonus frontalis (Coleoptera: Curculionidae). Environ Entomol. 2005;34(3):541–7.
Article
Google Scholar
Dixon R, Kahn D. Genetic regulation of biological nitrogen fixation. Nat Rev Microbiol. 2004;2(8):621.
Article
CAS
PubMed
Google Scholar
Behar A, Yuval B, Jurkevitch E. Enterobacteria-mediated nitrogen fixation in natural populations of the fruit fly Ceratitis capitata. Mol Ecol. 2005;14(9):2637–43.
Article
CAS
PubMed
Google Scholar
Dillon RJ, Dillon VM. The gut bacteria of insects: nonpathogenic interactions. Annu Rev Entomol. 2004;49(1):71–92 PubMed PMID: 14651457. Epub 2003/12/04.
Article
CAS
PubMed
Google Scholar
Chen B, Yu T, Xie S, Du K, Liang X, Lan Y, et al. Comparative shotgun metagenomic data of the silkworm Bombyx mori gut microbiome. Sci Data. 2018;5:180285.
Article
CAS
PubMed
PubMed Central
Google Scholar
Suen G, Scott JJ, Aylward FO, Adams SM, Tringe SG, Pinto-Tomas AA, et al. An insect herbivore microbiome with high plant biomass-degrading capacity. PLoS Genet. 2010;6(9):e1001129 PubMed PMID: 20885794. Pubmed Central PMCID: PMC2944797. Epub 2010/10/05.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pinto-Tomas AA, Anderson MA, Suen G, Stevenson DM, FST C, Cleland WW, et al. Symbiotic Nitrogen Fixation in the Fungus Gardens of Leaf-Cutter Ants. Science. 2009;326(5956):1120–3 PubMed PMID: WOS:000271951000047. English.
Article
CAS
PubMed
Google Scholar
Yadav AN, Sharma D, Gulati S, Singh S, Dey R, Pal KK, et al. Haloarchaea endowed with phosphorus solubilization attribute implicated in phosphorus cycle. Sci Rep. 2015;5:12293.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yadav AN, Verma P, Kaushik R, Dhaliwal H, AJEM S. Archaea endowed with plant growth promoting attributes. EC Microbiol. 2017;8(6):294–8.
Google Scholar
Kikuchi Y, Hosokawa T, TJA F. Insect-microbe mutualism without vertical transmission: a stinkbug acquires a beneficial gut symbiont from the environment every generation. Appl Environ Microbiol. 2007;73(13):4308–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kikuchi Y, Hayatsu M, Hosokawa T, Nagayama A, Tago K, Fukatsu T. Symbiont-mediated insecticide resistance. Proc Natl Acad Sci U S A. 2012;109(22):8618–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Keeling CI, JJNP B. Genes, enzymes and chemicals of terpenoid diversity in the constitutive and induced defence of conifers against insects and pathogens. New Phytol. 2006;170(4):657–75.
Article
CAS
PubMed
Google Scholar
Minard G, Mavingui P, Moro CV. Diversity and function of bacterial microbiota in the mosquito holobiont. Parasit Vectors. 2013;6(1):146.
Article
PubMed
PubMed Central
Google Scholar
Xia X, Gurr GM, Vasseur L, Zheng D, Zhong H, Qin B, et al. Metagenomic sequencing of diamondback moth gut microbiome unveils key holobiont adaptations for herbivory. Front Microbiol. 2017;8:663.
Article
PubMed
PubMed Central
Google Scholar
Sticklen MB. Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nat Rev Genet. 2008;9(6):433.
Article
CAS
PubMed
Google Scholar
Liu N, Zhang L, Zhou H, Zhang M, Yan X, Wang Q, et al. Metagenomic insights into metabolic capacities of the gut microbiota in a fungus-cultivating termite (Odontotermes yunnanensis). PLoS One. 2013;8(7):e69184.
Article
CAS
PubMed
PubMed Central
Google Scholar
Patel DD, Patel AK, Parmar NR, Shah TM, Patel JB, Pandya PR, et al. Microbial and Carbohydrate Active Enzyme profile of buffalo rumen metagenome and their alteration in response to variation in the diet. Gene. 2014;545(1):88–94.
Article
CAS
PubMed
Google Scholar
USA MDoC. Fall webworm Hyphantria cunea (Drury). External Factsheets. 2000.
Google Scholar
Fitzgerald TD. Sociality in caterpillar; 1993.
Google Scholar
Takuya T, Kimiko Y, Kazuei M, et al. Gene expression analysis in the larval silk gland of the eri silkworm Samia ricini. Insect Sci. 2016;23(6):791–804.
Article
CAS
Google Scholar
Rehnberg BG. Temperature profiles inside webs of the fall webworm, Hyphantria cunea (Lepidoptera: Arctiidae): Influence of weather, compass orientation, and time of day. J Therm Biol. 2006;31(3):274–9.
Article
Google Scholar
Mori H, Tsukada M. New silk protein: modification of silk protein by gene engineering for production of biomaterials. Rev Mol Biotechnol. 2000;74(2):95–103.
Article
CAS
Google Scholar
Kato N, Sato S, Yamanaka A, Yamada H, Fuwa N, Nomura M. Silk protein, sericin, inhibits lipid peroxidation and tyrosinase activity. J Agr Chem Soc Jpn. 1998;62(1):145–7.
CAS
Google Scholar
Terada S, Nishimura T, Sasaki M, Yamada H, Miki M. Sericin, a protein derived from silkworms, accelerates the proliferation of several mammalian cell lines including a hybridoma. Cytotechnology. 2002;40(1–3):3–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Terada S, Sasaki M, Yanagihara K, Yamada H. Preparation of silk protein sericin as mitogenic factor for better mammalian cell culture. J Biosci Bioeng. 2005;100(6):667–71.
Article
CAS
PubMed
Google Scholar
Morikawa M, Kimura T, Murakami M, Katayama K, Terada S, Yamaguchi A. Rat islet culture in serum-free medium containing silk protein sericin. J Hepatobiliary Pancreatic Surg. 2009;16(2):223–8.
Article
Google Scholar
Manosroi A, Boonpisuttinant K, Winitchai S, Manosroi W, Manosroi J. Free radical scavenging and tyrosinase inhibition activity of oils and sericin extracted from Thai native silkworms (Bombyx mori). Pharm Biol. 2010;48(8):855–60.
Article
PubMed
Google Scholar
Yang M. Silk-based biomaterials. Microsc Res Tech. 2017;80(3):321–30.
Article
PubMed
Google Scholar
Li S, Liu B, Cheng J, Hu J. Composite cement of magnesium-bearing phosphoaluminate–hydroxyapatite reinforced by treated raw silk fiber. Cement Concrete Composites. 2008;30(4):347–52.
Article
CAS
Google Scholar
Oyama F, Mizuno S, Shimura K. Studies on immunological properties of fibroin heavy and light chains. J Biochem. 1984;96(6):1689–94.
Article
CAS
PubMed
Google Scholar
Matsuno K, ., Hui CC, Takiya S, ., Suzuki T, ., Ueno K, ., Suzuki Y, . Transcription signals and protein binding sites for sericin gene transcription in vitro. J Biol Chem 1989;264(31):18707–18713.
CAS
PubMed
Google Scholar
Matsuno K, Takiya S, Hui CC, Suzuki T, Fukuta M, Ueno K, et al. Transcriptional stimulation via SC site of Bombyx sericin-1 gene through an interaction with a DNA binding protein SGF-3. Nucleic Acids Res. 1990;18(7):1853–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ohno K, Sawada JI, Takiya S, Mai K, Matsumoto A, Tsubota T, et al. Silk Gland Factor-2 (SGF-2) Involved in Fibroin Gene Transcription Consists of LIM-homeodomain, LIM-interacting, and Single-Stranded DNA-Binding Proteins. J Biol Chem. 2013;288(44):31581.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tsuda M, ., Suzuki Y, . Faithful transcription initiation of fibroin gene in a homologous cell-free system reveals an enhancing effect of 5′ flanking sequence far upstream. Cell 1981;27(1):175–182.
Article
CAS
PubMed
Google Scholar
Takiya S, ., Hui CC, Suzuki Y, . A contribution of the core-promoter and its surrounding regions to the preferential transcription of the fibroin gene in posterior silk gland extracts. Embo J. 1990;9(2):489–496.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo PC, Dong Z, Zhao P, Zhang Y, He H, Tan X, et al. Structural insights into the unique inhibitory mechanism of the silkworm protease inhibitor serpin18. Sci Rep. 2015;55:11863.
Zhang Y, Zhao P, Dong Z, Wang D, Guo P, Guo X, et al. Comparative proteome analysis of multi-layer cocoon of the silkworm, Bombyx mori. Plos One. 2015;10(4):e0123403.
Article
PubMed
PubMed Central
CAS
Google Scholar
Biosciences P. Procedure & Checklist—20 kb Template Preparation Using BluePippinTM Size Selection System. SampleNet; 2014.
Google Scholar
Hale CM, Chen W-C, Khatau SB, Daniels BR, Lee JS, Wirtz D. SMRT analysis of MTOC and nuclear positioning reveals the role of EB1 and LIC1 in single-cell polarization. J Cell Sci. 2011;124(Pt 24):4267–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017;27(5):722–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shigang W. A fuzzy Bruijn graph approach to long noisy reads assembly 2017 [cited 2018 12th,oct]. Available from: https://github.com/ruanjue/wtdbg.
Google Scholar
De Landtsheer S, Trairatphisan P, Lucarelli P, TJB S. FALCON: a toolbox for the fast contextualization of logical networks. Bioinformatics. 2017;33(21):3431–6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One. 2014;9(11):e112963 PubMed PMID: 25409509. Pubmed Central PMCID: PMC4237348. Epub 2014/11/20.
Article
PubMed
PubMed Central
CAS
Google Scholar
Parra G, Bradnam K, IJB K. CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics. 2007;23(9):1061–7.
Article
CAS
PubMed
Google Scholar
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM, et al. Bioinformatics. 2015;31(19):3210–2.
Article
PubMed
CAS
Google Scholar
Xu Z, HJNar W. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 2007;35(suppl_2):W265–W8.
Article
PubMed
PubMed Central
Google Scholar
Han Y, Wessler SR. MITE-Hunter: a program for discovering miniature inverted-repeat transposable elements from genomic sequences. Nucleic Acids Res. 2010;38(22):e199.
Article
PubMed
PubMed Central
CAS
Google Scholar
Price AL, Jones NC, Pevzner PAJB. De novo identification of repeat families in large genomes. Bioinformatics. 2005;21(suppl_1):i351–i8.
Article
CAS
PubMed
Google Scholar
Edgar RC, Myers EWJB. PILER: identification and classification of genomic repeats. Bioinformatics. 2005;21(suppl_1):i152–i8.
Article
CAS
PubMed
Google Scholar
Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, et al. A unified classification system for eukaryotic transposable elements. Nat Rev Genet. 2007;8(12):973.
Article
CAS
PubMed
Google Scholar
Chen N. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr Protoc Bioinformatics. 2004;5(1):4.10 1–4.. 4.
Article
Google Scholar
Lowe TM. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Eddy SR. 1997;25(5):955.
CAS
Google Scholar
Nawrocki EP, Eddy SRJB. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics. 2013;29(22):2933–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
She R, Chu JS-C, Wang K, Pei J, Chen N. GenBlastA: enabling BLAST to identify homologous gene sequences. Genome Res. 2009;19(1):143–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Birney E, Clamp M, Durbin R. GeneWise and genomewise. Genome Res. 2004;14(5):988–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Burge C, Karlin S. Prediction of complete gene structures in human genomic DNA1. J Mol Biol. 1997;268(1):78–94.
Article
CAS
PubMed
Google Scholar
Stanke M, Waack SJB. Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics. 2003;19(suppl_2):ii215–i25.
PubMed
Google Scholar
Majoros WH, Pertea M, Salzberg SL. TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders. Bioinformatics. 2004;20(16):2878–9.
Article
CAS
PubMed
Google Scholar
Blanco E, Parra G, Guigó R. Using geneid to identify genes. Curr Protoc Bioinformatics. 2007;18(1):4.3 1–4.3. 28.
Google Scholar
Korf I. Gene finding in novel genomes. BMC Bioinformatics. 2004;5(1):59.
Article
PubMed
PubMed Central
Google Scholar
Keilwagen J, Wenk M, Erickson JL, Schattat MH, Grau J, Hartung F. Using intron position conservation for homology-based gene prediction. Nucleic Acids Res. 2016;44(9):e89.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc. 2016;11(9):1650.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haas B, Papanicolaou AJGS. TransDecoder (find coding regions within transcripts); 2016.
Google Scholar
Tang S, Lomsadze A, Borodovsky M. Identification of protein coding regions in RNA transcripts. Nucleic Acids Res. 2015;43(12):e78.
Article
PubMed
PubMed Central
CAS
Google Scholar
Campbell MA, Haas BJ, Hamilton JP, Mount SM, Buell CR. Comprehensive analysis of alternative splicing in rice and comparative analyses with Arabidopsis. BMC Genomics. 2006;7(1):327.
Article
PubMed
PubMed Central
CAS
Google Scholar
Haas BJ, Salzberg SL, Zhu W, Pertea M, Allen JE, Orvis J, et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biol. 2008;9(1):1.
Article
CAS
Google Scholar
Chen F, Mackey AJ, Stoeckert CJ Jr, Roos DS. OrthoMCL-DB: querying a comprehensive multi-species collection of ortholog groups. Nucleic Acids Res. 2006;34(suppl_1):D363–D8.
Article
CAS
PubMed
Google Scholar
Löytynoja A, Goldman N. An algorithm for progressive multiple alignment of sequences with insertions. Proc Natl Acad Sci U S A. 2005;102(30):10557–62.
Article
PubMed
PubMed Central
CAS
Google Scholar
Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000;17(4):540–52.
Article
CAS
PubMed
Google Scholar
Shao Y, Li J-X, Ge R-L, Zhong L, Irwin DM, Murphy RW, et al. Genetic adaptations of the plateau zokor in high-elevation burrows. Sci Rep. 2015;5:17262.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stamatakis AJB. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30(9):1312–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sanderson MJJB. r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics. 2003;19(2):301–2.
Article
CAS
PubMed
Google Scholar
Durden CJ, Rose H. Butterflies from the middle Eocene: the earliest occurrence of fossil Papilionoidea (Lepidoptera). Texas Memorial Museum, The University of Texas at Austin; 1978.
Lukashevich ED, Przhiboro AA, Marchal-Papier F, Grauvogel-Stamm L. The oldest occurrence of immature Diptera (Insecta). Middle Triassic, France: Annales de la Société entomologique de France, Taylor & Francis Group. 2010;46(1-2):4-22.
Kirejtshuk AG, Poschmann M, Prokop J, Garrouste R, Nel A. Evolution of the elytral venation and structural adaptations in the oldest Palaeozoic beetles (Insecta: Coleoptera: Tshekardocoleidae). J Syst Palaeontology. 2014;12(5):575–600.
Article
Google Scholar
De Bie T, Cristianini N, Demuth JP, Hahn MW. CAFE: a computational tool for the study of gene family evolution. Bioinformatics. 2006;22(10):1269–71.
Article
PubMed
CAS
Google Scholar
Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007;24(8):1586–91.
Article
CAS
PubMed
Google Scholar
Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12(4):357.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, Van Baren MJ, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnol. 2010;28(5):511.
Article
CAS
Google Scholar
Robinson MD, DJ MC, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40.
Article
CAS
PubMed
Google Scholar
Leng N, Dawson JA, Thomson JA, Ruotti V, Rissman AI, Smits BM, et al. EBSeq: an empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics. 2013;29(8):1035–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haynes W. Benjamini–hochberg method. Encyclopedia of systems biology; 2013. p. 78.
Book
Google Scholar
Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 2014;15(3):R46.
Article
PubMed
PubMed Central
Google Scholar
Ondov BD, Bergman NH, Phillippy AM. Genomes, Metagenomes: Basics M, Databases, Tools. Krona: Interactive Metagenomic Visualization in a Web Browser; 2015. p. 339–46.
Google Scholar
Peng Y, Leung HC, Yiu S-M, Chin FY. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics. 2012;28(11):1420–8.
Article
CAS
PubMed
Google Scholar
Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics. 2013;29(8):1072–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu W, Lomsadze A, Borodovsky M. Ab initio gene identification in metagenomic sequences. Nucleic Acids Res. 2010;38(12):e132.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012;28(23):3150–2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Finn RD, Clements J, Arndt W, Miller BL, Wheeler TJ, Schreiber F, et al. HMMER web server: 2015 update. Nucleic Acids Res. 2015;43(W1):W30–W8.
Article
CAS
PubMed
PubMed Central
Google Scholar