Fu XZ, Zhou X, Xing F, Ling LL, Chun CP, Cao L, et al. Genome-wide identification, cloning and functional analysis of the zinc/iron-regulated transporter-like protein (ZIP) gene family in trifoliate orange (Poncirus trifoliata L. Raf.). Front Plant Sci. 2017;8:588.
PubMed
PubMed Central
Google Scholar
Fu LN, Zhu QQ, Sun YY, Du W, Pan ZY, Peng SA. Physiological and transcriptional changes of three citrus rootstock seedlings under iron deficiency. Front Plant Sci. 2017;8:1104.
Article
PubMed
PubMed Central
Google Scholar
Brumbarova T, Bauer P, Ivanov R. Molecular mechanisms governing Arabidopsis iron uptake. Trends Plant Sci. 2015;20(2):124–33.
Article
CAS
PubMed
Google Scholar
Jeong J, Guerinot ML. Homing in on iron homeostasis in plants. Trends Plant Sci. 2009;14(5):280–5.
Article
CAS
PubMed
Google Scholar
Kobayashi T, Nishizawa NK. Iron uptake, translocation, and regulation in higher plants. Annu Rev Plant Biol. 2012;63:131–52.
Article
CAS
PubMed
Google Scholar
Cui Y, Chen CL, Cui M, Zhou WJ, Wu HL, Ling HQ. Four IVa bHLH transcription factors are novel interactors of FIT and mediate JA inhibition of iron uptake in Arabidopsis. Mol Plant. 2018;11(9):1166–83.
Article
CAS
PubMed
Google Scholar
Gao F, Robe K, Bettembourg M, Navarro N, Rofidal V, Santoni V, et al. The transcription factor bHLH121 interacts with bHLH105 (ILR3) and its closest homologs to regulate iron homeostasis in Arabidopsis. Plant Cell 2019; https://doi.org/10.1105/tpc.19.00541.
Article
PubMed
PubMed Central
Google Scholar
Li XL, Zhang HM, Ai Q, Liang G, Yu DQ. Two bHLH transcription factors, bHLH34 and bHLH104, regulate Iron homeostasis in Arabidopsis thaliana. Plant Physiol. 2016;170(4):2478–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang N, Cui Y, Liu Y, Fan H, Du J, Huang Z, et al. Requirement and functional redundancy of ib subgroup bHLH proteins for iron deficiency responses and uptake in Arabidopsis thaliana. Mol Plant. 2013;6(2):503–13.
Article
CAS
PubMed
Google Scholar
Murre C, Mccaw PS, Baltimore D. A new DNA-binding and dimerization motif in immunoglobulin enhancer binding, daughterless, myod, and myc proteins. Cell. 1989;56(5):777–83.
Article
CAS
PubMed
Google Scholar
Carretero-Paulet L, Galstyan A, Roig-Villanova I, Martinez-Garcia JF, Bilbao-Castro JR, Robertson DL. Genome-wide classification and evolutionary analysis of the bHLH family of transcription factors in Arabidopsis, poplar, Rice, Moss, and algae. Plant Physiol. 2010;153(3):1398–412.
Article
CAS
PubMed
PubMed Central
Google Scholar
Feller A, Machemer K, Braun EL, Grotewold E. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant J. 2011;66(1):94–116.
Article
CAS
PubMed
Google Scholar
Li XX, Duan XP, Jiang HX, Sun YJ, Tang YP, Yuan Z, et al. Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and Arabidopsis. Plant Physiol. 2006;141(4):1167–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun X, Wang Y, Sui N. Transcriptional regulation of bHLH during plant response to stress. Biochem Bioph Res Co. 2018;503(2):397–401.
Article
CAS
Google Scholar
Toledo-Ortiz G, Huq E, Quail PH. The Arabidopsis basic/helix-loop-helix transcription factor family. Plant Cell. 2003;15(8):1749–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Massari ME, Murre C. Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms. Mol Cell Biol. 2000;20(2):429–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buck MJ, Atchley WR. Phylogenetic analysis of plant basic helix-loop-helix proteins. J Mol Evol. 2003;56(6):742–50.
Article
CAS
PubMed
Google Scholar
Atchley WR, Terhalle W, Dress A. Positional dependence, cliques, and predictive motifs in the bHLH protein domain. J Mol Evol. 1999;48(5):501–16.
Article
CAS
PubMed
Google Scholar
Wang HP, Li Y, Pan JJ, Lou DJ, Hu YR, Yu DQ. The bHLH transcription factors MYC2, MYC3, and MYC4 are required for jasmonate-mediated inhibition of flowering in Arabidopsis. Mol Plant. 2017;10(11):1461–4.
Article
CAS
PubMed
Google Scholar
Ding WN, Yu ZM, Tong YL, Huang W, Chen HM, Wu P. A transcription factor with a bHLH domain regulates root hair development in rice. Cell Res. 2009;19(11):1309–11.
Article
PubMed
Google Scholar
Penfield S, Josse EM, Kannangara R, Gilday AD, Halliday KJ, Graham IA. Cold and light control seed germination through the bHLH transcription factor SPATULA. Curr Biol. 2005;15(22):1998–2006.
Article
CAS
PubMed
Google Scholar
Wang LH, Tang W, Hu YW, Zhang YB, Sun JQ, Guo XH, et al. A MYB/bHLH complex regulates tissue-specific anthocyanin biosynthesis in the inner pericarp of red-centered kiwifruit Actinidia chinensis cv. Hongyang. Plant J. 2019;99(2):359–78.
Article
CAS
PubMed
Google Scholar
Hu DG, Sun CH, Zhang QY, An JP, You CX, Hao YJ. Glucose sensor MdHXK1 phosphorylates and stabilizes MdbHLH3 to promote anthocyanin aiosynthesis in apple. PLoS Genet. 2016;12(8):e1006273.
Article
PubMed
PubMed Central
CAS
Google Scholar
Xu WJ, Dubos C, Lepiniec L. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends Plant Sci. 2015;20(3):176–85.
Article
CAS
PubMed
Google Scholar
An JP, Li HH, Song LQ, Su L, Liu X, You CX, et al. The molecular cloning and functional characterization of MdMYC2, a bHLH transcription factor in apple. Plant Physiol Biochem. 2016;108:24–31.
Article
CAS
PubMed
Google Scholar
Nakata M, Mitsuda N, Herde M, Koo AJK, Moreno JE, Suzuki K, et al. A bHLH-type transcription factor, ABA-inducible bHLH-type transcription factor/JA-associated MYC2-like1, acts as a repressor to negatively regulate jasmonate signaling in Arabidopsis. Plant Cell. 2013;25(5):1641–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mao K, Dong QL, Li C, Liu CH, Ma FW. Genome wide identification and characterization of apple bHLH transcription factors and expression analysis in response to drought and salt stress. Front Plant Sci. 2017;8:480.
PubMed
PubMed Central
Google Scholar
Chen YY, Li MY, Wu XJ, Huang Y, Ma J, Xiong AS. Genome-wide analysis of basic helix-loop-helix family transcription factors and their role in responses to abiotic stress in carrot. Mol Breed. 2015;35(5):125.
Article
CAS
Google Scholar
Huang XS, Wang W, Zhang Q, Liu JH. A basic helix-loop-helix transcription factor, PtrbHLH, of Poncirus trifoliata confers cold tolerance and modulates peroxidase-mediated scavenging of hydrogen peroxide. Plant Physiol. 2013;162(2):1178–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ling HQ, Bauer P, Bereczky Z, Keller B, Ganal M. The tomato fer gene encoding a bHLH protein controls iron-uptake responses in roots. Proc Natl Acad Sci U S A. 2002;99(21):13938–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jakoby M, Wang H-Y, Reidt W, Weisshaar B, Bauer P. FRU (BHLH029) is required for induction of iron mobilization genes in Arabidopsis thaliana. FEBS Lett. 2004;577(3):528–34.
Article
CAS
PubMed
Google Scholar
Yuan YX, Zhang J, Wang DW, Ling HQ. AtbHLH29 of Arabidopsis thaliana is a functional ortholog of tomato FER involved in controlling iron acquisition in strategy I plants. Cell Res. 2005;15(8):613–21.
Article
CAS
PubMed
Google Scholar
Yuan YX, Wu HL, Wang N, Li J, Zhao WN, Du J, et al. FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis. Cell Res. 2008;18(3):385–97.
Article
CAS
PubMed
Google Scholar
Long TA, Tsukagoshi H, Busch W, Lahner B, Salt DE, Benfey PN. The bHLH transcription factor POPEYE regulates response to iron deficiency in Arabidopsis roots. Plant Cell. 2010;22(7):2219–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liang G, Zhang HM, Li XL, Ai Q, Yu DQ. bHLH transcription factor bHLH115 regulates iron homeostasis in Arabidopsis thaliana. J Exp Bot. 2017;68(7):1743–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang J, Liu B, Li MS, Feng DR, Jin HL, Wang P, et al. The bHLH transcription factor bHLH104 interacts with IAA-LEUCINE RESISTANT3 and modulates iron homeostasis in Arabidopsis. Plant Cell. 2015;27(3):787–805.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu GA, Terol J, Ibanez V, Lopez-Garcia A, Perez-Roman E, Borreda C, et al. Genomics of the origin and evolution of Citrus. Nature. 2018;554(7692):311–6.
Article
CAS
PubMed
Google Scholar
Wang X, Xu YT, Zhang SQ, Cao L, Huang Y, Cheng JF, et al. Genomic analyses of primitive, wild and cultivated citrus provide insights into asexual reproduction. Nat Genet. 2017;49(5):765–22.
Article
CAS
PubMed
Google Scholar
Guo P, Qi YP, Yang LT, Lai NW, Ye X, Yang Y, et al. Root adaptive responses to aluminum-treatment revealed by RNA-seq in two citrus species with different aluminum-tolerance. Front Plant Sci. 2017;8:330.
PubMed
PubMed Central
Google Scholar
Xu Q, Chen LL, Ruan X, Chen D, Zhu A, Chen C, et al. The draft genome of sweet orange (Citrus sinensis). Nat Genet. 2013;45(1):59–66.
Article
CAS
PubMed
Google Scholar
Wu GA, Prochnik S, Jenkins J, Salse J, Hellsten U, Murat F, et al. Sequencing of diverse mandarin, pummelo and orange genomes reveals complex history of admixture during citrus domestication. Nat Biotechnol. 2014;32(7):656–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li SB, OuYang WZ, Hou XJ, Xie LL, Hu CG, Zhang JZ. Genome-wide identification, isolation and expression analysis of auxin response factor (ARF) gene family in sweet orange (Citrus sinensis). Front Plant Sci. 2015;6:119.
PubMed
PubMed Central
Google Scholar
Magalhaes DM, Scholte LLS, Silva NV, Oliveira GC, Zipfel C, Takita MA, et al. LRR-RLK family from two Citrus species: genome-wide identification and evolutionary aspects. BMC Genomics. 2016;17:623.
Article
PubMed
PubMed Central
CAS
Google Scholar
Xie RJ, Li YJ, He SL, Zheng YQ, Yi SL, Lv Q, et al. Genome-wide analysis of citrus R2R3MYB genes and their spatiotemporal expression under stresses and hormone treatments. PLoS One. 2014;9(12):e113971.
Article
PubMed
PubMed Central
CAS
Google Scholar
Geng J, Wei T, Wang Y, Huang X, Liu J-H. Overexpression of PtrbHLH, a basic helix-loop-helix transcription factor from Poncirus trifoliata, confers enhanced cold tolerance in pummelo (Citrus grandis) by modulation of H2O2 level via regulating a CAT gene. Tree Physiol. 2019. https://doi.org/10.1093/treephys/tpz081.
Sun H, Fan HJ, Ling HQ. Genome-wide identification and characterization of the bHLH gene family in tomato. BMC Genomics. 2015;16:9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gao M, Zhu YX, Yang JH, Zhang HJ, Cheng CX, Zhang YC, et al. Identification of the grape basic helix-loop-helix transcription factor family and characterization of expression patterns in response to different stresses. Plant Growth Regul. 2019;88(1):19–39.
Article
CAS
Google Scholar
Cannon SB, Mitra A, Baumgarten A, Young ND, May G. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol. 2004;4(1):10.
Article
PubMed
PubMed Central
Google Scholar
Zhang TT, Lv W, Zhang HS, Ma L, Li PH, Ge L, et al. Genome-wide analysis of the basic Helix-loop-Helix (bHLH) transcription factor family in maize. BMC Plant Biol. 2018;18:235.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brownlie P, Ceska TA, Lamers M, Romier C, Stier G, Teo H, et al. The crystal structure of an intact human max-DNA complex: new insights into mechanisms of transcriptional control. Structure. 1997;5(4):509–20.
Article
CAS
PubMed
Google Scholar
Geng JJ, Liu JH. The transcription factor CsbHLH18 of sweet orange functions in modulation of cold tolerance and homeostasis of reactive oxygen species by regulating the antioxidant gene. J Exp Bot. 2018;69(10):2677–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Endo T, Fujii H, Sugiyama A, Nakano M, Nakajima N, Ikoma Y, et al. Overexpression of a citrus basic helix-loop-helix transcription factor (CubHLH1), which is homologous to Arabidopsis activation-tagged bri1 suppressor 1 interacting factor genes, modulates carotenoid metabolism in transgenic tomato. Plant Sci. 2016;243:35–48.
Article
CAS
PubMed
Google Scholar
Kurbidaeva A, Ezhova T, Novokreshchenova M. Arabidopsis thaliana ICE2 gene: phylogeny, structural evolution and functional diversification from ICE1. Plant Sci. 2014;229:10–22.
Article
CAS
PubMed
Google Scholar
Poirier BC, Feldman MJ, Lange BM. bHLH093/NFL and bHLH061 are required for apical meristem function in Arabidopsis thaliana. Plant Signal Behav. 2018;13(7):e1486146.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu J, Ding ZW, Vizcay-Barrena G, Shi JX, Liang WQ, Yuan Z, et al. ABORTED MICROSPORES acts as a master regulator of pollen wall formation in Arabidopsis. Plant Cell. 2014;26(4):1544–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ohta M, Sato A, Renhu N, Yamamoto T, Oka N, Zhu JK, et al. MYC-type transcription factors, MYC67 and MYC70, interact with ICE1 and negatively regulate cold tolerance in Arabidopsis. Sci Rep-Uk. 2018;8:11622.
Article
CAS
Google Scholar
Raissig MT, Matos JL, Gil MXA, Kornfeld A, Bettadapur A, Abrash E, et al. Mobile MUTE specifies subsidiary cells to build physiologically improved grass stomata. Science. 2017;355(6330):1215–8.
Article
CAS
PubMed
Google Scholar
Zhu EG, You CJ, Wang SS, Cui J, Niu BX, Wang YX, et al. The DYT1-interacting proteins bHLH010, bHLH089 and bHLH091 are redundantly required for Arabidopsis anther development and transcriptome. Plant J. 2015;83(6):976–90.
Article
CAS
PubMed
Google Scholar
Song SS, Qi TC, Fan M, Zhang X, Gao H, Huang H, et al. The bHLH subgroup IIId factors negatively regulate jasmonate-mediated plant defense and development. PLoS Genet. 2013;9(7):e1003653.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen C, Chen H, He Y, Xia R. TBtools, a Toolkit for Biologists integrating various HTS-data handling tools with a user-friendly interface. bioRxiv. 2018:289660. https://doi.org/10.1101/289660.
Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 2009;37:W202–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang YP, Tang HB, DeBarry JD, Tan X, Li JP, Wang XY, et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012;40(7):e49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–13.
Article
CAS
PubMed
Google Scholar