Al-Robaiy S, Eschrich K. Rat muscle fructose-1,6-bisphosphatase: cloning of the cDNA, expression of the recombinant enzyme, and expression analysis in different tissues. Biol Chem. 1999;380(9):1079–85.
Article
CAS
PubMed
Google Scholar
Zimmermann G, Kelly GJ, Latzko E. Efficient purification and molecular properties of spinach chloroplast fructose 1,6-bisphosphatase. Eur J Biochem. 1976;70(2):361–7.
Article
CAS
PubMed
Google Scholar
Daie J. Cytosolic fructose-1,6-bisphosphatase: a key enzyme in the sucrose biosynthetic pathway. Photosynth Res. 1993;38(1):5–14.
Article
CAS
PubMed
Google Scholar
Nel WT. S. E., Plant fructose-1,6-bisphosphatases: characteristics and properties. Int J BioChemiPhysics. 1992;24(8):1267–83.
Article
CAS
Google Scholar
Anderson LE, Yousefzai R, Ringenberg MR, Carol AA. Both chloroplastic and cytosolic fructose bisphosphatase isozymes are present in the pea leaf nucleus. Plant Sci. 2004;166(3):721–30.
Article
CAS
Google Scholar
Schnarrenberger C, Martin W. The Calvin cycle-a historical perspective. Photosynthetica. 1997;33:331–45..
CAS
Google Scholar
Serrato AJ, de Dios Barajas-Lopez J, Chueca A, Sahrawy M. Changing sugar partitioning in FBPase-manipulated plants. J Exp Bot. 2009;60(10):2923–31.
Article
CAS
PubMed
Google Scholar
Huber SC, Huber JL. Role of sucrose-phosphate synthase in sucrose metabolism in leaves. Plant Physiol. 1992;99(4):1275–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hur Y, Unger EA, Vasconcelos AC. Isolation and characterization of a cDNA encoding cytosolic fructose-1,6-bisphosphatase from spinach. Plant Mol Biol. 1992;18(4):799–802.
Article
CAS
PubMed
Google Scholar
Khayat E, Harn C, Daie J. Purification and light-dependent molecular modulation of the cytosolic Fructose-1,6-Bisphosphatase in Sugarbeet leaves. Plant Physiol. 1993;101(1):57–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Strand A, Zrenner R, Trevanion S, Stitt M, Gustafsson P, Gardestrom P. Decreased expression of two key enzymes in the sucrose biosynthesis pathway, cytosolic fructose-1,6-bisphosphatase and sucrose phosphate synthase, has remarkably different consequences for photosynthetic carbon metabolism in transgenic Arabidopsis thaliana. Plant J. 2000;23(6):759–70.
Article
CAS
PubMed
Google Scholar
Jang HK, Lee SW, Lee YH, Hahn TR. Purification and characterization of a recombinant pea cytoplasmic fructose-1,6-bisphosphatase. Protein Expr Purif. 2003;28(1):42–8.
Article
CAS
PubMed
Google Scholar
Xu W, Wang C, Xu X, Cai C, Guo W. Cloning and expression analysis of a novel gene encoding fructose-1,6-bisphosphatase in cotton. Cotton Sci. 2013;25:549–56..
Google Scholar
Xiao H, Chen C, Xu Y, Ji D, Xie C. Cloning and expression analysis of the chloroplast fructose-1,6-bisphosphatase gene from Pyropia haitanensis. Acta Oceanol Sin. 2014;33(4):92–100.
Article
CAS
Google Scholar
Cho MH, Jang A, Bhoo SH, Jeon JS, Hahn TR. Manipulation of triose phosphate/phosphate translocator and cytosolic fructose-1,6-bisphosphatase, the key components in photosynthetic sucrose synthesis, enhances the source capacity of transgenic Arabidopsis plants. Photosynth Res. 2012;111(3):261–8.
Article
CAS
PubMed
Google Scholar
Zrenner R, Krause KP, Apel P, Sonnewald U. Reduction of the cytosolic fructose-1,6-bisphosphatase in transgenic potato plants limits photosynthetic sucrose biosynthesis with no impact on plant growth and tuber yield. Plant J. 1996;9(5):671–81.
Article
CAS
PubMed
Google Scholar
Lee SK, Jeon JS, Bornke F, Voll L, Cho JI, Goh CH, Jeong SW, Park YI, Kim SJ, Choi SB, Miyao A, Hirochika H, An G, Cho MH, Bhoo SH, Sonnewald U, Hahn TR. Loss of cytosolic fructose-1,6-bisphosphatase limits photosynthetic sucrose synthesis and causes severe growth retardations in rice (Oryza sativa). Plant Cell Environ. 2008;31(12):1851–63.
Article
CAS
PubMed
Google Scholar
Obiadalla-Ali H, Fernie AR, Lytovchenko A, Kossmann J, Lloyd JR. Inhibition of chloroplastic fructose 1,6-bisphosphatase in tomato fruits leads to decreased fruit size, but only small changes in carbohydrate metabolism. Planta. 2004;219(3):533–40.
Article
CAS
PubMed
Google Scholar
BASRA A S, M.C.P. Development of cotton fiber[M]. Int Rev Cytol. 1984;89:65–113.
Article
Google Scholar
Zhang Z, Li J, Jamshed Y M, Shi A, Liu J, Gong S, Wang J, Zhang F, Sun F, Jia Q, Ge L, Fan Z, Zhang J, Pan S, Fan Y, Wang Q, Lu R, Liu X, Deng X, Zou X, Jiang P, Liu P, Li MS, Iqbal C, Zhang J, Zou H, Chen Q, Tian X, Jia B, Wang N, Ai G, Feng Y, Wang M, Hong S, Li W, Lian B, Wu J, Hua C, Zhang J, Huang A, Xu H, Gong SW, Yuan Y. Genome-wide quantitative trait loci reveal the genetic basis of cotton fibre quality and yield-related traits in a Gossypium hirsutum recombinant inbred line population. Plant Biotechnol J. 2020;18(1):239–53.
Wang F, Zhang J, Chen Y, Zhang C, Gong J, Song Z, Zhou J, Wang J, Zhao C, Jiao M, Liu A, Du Z, Yuan Y, Fan S, Zhang J. Identification of candidate genes for key fibre-related QTLs and derivation of favourable alleles in Gossypium hirsutum recombinant inbred lines with G. barbadense introgressions. Plant Biotechnol J. 2020;18(3):707–20.
Deng X, Gong J, Liu A, Shi Y, Gong W, Ge Q, Li J, Shang H, Wu Y, Yuan Y. QTL mapping for fiber quality and yield-related traits across multiple generations in segregating population of CCRI 70. J Cotton Res. 2019;2:13.
Du X, Huang G, He S, Yang Z, Sun G, Ma X, Li N, Zhang X, Sun J, Liu M, Jia Y, Pan Z, Gong W, Liu Z, Zhu H, Ma L, Liu F, Yang D, Wang F, Fan W, Gong Q, Peng Z, Wang L, Wang X, Xu S, Shang H, Lu C, Zheng H, Huang S, Lin T, Zhu Y, Li F. Resequencing of 243 diploid cotton accessions based on an updated a genome identifies the genetic basis of key agronomic traits. Nat Genet. 2018;50(6):796–802.
Article
CAS
PubMed
Google Scholar
Ma Z, He S, Wang X, Sun J, Zhang Y, Zhang G, Wu L, Li Z, Liu Z, Sun G, Yan Y, Jia Y, Yang J, Pan Z, Gu Q, Li X, Sun Z, Dai P, Liu Z, Gong W, Wu J, Wang M, Liu H, Feng K, Ke H, Wang J, Lan H, Wang G, Peng J, Wang N, Wang L, Pang B, Peng Z, Li R, Tian S, Du X. Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield. Nat Genet. 2018;50(6):803–13.
Article
CAS
PubMed
Google Scholar
Su J, Li L, Zhang C, Wang C, Gu L, Wang H, Wei H, Liu Q, Huang L, Yu S. Genome-wide association study identified genetic variations and candidate genes for plant architecture component traits in Chinese upland cotton. Theor Appl Genet. 2018;131(6):1299–314.
Article
CAS
PubMed
Google Scholar
Sun Z, Wang X, Liu Z, Gu Q, Zhang Y, Li Z, Ke H, Yang J, Wu J, Wu L, Zhang G, Zhang C, Ma Z. A genome-wide association study uncovers novel genomic regions and candidate genes of yield-related traits in upland cotton. Theor Appl Genet. 2018;131(11):2413–25.
Article
CAS
PubMed
Google Scholar
Li Y, Wang NN, Wang Y, Liu D, Gao Y, Li L, Li XB. The cotton XLIM protein (GhXLIM6) is required for fiber development via maintaining dynamic F-actin cytoskeleton and modulating cellulose biosynthesis. Plant J. 2018;96(6):1269–82.
Article
CAS
PubMed
Google Scholar
Zhang J, Huang GQ, Zou D, Yan JQ, Li Y, Hu S, Li XB. The cotton (Gossypium hirsutum) NAC transcription factor (FSN1) as a positive regulator participates in controlling secondary cell wall biosynthesis and modification of fibers. New Phytol. 2018;217(2):625–40.
Article
CAS
PubMed
Google Scholar
Zhao B, Cao JF, Hu GJ, Chen ZW, Wang LY, Shangguan XX, Wang LJ, Mao YB, Zhang TZ, Wendel JF, Chen XY. Core cis-element variation confers subgenome-biased expression of a transcription factor that functions in cotton fiber elongation. New Phytol. 2018;218(3):1061–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang L, Ruan YL. Unraveling mechanisms of cell expansion linking solute transport, metabolism, plasmodesmtal gating and cell wall dynamics. Plant Signal Behav. 2010;5(12):1561–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cai Y, He X, Mo J, Sun Q, Yang J, Liu J, Molecular research and genetic engineering of resistance to Verticillium wilt in cotton: A review. African Journal of Biotechnology. 2009;8(25):7363–7372.
CAS
Google Scholar
Ashraf M, Ahmad S. Infuence of sodium chloride on ion accumulation, yield components and fiber characteristics in salt-tolerant and salt-sensitive lines of cotton (Gossypium hirsutum L.). Field Crop Res. 2000;66:115–27.
Article
Google Scholar
Abdelraheem A, Esmaeili N, O’Connell M, Zhang J. Progress and perspective on drought and salt stress tolerance in cotton. Ind Crop Prod. 2019;130:118–29.
Article
CAS
Google Scholar
Paterson AH, Wendel JF, Gundlach H, Guo H, Jenkins J, Jin D, Llewellyn D, Showmaker KC, Shu S, Udall J, Yoo MJ, Byers R, Chen W, Doron-Faigenboim A, Duke MV, Gong L, Grimwood J, Grover C, Grupp K, Hu G, Lee TH, Li J, Lin L, Liu T, Marler BS, Page JT, Roberts AW, Romanel E, Sanders WS, Szadkowski E, Tan X, Tang H, Xu C, Wang J, Wang Z, Zhang D, Zhang L, Ashrafi H, Bedon F, Bowers JE, Brubaker CL, Chee PW, Das S, Gingle AR, Haigler CH, Harker D, Hoffmann LV, Hovav R, Jones DC, Lemke C, Mansoor S, Rahman M, Rainville LN, Rambani A, Reddy UK, Rong JK, Saranga Y, Scheffler BE, Scheffler JA, Stelly DM, Triplett BA, Van Deynze A, Vaslin MF, Waghmare VN, Walford SA, Wright RJ, Zaki EA, Zhang T, Dennis ES, Mayer KF, Peterson DG, Rokhsar DS, Wang X, Schmutz J. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature. 2012;492(7429):423–7.
Article
CAS
PubMed
Google Scholar
Wang K, Wang Z, Li F, Ye W, Wang J, Song G, Yue Z, Cong L, Shang H, Zhu S, Zou C, Li Q, Yuan Y, Lu C, Wei H, Gou C, Zheng Z, Yin Y, Zhang X, Liu K, Wang B, Song C, Shi N, Kohel RJ, Percy RG, Yu JZ, Zhu YX, Wang J, Yu S. The draft genome of a diploid cotton Gossypium raimondii. Nat Genet. 2012;44(10):1098–103.
Article
CAS
PubMed
Google Scholar
Li F, Fan G, Wang K, Sun F, Yuan Y, Song G, Li Q, Ma Z, Lu C, Zou C, Chen W, Liang X, Shang H, Liu W, Shi C, Xiao G, Gou C, Ye W, Xu X, Zhang X, Wei H, Li Z, Zhang G, Wang J, Liu K, Kohel RJ, Percy RG, Yu JZ, Zhu YX, Wang J, Yu S. Genome sequence of the cultivated cotton Gossypium arboreum. Nat Genet. 2014;46(6):567–72.
Article
CAS
PubMed
Google Scholar
Li F, Fan G, Lu C, Xiao G, Zou C, Kohel RJ, Ma Z, Shang H, Ma X, Wu J, Liang X, Huang G, Percy RG, Liu K, Yang W, Chen W, Du X, Shi C, Yuan Y, Ye W, Liu X, Zhang X, Liu W, Wei H, Wei S, Huang G, Zhang X, Zhu S, Zhang H, Sun F, Wang X, Liang J, Wang J, He Q, Huang L, Wang J, Cui J, Song G, Wang K, Xu X, Yu JZ, Zhu Y, Yu S. Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat Biotechnol. 2015;33(5):524–30.
Article
PubMed
CAS
Google Scholar
Zhang T, Yhu W, Jiang L, Fang X, Guan J, Chen J, Zhang CA, Saski BE, Scheffler DM, Stelly AM, Hulse-Kemp Q, Wan B, Liu C, Liu S, Wang M, Pan Y, Wang D, Wang W, Ye L, Chang W, Zhang Q, Song RC, Kirkbride X, Chen E, Dennis DJ, Llewellyn DG, Peterson P, Thaxton DC, Jones Q, Wang X, Xu H, Zhang H, Wu L, Zhou G, Mei S, Chen Y, Tian D, Xiang X, Li J, Ding Q, Zuo L, Tao Y, Liu J, Li Y, Lin Y, Hui Z, Cao C, Cai X, Zhu Z, Jiang B, Zhou W, Li GR, Chen ZJ. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol. 2015;33(5):531–7.
Article
CAS
PubMed
Google Scholar
Wang M, Wang P, Lin M, Ye Z, Li G, Tu L, Shen C, Li J, Yang Q, Zhang X. Evolutionary dynamics of 3D genome architecture following polyploidization in cotton. Nat Plants. 2018;4(2):90–7.
Article
CAS
PubMed
Google Scholar
Hu Y, Chen J, Fang L, Zhang Z, Ma W, Niu Y, Ju L, Deng J, Zhao T, Lian J, Baruch K, Fang D, Liu X, Ruan YL, Rahman MU, Han J, Wang K, Wang Q, Wu H, Mei G, Zang Y, Han Z, Xu C, Shen W, Yang D, Si Z, Dai F, Zou L, Huang F, Bai Y, Zhang Y, Brodt A, Ben-Hamo H, Zhu X, Zhou B, Guan X, Zhu S, Chen X, Zhang T. Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nat Genet. 2019;51(4):739–48.
Article
CAS
PubMed
Google Scholar
Liu X, Zhao B, Zheng HJ, Hu Y, Lu G, Yang CQ, Chen JD, Chen JJ, Chen DY, Zhang L, Zhou Y, Wang LJ, Guo WZ, Bai YL, Ruan JX, Shangguan XX, Mao YB, Shan CM, Jiang JP, Zhu YQ, Jin L, Kang H, Chen ST, He XL, Wang R, Wang YZ, Chen J, Wang LJ, Yu ST, Wang BY, Wei J, Song SC, Lu XY, Gao ZC, Gu WY, Deng X, Ma D, Wang S, Liang WH, Fang L, Cai CP, Zhu XF, Zhou BL, Chen ZJ, Xu SH, Zhang YG, Wang SY, Zhang TZ, Zhao GP, Chen XY. Gossypium barbadense genome sequence provides insight into the evolution of extra-long staple fiber and specialized metabolites. Sci Rep. 2015;5:14139.
Article
CAS
PubMed
PubMed Central
Google Scholar
WENDEL JF. New World tetraploid cottons contain Old World cytoplasm. Proc Nati Acad Sci. 1989;86:4132–6.
Article
CAS
Google Scholar
Cannon SB, Mitra A, Baumgarten A, Young ND, May G. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol. 2004;4:10.
Article
PubMed
PubMed Central
Google Scholar
Schaper E, Anisimova M. The evolution and function of protein tandem repeats in plants. New Phytol. 2015;206(1):397–410.
Article
CAS
PubMed
Google Scholar
Hurst D. The Ka_Ks ratio_diagnosing the form of sequence evolution. Trends Genet. 2002;18(9):486–7.
Article
PubMed
Google Scholar
Xu Y, Magwanga RO, Cai X, Zhou Z, Wang X, Wang Y, Zhang Z, Jin D, Guo X, Wei Y, Li Z, Wang K, Liu F. Deep Transcriptome Analysis Reveals Reactive Oxygen Species (ROS) Network Evolution, Response to Abiotic Stress, and Regulation of Fiber Development in Cotton. Int J Mol Sci. 2019;20:1863.
Article
CAS
PubMed Central
Google Scholar
Chueca A, Sahrawy M, Pagano EA, Lopez Gorge J. Chloroplast fructose-1,6-bisphosphatase: structure and function. Photosynth Res. 2002;74(3):235–49.
Article
CAS
PubMed
Google Scholar
Rojas-Gonzalez JA, Soto-Suarez M, Garcia-Diaz A, Romero-Puertas MC, Sandalio LM, Merida A, Thormahlen I, Geigenberger P, Serrato AJ, Sahrawy M. Disruption of both chloroplastic and cytosolic FBPase genes results in a dwarf phenotype and important starch and metabolite changes in Arabidopsis thaliana. J Exp Bot. 2015;66(9):2673–89.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo H, Jiao Y, Tan X, Wang X, Huang X, Jin H, Paterson AH. Gene duplication and genetic innovation in cereal genomes. Genome Res. 2019;29(2):261–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lan X, Pritchard JK. Coregulation of tandem duplicate genes slows evolution of subfunctionalization in mammals. Science. 2016;352(6288):1009–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu S, Y Liu X, Yang C, Tong D, Edwards IA, Parkin M, Zhao J, Ma J, Yu S, Huang X, Wang J, Wang K, Lu Z, Fang I, Bancroft TJ, Yang Q, Hu X, Wang Z, Yue H, Li L, Yang J, Wu Q, Zhou W, Wang GJ, King JC, Pires C, Lu Z, Wu P, Sampath Z, Wang H, Guo S, Pan L, Yang J, Min D, Zhang D, Jin W, Li H, Belcram J, Tu M, Guan C, Qi D, Du J, Li L, Jiang J, Batley AG, Sharpe BS, Park P, Ruperao F, Cheng NE, Waminal Y, Huang C, Dong L, Wang J, Li Z, Hu M, Huang ZY, Huang J, Shi J, Mei D, Jliu TH, Lee J, Wang H, Jin Z, Li X, Li J, Zhang L, Xiao Y, Zhou Z, Liu X, Liu R, Qin X, Tang W, Liu Y, Wang Y, Zhang J, Lee HH, Kim F, Denoeud X, Xu X, Liang W, Hua X, Wang J, Wang B, Chalhoub B, Paterson AH. The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat Commun. 2014;5:3930.
Article
CAS
PubMed
Google Scholar
Wendel JF, Schnabel A, Seelanan T. An Unusual Ribosomal DNA Sequence from Gossypium gossypioides Reveals Ancient, Cryptic, Intergenomic Introgression. Mol Phylogenet Evol. 1995;4(3):298–313..
Article
CAS
PubMed
Google Scholar
Wendel JF. New World tetraploid cottons contain Old World cytoplasm. Proc Natl Acad Sci. 1989;86:4132–6..
Article
CAS
PubMed
PubMed Central
Google Scholar
Fan K, Li F, Chen J, Li Z, Lin W, Cai S, Liu J, Lin W. Asymmetric evolution and expansion of the NAC transcription factor in Polyploidized cotton. Front Plant Sci. 2018;9:47.
Article
PubMed
PubMed Central
Google Scholar
Fang L, Guan X, Zhang T. Asymmetric evolution and domestication in allotetraploid cotton ( Gossypium hirsutum L.). The Crop Journal. 2017;5(2):159–65.
Article
Google Scholar
Wang X, Guo H, Wang J, Lei T, Liu T, Wang Z, Li Y, Lee TH, Li J, Tang H, Jin D, Paterson AH. Comparative genomic de-convolution of the cotton genome revealed a decaploid ancestor and widespread chromosomal fractionation. New Phytol. 2016;209(3):1252–63.
Article
CAS
PubMed
Google Scholar
Kim HJ, Triplett BA. Cotton Fiber growth in Planta and in vitro. Models for plant cell elongation and Cell Wall biogenesis. Plant Physiol. 2001;127(4):1361–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee JJ, Woodward AW, Chen ZJ. Gene expression changes and early events in cotton fibre development. Ann Bot. 2007;100(7):1391–401.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guan X, Song Q, Chen ZJ. Polyploidy and small RNA regulation of cotton fiber development. Trends Plant Sci. 2014;19(8):516–28.
Article
CAS
PubMed
Google Scholar
Beasley CA. Hormonal regulation of growth in unfertilized cotton ovules. Science. 1973;179(4077):1003–5.
Article
CAS
PubMed
Google Scholar
Suo JF, Liang XO, Pu L, Zhang YS, Xue YB. Identification of GhMYB109 encoding a R2R3 MYB transcription factor that expressed specifically in fiber initials and elongating fibers of cotton (Gossypium Hirsutum L.). Biochimica Et Biophysica Acta-Gene Structure Expression. 2003;1630(1):25–34.
Article
CAS
Google Scholar
Luo M, Xiao YH, Li XB, Lu XF, Deng W, Li D, Hou L, Hu MY, Li Y, Pei Y. GhDET2, a steroid 5 alpha-reductase, plays an important role in cotton fiber cell initiation and elongation. Plant J. 2007;51(3):419–30.
Article
CAS
PubMed
Google Scholar
Sun W, Gao Z, Wang J, Huang Y, Chen Y, Li J, Lv M, Wang J, Luo M, Zuo K. Cotton fiber elongation requires the transcription factor GhMYB212 to regulate sucrose transportation into expanding fibers. New Phytol. 2019;222(2):864–81.
Article
CAS
PubMed
Google Scholar
Xu WL, Zhang DJ, Wu YF, Qin LX, Huang GQ, Li J, Li L, Li XB. Cotton PRP5 gene encoding a proline-rich protein is involved in fiber development. Plant Mol Biol. 2013;82(4–5):353–65.
Article
CAS
PubMed
Google Scholar
Wang JA, Wang HY, Zhao PM, Han LB, Jiao GL, Zheng YY, Huang SJ, Xia GX. Overexpression of a profilin (GhPFN2) promotes the progression of developmental phases in cotton fibers. Plant Cell Physiol. 2010;51(8):1276–90.
Article
CAS
PubMed
Google Scholar
Cheng Wang YL. Wentin Xu, Tianzhen Zhang and Wangzhen Guo, Aberrant phenotype and transcriptome expression during fiber cell wall thickening caused by the mutation of the Im gene in immature fiber (im) mutant in Gossypium hirsutum L. BMC Genomics. 2014;15.
Zhang Z, Ruan YL, Zhou N, Wang F, Guan X, Fang L, Shang X, Guo W, Zhu S, Zhang T. Suppressing a putative sterol carrier gene reduces Plasmodesmal permeability and activates sucrose transporter genes during cotton Fiber elongation. Plant Cell. 2017;29(8):2027–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang J, Sanogo S, Flynn R, Baral JB, Bajaj S, Hughs SE, Percy RG. Germplasm evaluation and transfer of Verticillium wilt resistance from Pima (Gossypium barbadense) to upland cotton (G. hirsutum). Euphytica. 2011;187(2):147–60.
Article
Google Scholar
Ouriel Faktor GL, Richard A. Dixon, Chris J. lamb, The G-box and H-box in a 39 bp region of a French bean. Plant J. 1997;11:1105–13.
Article
Google Scholar
Rushton PJ, Reinstadler A, Lipka V, Lippok B, Somssich IE. Synthetic plant promoters containing defined regulatory elements provide novel insights into pathogen- and wound-induced signaling. Plant Cell. 2002;14(4):749–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brown RL, Kazan K, McGrath KC, Maclean DJ, Manners JM. A role for the GCC-box in jasmonate-mediated activation of the PDF1.2 gene of Arabidopsis. Plant Physiol. 2003;132(2):1020–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Park HC, Kim ML, Kang YH, Jeon JM, Yoo JH, Kim MC, Park CY, Jeong JC, Moon BC, Lee JH, Yoon HW, Lee SH, Chung WS, Lim CO, Lee SY, Hong JC, Cho MJ. Pathogen- and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor. Plant Physiol. 2004;135(4):2150–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
DeVay JE, Weir BL, Wakeman RJ, Stapleton JJ. Effects of Verticillium dahliae infection of cotton plants (Gossypium hirsutum) on potassium levels in leaf petioles. Plant Dis. 1997;81:1089–92.
Article
CAS
PubMed
Google Scholar
Fang W, Jin ZS, Ji D. Studies on the Inheritance of Verticillium dahliae Resistance in G. hisutum and G.barbadense. Cotton Sci. 2003;15:3–7..
Google Scholar
Huckelhoven R. Cell wall-associated mechanisms of disease resistance and susceptibility. Annu Rev Phytopathol. 2007;45:101–27.
Article
PubMed
CAS
Google Scholar
Zhang Y, Wu L, Wang X, Chen B, Zhao J, Cui J, Li Z, Yang J, Wu L, Wu J, Zhang G, Ma Z. The cotton laccase gene GhLAC15 enhances Verticillium wilt resistance via an increase in defence-induced lignification and lignin components in the cell walls of plants. Mol Plant Pathol. 2019;20(3):309–22.
Article
CAS
PubMed
Google Scholar
Xu L, Zhu L, Tu L, Liu L, Yuan D, Jin L, Long L, Zhang X. Lignin metabolism has a central role in the resistance of cotton to the wilt fungus Verticillium dahliae as revealed by RNA-Seq-dependent transcriptional analysis and histochemistry. J Exp Bot. 2011;62(15):5607–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo J, Wang MH. Characterization of the phenylalanine ammonia-lyase gene (SlPAL5) from tomato (Solanum lycopersicum L.). Mol Biol Rep. 2009;36(6):1579–85.
Article
CAS
PubMed
Google Scholar
Hu Q, Min L, Yang X, Jin S, Zhang L, Li Y, Ma Y, Qi X, Li D, Liu H, Lindsey K, Zhu L, Zhang X. Laccase GhLac1 modulates broad-Spectrum biotic stress tolerance via manipulating Phenylpropanoid pathway and Jasmonic acid synthesis. Plant Physiol. 2018;176(2):1808–23.
Article
CAS
PubMed
Google Scholar
Rogers LA, Dubos C, Cullis IF, Surman C, Poole M, Willment J, Mansfield SD, Campbell MM. Light, the circadian clock, and sugar perception in the control of lignin biosynthesis. J Exp Bot. 2005;56(416):1651–563.
Article
CAS
PubMed
Google Scholar
Bose J, Munns R, Shabala S, Gilliham M, Pogson B, Tyerman SD. Chloroplast function and ion regulation in plants growing on saline soils: lessons from halophytes. J Exp Bot. 2017;68(12):3129–43.
Article
CAS
PubMed
Google Scholar
Ghosh S, Bagchi S, Lahiri Majumder A. Chloroplast fructose-1,6-bisphosphatase from Oryza differs in salt tolerance property from the Porteresia enzyme and is protected by osmolytes. Plant Sci. 2001;160(6):1171–81.
Article
CAS
PubMed
Google Scholar
Chatterjee J, Patra B, Mukherjee R, Basak P, Mukherjee S, Ray S, Bhattacharyya S, Maitra S, GhoshDastidar K, Ghosh S, Sengupta S, Majumder AL. Cloning, characterization and expression of a chloroplastic fructose-1,6-bisphosphatase from Porteresia coarctata conferring salt-tolerance in transgenic tobacco. Plant Cell Tissue Organ Culture (PCTOC). 2013;114(3):395–409.
Article
CAS
Google Scholar
Harn CH. Jaleh Daie I and Jang Ryol Liu, Regulation of Cytosolic Fructose-l,6-Bisphosphatase Under Water-Stressed Leaves of Sugar Beet: Protein Modification is not a Mechanism for Coarse Control. J Plant Biol. 1997;40(4):261–6.
Article
CAS
Google Scholar
Saeed AI, Sharov V, White J. TM4_ A Free, Open-Source System for Microarray Data Management and Analysis. BioTechniques. 2003;34:374–8..
Article
CAS
PubMed
Google Scholar
Li PT, Rashid MHO, Chen TT, Lu QW, Ge Q, Gong WK, Liu AY, Gong JW, Shang HH, Deng XY, Li JW, Li SQ, Xiao XH, Liu RX, Zhang Q, Duan L, Zou XY, Zhang Z, Jiang X, Zhang Y, Peng RH, Shi YZ, Yuan YL. Transcriptomic and biochemical analysis of upland cotton (Gossypium hirsutum) and a chromosome segment substitution line from G. hirsutum x G. barbadense in response to Verticillium dahliae infection. BMC Plant Biol. 2019;19(1):19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 2001;25(4):402–8.
Article
CAS
PubMed
Google Scholar
Zhu T, Liang C, Meng Z, Sun G, Meng Z, Guo S, Zhang R. CottonFGD: an integrated functional genomics database for cotton. BMC Plant Biol. 2017;17(1):101.
Article
PubMed
PubMed Central
CAS
Google Scholar
Argout X, Salse J, Aury JM, Guiltinan MJ, Droc G, Gouzy J, Allegre M, Chaparro C, Legavre T, Maximova SN, Abrouk M, Murat F, Fouet O, Poulain J, Ruiz M, Roguet Y, Rodier-Goud M, Barbosa-Neto JF, Sabot F, Kudrna D, Ammiraju JS, Schuster SC, Carlson JE, Sallet E, Schiex T, Dievart A, Kramer M, Gelley L, Shi Z, Berard A, Viot C, Boccara M, Risterucci AM, Guignon V, Sabau X, Axtell MJ, Ma Z, Zhang Y, Brown S, Bourge M, Golser W, Song X, Clement D, Rivallan R, Tahi M, Akaza JM, Pitollat B, Gramacho K, D'Hont A, Brunel D, Infante D, Kebe I, Costet P, Wing R, McCombie WR, Guiderdoni E, Quetier F, Panaud O, Wincker P, Bocs S, Lanaud C. The genome of Theobroma cacao. Nat Genet. 2011;43(2):101–8.
Article
CAS
PubMed
Google Scholar
Ouyang S, Zhu W, Hamilton J, Lin H, Campbell M, Childs K, Thibaud-Nissen F, Malek RL, Lee Y, Zheng L, Orvis J, Haas B, Wortman J, Buell CR. The TIGR Rice Genome annotation resource: improvements and new features. Nucleic Acids Res. 2007;35(Database issue):D883–7.
Article
CAS
PubMed
Google Scholar
Cao J, Schneeberger K, Ossowski S, Gunther T, Bender S, Fitz J, Koenig D, Lanz C, Stegle O, Lippert C, Wang X, Ott F, Muller J, Alonso-Blanco C, Borgwardt K, Schmid KJ, Weigel D. Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nat Genet. 2011;43(10):956–63.
Article
CAS
PubMed
Google Scholar
Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen GL, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Dejardin A, Depamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjarvi J, Karlsson J, Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leple JC, Locascio P, Lou Y, Lucas S, Martin F, Montanini B, Napoli C, Nelson DR, Nelson C, Nieminen K, Nilsson O, Pereda V, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi C, Ritland K, Rouze P, Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai CJ, Uberbacher E, Unneberg P, Vahala J, Wall K, Wessler S, Yang G, Yin T, Douglas C, Marra M, Sandberg G, Van de Peer Y, Rokhsar D. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science. 2006;313(5793):1596–604.
Article
CAS
PubMed
Google Scholar
Jaillon, O., J.M. Aury, B. Noel, A. Policriti, C. Clepet, A. Casagrande, N. Choisne, S. Aubourg, N. Vitulo, C. Jubin, A. Vezzi, F. Legeai, P. Hugueney, C. Dasilva, D. Horner, E. Mica, D. Jublot, J. Poulain, C. Bruyere, A. Billault, B. Segurens, M. Gouyvenoux, E. Ugarte, F. Cattonaro, V. Anthouard, V. Vico, C. Del Fabbro, M. Alaux, G. Di Gaspero, V. Dumas, N. Felice, S. Paillard, I. Juman, M. Moroldo, S. Scalabrin, A. Canaguier, I. Le Clainche, G. Malacrida, E. Durand, G. Pesole, V. Laucou, P. Chatelet, D. Merdinoglu, M. Delledonne, M. Pezzotti, A. Lecharny, C. Scarpelli, F. Artiguenave, M.E. Pe, G. Valle, M. Morgante, M. Caboche, A.F. Adam-Blondon, J. Weissenbach, F. Quetier, P. Wincker, and . French-Italian Public Consortium for Grapevine Genome, The gra0070evine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature, 2007. 449(7161): p. 463-467..
Article
CAS
PubMed
Google Scholar
Banks JA, Nishiyama T, Hasebe M, Bowman JL, Gribskov M, dePamphilis C, Albert VA, Aono N, Aoyama T, Ambrose BA, Ashton NW, Axtell MJ, Barker E, Barker MS, Bennetzen JL, Bonawitz ND, Chapple C, Cheng C, Correa LG, Dacre M, DeBarry J, Dreyer I, Elias M, Engstrom EM, Estelle M, Feng L, Finet C, Floyd SK, Frommer WB, Fujita T, Gramzow L, Gutensohn M, Harholt J, Hattori M, Heyl A, Hirai T, Hiwatashi Y, Ishikawa M, Iwata M, Karol KG, Koehler B, Kolukisaoglu U, Kubo M, Kurata T, Lalonde S, Li K, Li Y, Litt A, Lyons E, Manning G, Maruyama T, Michael TP, Mikami K, Miyazaki S, Morinaga S, Murata T, Mueller-Roeber B, Nelson DR, Obara M, Oguri Y, Olmstead RG, Onodera N, Petersen BL, Pils B, Prigge M, Rensing SA, Riano-Pachon DM, Roberts AW, Sato Y, Scheller HV, Schulz B, Schulz C, Shakirov EV, Shibagaki N, Shinohara N, Shippen DE, Sorensen I, Sotooka R, Sugimoto N, Sugita M, Sumikawa N, Tanurdzic M, Theissen G, Ulvskov P, Wakazuki S, Weng JK, Willats WW, Wipf D, Wolf PG, Yang L, Zimmer AD, Zhu Q, Mitros T, Hellsten U, Loque D, Otillar R, Salamov A, Schmutz J, Shapiro H, Lindquist E, Lucas S, Rokhsar D, Grigoriev IV. The Selaginella genome identifies genetic changes associated with the evolution of vascular plants. Science. 2011;332(6032):960–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hirsch CN, Hirsch CD, Brohammer AB, Bowman MJ, Soifer I, Barad O, Shem-Tov D, Baruch K, Lu F, Hernandez AG, Fields CJ, Wright CL, Koehler K, Springer NM, Buckler E, Buell CR, de Leon N, Kaeppler SM, Childs KL, Mikel MA. Draft assembly of elite inbred line PH207 provides insights into genomic and Transcriptome diversity in maize. Plant Cell. 2016;28(11):2700–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang XC, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA. Genome sequence of the palaeopolyploid soybean. Nature. 2010;463(7278):178–83.
Article
CAS
PubMed
Google Scholar
Lang D, Ullrich KK, Murat F, Fuchs J, Jenkins J, Haas FB, Piednoel M, Gundlach H, Van Bel M, Meyberg R, Vives C, Morata J, Symeonidi A, Hiss M, Muchero W, Kamisugi Y, Saleh O, Blanc G, Decker EL, van Gessel N, Grimwood J, Hayes RD, Graham SW, Gunter LE, McDaniel SF, Hoernstein SNW, Larsson A, Li FW, Perroud PF, Phillips J, Ranjan P, Rokshar DS, Rothfels CJ, Schneider L, Shu S, Stevenson DW, Thummler F, Tillich M, Villarreal Aguilar JC, Widiez T, Wong GK, Wymore A, Zhang Y, Zimmer AD, Quatrano RS, Mayer KFX, Goodstein D, Casacuberta JM, Vandepoele K, Reski R, Cuming AC, Tuskan GA, Maumus F, Salse J, Schmutz J, Rensing SA. The Physcomitrella patens chromosome-scale assembly reveals moss genome structure and evolution. Plant J. 2018;93(3):515–33..
Article
CAS
PubMed
Google Scholar
Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 2011;39(Web Server issue):29–37.
Article
CAS
Google Scholar
Thompson JD, Gibson TJ, Des G. Higgins, Multiple Sequence Alignment Using ClustalW and ClustalX. Curr Protoc Bioinformatics. 2003;2:1–22.
Google Scholar
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30(12):2725–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu B, Jin J, Guo AY, Zhang H, Luo J, Gao G. GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics. 2015;31(8):1296–7.
Article
PubMed
Google Scholar
Wang Y, Tang H, Debarry JD, Tan X, Li J, Wang X, Lee TH, Jin H, Marler B, Guo H, Kissinger JC, Paterson AH. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012;40(7):e49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang D, Zhang Y, Zhang Z, Zhu J, Yu J. KaKs_Calculator 2.0: a toolkit incorporating gamma-series methods and sliding window strategies. Genomics, Proteomics Bioinformatics. 2010;8(1):77–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouze P, Rombauts S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002;30(1):325–7.
Article
CAS
PubMed
PubMed Central
Google Scholar