Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008;5:621–8. https://doi.org/10.1038/nmeth.1226.
Article
CAS
PubMed
Google Scholar
Robertson G, Schein J, Chiu R, Corbett R, Field M, Jackman SD, et al. De novo assembly and analysis of RNA-seq data. Nat Methods. 2010;7:909–12. https://doi.org/10.1038/nmeth.1517.
Article
CAS
PubMed
Google Scholar
Bryant DWJ, Priest HD, Mockler TC. Detection and quantification of alternative splicing variants using RNA-seq. Methods Mol Biol. 2012;883:97–110. https://doi.org/10.1007/978-1-61779-839-9_7.
Article
CAS
PubMed
Google Scholar
Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10:57–63. https://doi.org/10.1038/nrg2484.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods. 2009;6:377–82. https://doi.org/10.1038/nmeth.1315.
Article
CAS
PubMed
Google Scholar
Islam S, Kjallquist U, Moliner A, Zajac P, Fan J-B, Lonnerberg P, et al. Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res. 2011;21:1160–7. https://doi.org/10.1101/gr.110882.110.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sasagawa Y, Nikaido I, Hayashi T, Danno H, Uno KD, Imai T, et al. Quartz-Seq: a highly reproducible and sensitive single-cell RNA sequencing method, reveals non-genetic gene-expression heterogeneity. Genome Biol. 2013;14:R31. https://doi.org/10.1186/gb-2013-14-4-r31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Picelli S, Bjorklund AK, Faridani OR, Sagasser S, Winberg G, Sandberg R. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat Methods. 2013;10:1096–8. https://doi.org/10.1038/nmeth.2639.
Article
CAS
PubMed
Google Scholar
Pollen AA, Nowakowski TJ, Shuga J, Wang X, Leyrat AA, Lui JH, et al. Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex. Nat Biotechnol. 2014;32:1053–8. https://doi.org/10.1038/nbt.2967.
Article
CAS
PubMed
PubMed Central
Google Scholar
Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, et al. Highly parallel genome-wide expression profiling of individual cells using Nanoliter droplets. Cell. 2015;161:1202–14. https://doi.org/10.1016/j.cell.2015.05.002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Deng Q, Ramsköld D, Reinius B, Sandberg R. Single-Cell RNA-Seq Reveals Dynamic, Random Monoallelic Gene Expression in Mammalian Cells. Science. 2014;343:193–6. https://doi.org/10.1126/science.1245316.
Article
CAS
PubMed
Google Scholar
Jaitin DA, Kenigsberg E, Keren-Shaul H, Elefant N, Paul F, Zaretsky I, et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science. 2014;343:776–9. https://doi.org/10.1126/science.1247651.
Article
CAS
PubMed
PubMed Central
Google Scholar
Treutlein B, Brownfield DG, Wu AR, Neff NF, Mantalas GL, Espinoza FH, et al. Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature. 2014;509:371–5. https://doi.org/10.1038/nature13173.
Article
CAS
PubMed
PubMed Central
Google Scholar
Artegiani B, Lyubimova A, Muraro M, van Es JH, van Oudenaarden A, Clevers H. A single-cell RNA sequencing study reveals cellular and molecular dynamics of the hippocampal neurogenic niche. Cell Rep. 2017;21:3271–84. https://doi.org/10.1016/j.celrep.2017.11.050.
Article
CAS
PubMed
Google Scholar
Grun D, Lyubimova A, Kester L, Wiebrands K, Basak O, Sasaki N, et al. Single-cell messenger RNA sequencing reveals rare intestinal cell types. Nature. 2015;525:251–5.
Article
PubMed
Google Scholar
Stark R, Grzelak M, Hadfield J. RNA sequencing: the teenage years. Nat Rev Genet. 2019. https://doi.org/10.1038/s41576-019-0150-2.
Satija R, Farrell JA, Gennert D, Schier AF, Regev A. Spatial reconstruction of single-cell gene expression data. Nat Biotech. 2015;33:495–502.
Article
CAS
Google Scholar
Achim K, Pettit J-B, Saraiva LR, Gavriouchkina D, Larsson T, Arendt D, et al. High-throughput spatial mapping of single-cell RNA-seq data to tissue of origin. Nat Biotech. 2015;33:503–9.
Article
CAS
Google Scholar
Karaiskos N, Wahle P, Alles J, Boltengagen A, Ayoub S, Kipar C, et al. The Drosophila embryo at single-cell transcriptome resolution. Science. 2017;358:194–9. https://doi.org/10.1126/science.aan3235.
Article
CAS
PubMed
Google Scholar
Chen KH, Boettiger AN, Moffitt JR, Wang S, Zhuang X. RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells. Science. 2015;348:aaa6090. https://doi.org/10.1126/science.aaa6090.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ke R, Mignardi M, Pacureanu A, Svedlund J, Botling J, Wahlby C, et al. In situ sequencing for RNA analysis in preserved tissue and cells. Nat Methods. 2013;10:857–60.
Article
CAS
PubMed
Google Scholar
Lee JH, Daugharthy ER, Scheiman J, Kalhor R, Ferrante TC, Yang JL, et al. Highly Multiplexed Subcellular RNA Sequencing in Situ. Science. 2014;343:1360–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rodriques SG, Stickels RR, Goeva A, Martin CA, Murray E, Vanderburg CR, et al. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science. 2019;363(6434):1463–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen J, Suo S, Tam PP, Han J-DJ, Peng G, Jing N. Spatial transcriptomic analysis of cryosectioned tissue samples with geo-seq. Nat Protoc. 2017;12:566–80. https://doi.org/10.1038/nprot.2017.003.
Article
CAS
PubMed
Google Scholar
Shah S, Lubeck E, Zhou W, Cai L. In situ transcription profiling of single cells reveals spatial Organization of Cells in the mouse hippocampus. Neuron. 2016;92:342–57. https://doi.org/10.1016/j.neuron.2016.10.001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Giacomello S, Lundeberg J. Preparation of plant tissue to enable spatial Transcriptomics profiling using barcoded microarrays. Nat Protoc. 2018;13(11):2425–46. https://doi.org/10.1038/s41596-018-0046-1.
Article
CAS
PubMed
Google Scholar
Ståhl PL, Salmén F, Vickovic S, Lundmark A, Navarro JF, Magnusson J, et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science. 2016;353:78–82. https://doi.org/10.1126/science.aaf2403.
Article
CAS
PubMed
Google Scholar
Vickovic S, Eraslan G, Salmen F, Klughammer J, Stenbeck L, Schapiro D, et al. High-definition spatial transcriptomics for in situ tissue profiling. Nat Methods. 2019. https://doi.org/10.1038/s41592-019-0548-y.
Lundin S, Stranneheim H, Pettersson E, Klevebring D, Lundeberg J. Increased throughput by parallelization of library preparation for massive sequencing. PLoS One. 2010;5:e10029. https://doi.org/10.1371/journal.pone.0010029.
Article
CAS
PubMed
PubMed Central
Google Scholar
Borgström E, Lundin S, Lundeberg J. Large scale library generation for high throughput sequencing. PLoS One. 2011;6:e19119.
Article
PubMed
PubMed Central
Google Scholar
Farias-Hesson E, Erikson J, Atkins A, Shen P, Davis RW, Scharfe C, et al. Semi-automated library preparation for high-throughput DNA sequencing platforms. J Biomed Biotechnol. 2010;2010:617469. https://doi.org/10.1155/2010/617469.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leek JT, Scharpf RB, Bravo HC, Simcha D, Langmead B, Johnson WE, et al. Tackling the widespread and critical impact of batch effects in high-throughput data. Nat Rev Genet. 2010;11:733–9. https://doi.org/10.1038/nrg2825.
Article
CAS
PubMed
Google Scholar
Callejas S, Alvarez R, Benguria A, Dopazo A. AG-NGS: a powerful and user-friendly computing application for the semi-automated preparation of next-generation sequencing libraries using open liquid handling platforms. Biotechniques. 2014;56:28–35. https://doi.org/10.2144/000114124.
Article
CAS
PubMed
Google Scholar
Fisher S, Barry A, Abreu J, Minie B, Nolan J, Delorey TM, et al. A scalable, fully automated process for construction of sequence-ready human exome targeted capture libraries. Genome Biol. 2011;12:R1. https://doi.org/10.1186/gb-2011-12-1-r1.
Article
PubMed
PubMed Central
Google Scholar
Mora-Castilla S, To C, Vaezeslami S, Morey R, Srinivasan S, Dumdie JN, et al. Miniaturization Technologies for Efficient Single-Cell Library Preparation for next-generation sequencing. J Lab Autom. 2016;21:557–67. https://doi.org/10.1177/2211068216630741.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jemt A, Salmen F, Lundmark A, Mollbrink A, Fernandez Navarro J, Stahl PL, et al. An automated approach to prepare tissue-derived spatially barcoded RNA-sequencing libraries. Sci Rep. 2016;6:37137. https://doi.org/10.1038/srep37137.
Article
CAS
PubMed
PubMed Central
Google Scholar
Regev A, Teichmann SA, Lander ES, Amit I, Benoist C, Birney E, et al. The human cell atlas. Elife. 2017;6. https://doi.org/10.7554/eLife.27041.
Salmen F, Stahl PL, Mollbrink A, Navarro JF, Vickovic S, Frisen J, et al. Barcoded solid-phase RNA capture for spatial Transcriptomics profiling in mammalian tissue sections. Nat Protoc. 2018;13:2501–34. https://doi.org/10.1038/s41596-018-0045-2.
Article
CAS
PubMed
Google Scholar
Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A, et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature. 2007;445:168–76. https://doi.org/10.1038/nature05453.
Article
CAS
PubMed
Google Scholar
Fernandez Navarro J, Sjostrand J, Salmen F, Lundeberg J, Stahl PL. ST pipeline: an automated pipeline for spatial mapping of unique transcripts. Bioinformatics. 2017. https://doi.org/10.1093/bioinformatics/btx211.
Wickham H. ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag; 2016. https://ggplot2.tidyverse.org.
Book
Google Scholar