Culley FJ, Brown A, Conroy DM, Sabroe I, Pritchard DL, Williams TJ. Eotaxin is specifically cleaved by hookworm metalloproteases preventing its action in vitro and in vivo. J Immunol. 2000;165(11):6447–53.
CAS
PubMed
Google Scholar
Isnard A, Shio MT, Olivier M. Impact of Leishmania metalloprotease GP63 on macrophage signaling. Front Cell Infect Microbiol. 2012;2:72.
PubMed
PubMed Central
Google Scholar
Schmid-Hempel P. Immune defence, parasite evasion strategies and their relevance for 'macroscopic phenomena' such as virulence. Philos Trans R Soc Lond Ser B Biol Sci. 2008;364(1513):85–98.
Google Scholar
McKerrow JH, Caffrey C, Kelly B, Loke P, Sajid M. Proteases in parasitic diseases. Annu Rev Pathol. 2006;1:497–536.
CAS
PubMed
Google Scholar
Doyle MA, Gasser RB, Woodcraft BJ, Hall RS, Ralph SA. Drug target prediction and prioritization: using orthology to predict essentiality in parasite genomes. BMC Genomics. 2010;11:222.
PubMed
PubMed Central
Google Scholar
Steverding D, Sexton DW, Wang X, Gehrke SS, Wagner GK, Caffrey CR. Trypanosoma brucei: Chemical evidence that cathepsin L is essential for survival and a relevant drug target. Int J Parasitol. 2012;42(5):481–8.
CAS
PubMed
Google Scholar
Gluzman IY, Francis SE, Oksman A, Smith CE, Duffin KL, Goldberg DE. Order and specificity of the Plasmodium falciparum hemoglobin degradation pathway. J Clin Invest. 1994;93:1602–8.
CAS
PubMed
PubMed Central
Google Scholar
Müller J, Hemphill A. Drug target identification in protozoan parasites. Expert Opin Drug Discovery. 2016;11(8):815–24.
Google Scholar
Funk VA, Olafson RW, Raap M, Smith D, Aitken L, Haddow JD, Wang D, Dawson-Coates JA, Burke RD, Miller KM. Identification, characterization and deduced amino acid sequence of the dominant protease from Kudoa paniformis and K. thyrsites: A unique cytoplasmic cysteine protease. Comp Biochem Physiol B Biochem Mol Biol. 2008;149(3):477–89.
PubMed
Google Scholar
Shin SP, Zenke K, Yokoyama H. Characterization of proteases isolated from Kudoa septempunctata. J Vet Res. 2015;55(3):175–9.
Google Scholar
Chang ES, Neuhof M, Rubinstein ND, Diamant A, Philippe H, Huchon D, Cartwright P. Genomic insights into the evolutionary origin of Myxozoa within Cnidaria. Proc Natl Acad Sci U S A. 2015;112(48):14912–7.
CAS
PubMed
PubMed Central
Google Scholar
Yang Y, Xiong J, Zhou Z, Huo F, Miao W, Ran C, Liu Y, Zhang J, Feng J, Wang M, Wang M, Wang L, Yao B. The genome of the myxosporean Thelohanellus kitauei shows adaptations to nutrient acquisition within its fish host. Genome Biol Evo. 2014;12:3182–98.
Google Scholar
Feist SW, Morris DJ, Alama-Bermejo G, Holzer AS. In: Okamura B, Gruhl A, Bartholomew JL, editors. Cellular process in myxozoans in Myxozoa Evolution. Ecology and Development. Cham: Springer International Publishing; 2015.
Google Scholar
Schmidt-Posthaus H, Wahli T. Host and environmental influences on development of disease. In: Okamura B, Gruhl A, Bartholomew J, editors. Myxozoan evolution, ecology and development. Cham: Springer; 2015.
Google Scholar
Lom J, Dyková I. Protozoan parasites of fishes. Amsterdam: Elsevier Science Publishers; 1992.
Google Scholar
Okamura B, Gruhl A, Reft AJ. Cnidarian origins of the Myxozoa. In: Myxozoan evolution, ecology and development. Cham: Springer; 2015. p. 45–68.
Google Scholar
Holzer AS, Bartošová-Sojková P, Born-Torrijos A, Lövy A, Hartigan A, Fiala I. The joint evolution of the Myxozoa and their alternate hosts: a cnidarian recipe for success and vast biodiversity. Mol Ecol. 2018;27:1651–66.
PubMed
Google Scholar
Wolf K, Markiw ME. Biology contravenes taxonomy in the Myxozoa: New discoveries show alternation of invertebrate and vertebrate hosts. Science. 1984;225(4669):1449–52. https://doi.org/10.1126/science.225.4669.1449.
Article
CAS
PubMed
Google Scholar
Eszterbauer E, Atkinson S, Diamant A, Morris D, El-Matbouli M, Hartikainen H. Myxozoan life cycles: practical approaches and insights. In: Myxozoan evolution, ecology and development. Cham: Springer; 2015. p. 175–98.
Google Scholar
Arthur JR, Lom J. Sphaerospora araii n. sp. (Myxosporea: Sphaerosporidae) from the kidney of a longnose skate (Raja rhina Jordan and Gilbert) from the Pacific Ocean off Canada. Can J Zool. 1985;63:2902–6 https://doi.org/10.1139/z85-434.
Google Scholar
Bartošová P, Fiala I, Jirků M, Cinková M, Caffara M, Fioravanti ML, Atkinson SD, Bartholomew JL, Holzer AS. Sphaerospora sensu stricto: Taxonomy, diversity and evolution of a unique lineage of myxosporeans (Myxozoa). Mol Phylogenet Evol. 2013;68(1):93–105.
PubMed
Google Scholar
Desser SS, Lom J, Dyková I. Developmental stages of Sphaerospora ohlmacheri (Whinery, 1893) n.comb. (Myxozoa: Myxosporea) in the renal tubules of bullfrog tadpoles, Rana catesbeiana, from Lake of Two Rivers, Algonquin Park, Ontario. Can J Zool. 2011;64:2213–7.
Google Scholar
Jirků M, Fiala I, Modrý D. Tracing the genus Sphaerospora: rediscovery, redescription and phylogeny of the Sphaerospora ranae (Morelle,) n. comb. (Myxosporea, Sphaerosporidae), with emendation of the genus Sphaerospora. Parasitol. 2007;134(12):1727–39.
Google Scholar
Patra S, Bartošová-Sojková P, Pecková H, Fiala I, Eszterbauer E, Holzer AS. Biodiversity and host-parasite cophylogeny of Sphaerospora (sensu stricto) (Cnidaria: Myxozoa). Parasit Vectors. 2018;11(1):347.
PubMed
PubMed Central
Google Scholar
Baska F, Molnár K. Blood stages of Sphaerospora spp. (Myxosporea) in cyprinid fishes. Dis Aq Org. 1988;5:23–8.
Google Scholar
Lom J, Dyková I, Pavlásková M, Grupcheva G. Sphaerospora molnari sp. nov. (Myxozoa, Myxosporea), an agent of gill, skin and blood sphaerosporosis of common carp in Europe. Parasitol. 1983;86:529–35.
Google Scholar
Lom J, Pavlásková M, Dyková I. Notes on kidney infecting species of the genus Sphaerospora Thelohan (Myxosporea), including a new species Sphaerospora gobionis sp. nov., and on myxosporean life cycle stages in stages in the blood of some freshwater fish. J Fish Dis. 1985;8:221–32.
Google Scholar
Hartigan A, Estensoro I, Vancová M, et al. New cell motility model observed in parasitic cnidarian Sphaerospora molnari (Myxozoa:Myxosporea) blood stages in fish. Sci Rep. 2016;6:39093.
CAS
PubMed
PubMed Central
Google Scholar
Korytář T, Wiegertjes G, Zusková E, Tomanová A, Lisnerová M, Patra S, Sieranski V, Šíma R, Born-Torrijos A, Wentzel A, Blasco-Monleon S, Yanes-Roca C, Policar T, Holzer AS. The kinetics of cellular and humoral immune responses of common carp to presporogonic development of the myxozoan Sphaerospora molnari. Parasit Vectors. 2019;2:208.
Google Scholar
Holzer AS, Hartigan A, Patra S, Pecková H, Eszterbauer E. Molecular fingerprinting of the myxozoan community in common carp suffering swim bladder inflammation (SBI) identifies multiple etiological agents. Parasit Vectors. 2014;7:398.
PubMed
PubMed Central
Google Scholar
Simão F, Waterhouse R, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31(19):3210–2.
PubMed
Google Scholar
Verma S, Dixit R, Pandey KC. Cysteine proteases: modes of activation and future prospects as pharmacological targets. Front Pharmacol. 2016;7:107.
PubMed
PubMed Central
Google Scholar
Stack CM, Caffrey CR, Donnelly SM, Seshaadri A, Lowther J, Tort JF, Collins PR, Robinson MW, Xu W, McKerrow JH, Craik CS, Geiger SR, Marion R, Brinen LS, Dalton JP. Structural and functional relationships in the virulence-associated cathepsin L proteases of the parasitic liver fluke, Fasciola hepatica. J Biol Chem. 2007;283(15):9896–908.
PubMed
PubMed Central
Google Scholar
Weihofen A, Binn K, Lemberg MK, Ashman K, Martoglio B. Identification of signal peptide peptidase, a presenilin-type aspartic protease. Science. 2002;296:2215–8.
CAS
PubMed
Google Scholar
Gul IS, Staal J, Hulpiau P, De Keuckelaere E, Kamm K, Deroo T, Sanders E, Staes K, Driege Y, Saeys Y, Beyaert R, Technau U, Schierwater B, van Roy F. GC content of early metazoan genes and its impact on gene expression levels in mammalian cell lines. Genome Biol Evol. 2018;10(3):909–17.
CAS
PubMed
PubMed Central
Google Scholar
Yanow SK, Purcell LA, Lee M, Spithill TW. Genomics-based drug design targets the AT-rich malaria parasite: implications for antiparasite chemotherapy. Pharmacogenomics. 2007;8(9):1267–72.
CAS
PubMed
Google Scholar
Eitel M, Francis WR, Varoqueaux F, Daraspe J, Osigus HJ, Krebs S, Vargas S, Blum H, Williams GA, Schierwater B, Wörheide G. Comparative genomics and the nature of placozoan species. PLoS Biol. 2018;16(7):e2005359.
PubMed
PubMed Central
Google Scholar
Kenny NJ, de Goeij JM, de Bakker DM, Whalen CG, Berezikov E, Riesgo A. Towards the identification of ancestrally shared regenerative mechanisms across the Metazoa: a Transcriptomic case study in the Demosponge Halisarca caerulea. Mar Genomics. 2018;37:135–47.
PubMed
Google Scholar
Celis JS, Wibberg D, Ramírez-Portilla C, Rupp O, Sczyrba A, Winkler A, Kalinowski J, Wilke T. Binning enables efficient host genome reconstruction in cnidarian holobionts. GigaScience. 2018;7:7.
Google Scholar
Pootakham W, Naktang C, Sonthirod C, Yoocha T, Sangsrakru D, Jomchai N, Putchim L, Tangphatsornruang S. Development of a novel reference transcriptome for scleractinian coral Porites lutea using single-molecule long-read isoform sequencing (Iso-Seq). Front Mar Sci. 2018;5 https://doi.org/10.3389/fmars.2018.00122.
Bankers L, Neiman M, et al. G3 (Bethseda). 2017;7(3):871–80.
CAS
Google Scholar
McNeilly TN, Few D, Burgess STG, Wright H, Bartley DJ, Bartley Y, Nisbet AJ. Niche-specific gene expression in a parasitic nematode; increased expression of immunomodulators in Teladorsagia circumcincta larvae derived from host mucosa. Sci Rep. 2017;7:7214.
PubMed
PubMed Central
Google Scholar
Li W, Liu B, Yang Y, Ren Y, Wang S, Liu C, Zhang N, Qu Z, Yang W, Zhang Y, Yan H, Jiang F, Li L, Li S, Jia W, Yin H, Cai X, Liu T, DP MM, Fan W, Fu B. The genome of tapeworm Taenia multiceps sheds light on understanding parasitic mechanism and control of coenurosis disease. DNA Res. 2018;25(5):499–510.
PubMed
PubMed Central
Google Scholar
Gayral P, Melo-Ferreira J, Glémin S, Bienre N, Carneiro M, Nabholz B, Lourenco JM, Alves PC, Ballenghein M, Faivre N. Reference-free population genomics from next-generation transcriptome data and the vertebrate–invertebrate gap. PLoS Genet. 2013;9:e1003457.
CAS
PubMed
PubMed Central
Google Scholar
Martin JA, Wang Z. Next-generation transcriptome assembly. Nat Rev Genet. 2011;12:671.
CAS
PubMed
Google Scholar
Schrul B, Kapp K, Sinning I, Dobberstein B. Signal peptide peptidase (SPP) assembles with substrates and misfolded membrane proteins into distinct oligomeric complexes. Biochem J. 2010;427(3):523–34.
CAS
PubMed
PubMed Central
Google Scholar
Voss M, Schröder B, Fluhrer R. Mechanism, specificity, and physiology of signal peptide peptidase (SPP) and SPP-like proteases. Biochim Biophys Acta. 2013;1828(12):2828–39.
CAS
PubMed
Google Scholar
Li X, Chen H, Bahamontes-Rosa N, Kun JFJ, Traore B, Crompton PD, Chishti AH. Plasmodium falciparum signal peptide peptidase is a promising drug target against blood stage malaria. Biochem Biophys Res Commun. 2009;380(3):454–9.
CAS
PubMed
PubMed Central
Google Scholar
Lázaro S, Gamarra D, Del Val M. Proteolytic enzymes involved in MHC class I antigen processing: A guerrilla army that partners with the proteasome. Mol Immunol. 2015;68(2):72–6.
PubMed
Google Scholar
Parvanova I, Epiphanio S, Fauq A, Golde TE, Prudêncio M, Mota MM. A small molecule inhibitor of signal peptide peptidase inhibits Plasmodium development in the liver and decreases malaria severity. PLoS One. 2009;4(4):e5078.
PubMed
PubMed Central
Google Scholar
Harbut MB, Patel BA, Yeung BKS, McNamara CW, Bright AT, Ballard J, Greenbaum DC. Targeting the ERAD pathway via inhibition of signal peptide peptidase for antiparasitic therapeutic design. Proc Natl Acad Sci U S A. 2012;109(52):21486–91.
CAS
PubMed
PubMed Central
Google Scholar
Eggleson KK, Duffin KL, Goldberg DE. Identification and characterization of falcilysin, a metallopeptidase involved in hemoglobin catabolism within the malaria parasite Plasmodium falciparum. J Biol Chem. 1999;274(45):32411–7.
CAS
PubMed
Google Scholar
Bruschi F, Pinto B. The significance of matrix metalloproteinases in parasitic infections involving the central nervous system. Pathogens. 2013;2(1):105–29.
PubMed
PubMed Central
Google Scholar
McGwire BS, Chang KP, Engman DM. Migration through the extracellular matrix by the parasitic protozoan Leishmania is enhanced by surface metalloprotease gp63. Infect Immun. 2003;71(2):1008–10.
CAS
PubMed
PubMed Central
Google Scholar
Geurts N, Opdenakker G, Van den Steen PE. Matrix metalloproteinases as therapeutic targets in protozoan parasitic infections. Pharmacol Ther. 2012;133(3):257–79.
CAS
PubMed
Google Scholar
Piña-Vázquez C, Reyes-López M, Ortíz-Estrada G, de la Garza M, Serrano-Luna J. Host-parasite interaction: parasite-derived and -induced proteases that degrade human extracellular matrix. J Parasitol Res. 2012;2012:748206.
PubMed
PubMed Central
Google Scholar
Ramos OH, Selistre-de-Araujo HS. Snake venom metalloproteases--structure and function of catalytic and disintegrin domains. Comp Biochem Physiol C Toxicol Pharmacol. 2006;142(3–4):328–46.
CAS
PubMed
Google Scholar
Decrem Y, Beaufays J, Blasioli V, Lahaye K, Brossard M, Vanhamme L, Godfroid E. A family of putative metalloproteases in the salivary glands of the tick Ixodes ricinus. FEBS J. 2008;275(7):1485–99.
CAS
PubMed
Google Scholar
Wagner L, Klemann C, Stephan M, von Hörsten S. Unravelling the immunological roles of dipeptidyl peptidase 4 (DPP4) activity and/or structure homologue (DASH) proteins. Clin Exp Immunol. 2016;184:265–83.
CAS
PubMed
PubMed Central
Google Scholar
Touz MC, Nores MJ, Slavin I, Piacenza L, Acosta D, Carmona C, Lujan HD. Membrane-associated dipeptidyl peptidase IV is involved in encystation-specific gene expression during Giardia differentiation. Biochem J. 2002;364(3):703–10.
CAS
PubMed
PubMed Central
Google Scholar
Geldhof P, Knox D. The intestinal contortin structure in Haemonchus contortus: an immobilised anticoagulant? Int J Parasitol. 2008;38:1579–88.
CAS
PubMed
Google Scholar
Robinson MW, Dalton JP. Cysteine proteases of pathogenic organisms. Landes Bioscience. 2011.
Konagaya S. Studies on the jellied meat of fish, with special reference to that of yellowfin tuna. Bull Tokai Reg Fish Res Lab. 1984;114:1–101.
Google Scholar
Martone CB, Spivak E, Busconi L, Folco EJE, Sánchez JJ. A cysteine protease from myxosporean degrades host myofibrils in vitro. Comp Biochem Physiol B Biochem Mol Biol. 1999;123:267–72.
Google Scholar
Caffrey CR, Goupil L, Rebello KM, Dalton JP, Smith D. Cysteine proteases as digestive enzymes in parasitic helminths. PLoS Neg Trop Dis. 2018;12(8):e0005840.
Google Scholar
Dalton J, Caffrey CR, Sajid M, Stack C, Donnelly S, Loukas A, Don T, Mckerrow J, Halton DW, Brindley P. Proteases in trematode biology. In: Parasitic Flatworms: Molecular biology, Biochemistry, Immunology and Physiology; 2006. p. 348–68.
Google Scholar
McKerrow JH. The diverse roles of cysteine proteases in parasites and their suitability as drug targets. PLoS Negl Trop Dis. 2018;12(8):e0005639.
PubMed
PubMed Central
Google Scholar
Selzer PM, Pingel S, Hseih I, Ugele B, Chan VJ, Engel JC, Bogyo M, Russell DG, Sakanari JA, McKerrow JH. Cysteine protease inhibitors as chemotherapy: lessons from a parasite target. Proc Natl Acad Sci U S A. 1999;96(20):11015–22.
CAS
PubMed
PubMed Central
Google Scholar
Siqueira-Neto JL, Debnath A, McCall LI, Bernatchez JA, Ndao M, et al. Cysteine proteases in protozoan parasites. PLoS Negl Trop Dis. 2018;12(8):e0006512.
PubMed
PubMed Central
Google Scholar
Ferraro F, Merlino A, dell’ Oca N, Gil J, Tort JF, Gonzalez M, Cerecetto H, Cabrera M, Corvo I. Identification of chalcones as Fasciola hepatica cathepsin L inhibitors using a comprehensive experimental and computational approach. PLoS Negl Trop Dis. 2016;10(7):e0004834.
PubMed
PubMed Central
Google Scholar
Williamson AL, Lustigman S, Oksov Y, Deumic V, Plieskatt J, Mendez S, Zhan B, Bottazzi ME, Hotez PJ, Loukas A. Ancylostoma caninum MTP-1, an astacin-like metalloprotease secreted by infective hookworm larvae, is involved in tissue migration. Infect Immun. 2006;74(2):961–7.
CAS
PubMed
PubMed Central
Google Scholar
International Helminth Genomes Consortium. Comparative genomics of the major parasitic worms. Nat Genet. 2018;51(1):163–74.
PubMed Central
Google Scholar
Hahn J, Seeber F, Kolodziej H, Ignatius R, Laue M, Aebischer T, Klotz C. High sensitivity of Giardia duodenalis to tetrahydrolipstatin (orlistat) in vitro. PLoS One. 2013;8(8):e71597.
CAS
PubMed
PubMed Central
Google Scholar
Shakarian AM, McGugan GC, Joshi MB, Bowers L, Ganim C, Barowski J, Dwyer DM. Identification, characterization, and expression of a unique secretory lipase from the human pathogen Leishmania donovani. Mol Cell Biochem. 2010;341(1–2):17–31.
CAS
PubMed
PubMed Central
Google Scholar
Chaves SP, Gomes DCO, De-Simone SG, Rossi-Bergmann B, de Matos HL. Serine proteases and vaccines against Leishmaniasis: a dual role. J Vaccine Vaccin. 2015;6:1.
Google Scholar
Stutzer C, Richards SA, Ferreira M, Baron S, Maritz-Olivier C. Metazoan parasite vaccines: present status and future prospects. Front Cell Infect Microbiol. 2018;8:67.
PubMed
PubMed Central
Google Scholar
de Vries E, Bakker N, Krijgsveld J, Knox DP, Heck AJ, Yatsuda AP. An AC-5 cathepsin B-like protease purified from Haemonchus contortus excretory secretory products shows protective antigen potential for lambs. Vet Res. 2009;40(4):1–11.
Google Scholar
Sommerset I, Krossøy B, Biering E, Frost P. Vaccines for fish aquaculture. Expert Rev Vaccines. 2005;4:89–101. https://doi.org/10.1586/14760584.4.1.89.
Article
CAS
PubMed
Google Scholar
Carraro L, Bertuzzo E, Mari L, Fontes I, Hartikainen H, Strepparava N, Schmidt-Posthaus H, Wahli T, Jokela J, Gatto M, Rinaldo A. Integrated field, laboratory, and theoretical study of PKD spread in a Swiss prealpine river. Proc Natl Acad Sci U S A. 2017;114(45):11992–7.
CAS
PubMed
PubMed Central
Google Scholar
Okamura B, Hartikainen H, Schmidt-Posthaus H, Wahli T. Life cycle complexity, environmental change and the emerging status of salmonid proliferative kidney disease. Freshw Biol. 2011;56(4):735–53.
Google Scholar
Bruneaux M, Visse M, Gross R, Pukk L, Saks L, Vasemägi A. Parasite infection and decreased thermal tolerance: impact of proliferative kidney disease on a wild salmonid fish in the context of climate change. Funct Ecol. 2017;31(1):216–26.
Google Scholar
Debes PV, Gross R, Vasemägi A. Quantitative genetic variation in, and environmental effects on, pathogen resistance and temperature-dependent disease severity in a wild trout. Am Nat. 2017;190(2):244–65.
PubMed
Google Scholar
Skovgaard A, Buchmann K. Tetracapsuloides bryosalmonae and PKD in juvenile wild salmonids in Denmark. Dis Aq Org. 2012;101(1):33–42.
CAS
Google Scholar
Robbins J. Tiny invader, deadly to fish, shuts down a river in Montana. In: The New York Times; 2016. http://www.nytimes.com/2016/08/24/us/tiny-parasite-invader-deadly-to-fish-shuts-down-yellowstone-river-in-Montana.Html?_r=0. Accessed: 10 Oct 2016.
Google Scholar
Hutchins PR, Sepulveda AJ, Martin RM, Hopper LR. A probe-based quantitative PCR assay for detecting Tetracapsuloides bryosalmonae in fish tissue and environmental DNA water samples. Cons Gen Resource. 2018;10(3):317–9.
Google Scholar
Min XJ, Butler G, Storms R, Tsang A. OrfPredictor: predicting protein-coding regions in EST-derived sequences. Nucleic Acids Res. 2005;33:W677–80.
CAS
PubMed
PubMed Central
Google Scholar
Li W. Godzik Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006;22(13):1658–9.
CAS
PubMed
Google Scholar
Rawlings ND, Waller M, Barrett AJ. Bateman MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res. 2014;42:D503–9.
CAS
PubMed
Google Scholar
Stefanik DJ, Lubinski TJ, Granger BR, Byrd AL, Reitzel AM, DeFilippo L, Lorenc A, Finnerty JR. Production of a reference transcriptome and transcriptomic database (EdwardsiellaBase) for the lined sea anemone, Edwardsiella lineata, a parasitic cnidarian. BMC Genomics. 2014;15:71.
PubMed
PubMed Central
Google Scholar
Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. 2015;10:845.
CAS
PubMed
PubMed Central
Google Scholar
Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29:e45.
CAS
PubMed
PubMed Central
Google Scholar