Gale MD, Youssefian S, Russell GE. Dwarfing genes in wheat. Progress in. Plant Breed. 1985;1:1–35.
Google Scholar
Flintham JE, Börner A, Worland AJ, Gale MD. Optimizing wheat grain yield: effects of Rht (gibberellin-insensitive) dwarfing genes. J Agri Sci. 1997;128(1):11–25.
Article
Google Scholar
Youssefian S, Kirby EJM, Gale MD. Pleiotropic effects of the GA- insensitive Rht dwarfing genes in wheat. 2. Effects on leaf, stem, ear and floret growth. Field Crop Res. 1992;28(3):191–210.
Article
Google Scholar
Hedden P. The genes of the green revolution. Trends Genet. 2003;19(1):5–9.
Article
CAS
PubMed
Google Scholar
Hong Z, Ueguchi-Tanaka M, Shimizu-Sato S, Inukai Y, Fujioka S. Loss- of-function of a rice brassinosteroid biosynthetic enzyme, C-6 oxidase, prevents the organized arrangement and polar elongation of cells in the leaves and stem. Plant J. 2002;32(4):495–508.
Article
CAS
PubMed
Google Scholar
Peng JR, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP. ‘Green Revolution’ genes encode mutant gibberellin response modulators. Nature. 1999;400(6741):256.
Article
CAS
PubMed
Google Scholar
Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush GS, Kitano H, Matsuoka M. Green revolution: a mutant gibberellin- synthesis gene in rice. Nature. 2002;416(6882):701–2.
Article
CAS
PubMed
Google Scholar
Chen SL, Gao RH, Wang HY, Wen MX, Xiao J, Bian NF, Zhang RQ, Hu WJ, Cheng SH, Bie TD, Wang XU. Characterization of a novel reduced height gene (Rht23) regulating panicle morphology and plant architecture in bread wheat. Euphytica. 2015;203(3):583–94.
Article
Google Scholar
Ellis MH, Rebetzke GJ, Azanza F, Richards RA, Spielmeyer W. Molecular mapping of gibberellin-responsive dwarfing genes in bread wheat. Theor Appl Genet. 2005;111(3):423–30.
Article
CAS
PubMed
Google Scholar
Kang HY, Lin LJ, Song ZJ, Yuan JY, Zhong MY, Zhang HQ, Fan X, Sha LN, Wang Y, Xu LL, Zeng J, Zhou YH. Identification, fine mapping and characterization of Rht-dp, a recessive wheat dwarfing (reduced height) gene derived from Triticum polonicum. Genes Genom. 2012;34(5):509–15.
Article
CAS
Google Scholar
Mo Y, Vanzetti LS, Hale I, Spagnolo EJ, Guidobaldi F, Al-Oboudi J, Dubcovsky J. Identification and characterization of Rht25, a locus on chromosome arm 6AS affecting wheat plant height, heading time, and spike development. Theor Appl Genet. 2018;131(10):2021–35.
Article
CAS
PubMed
Google Scholar
Pearce S, Saville R, Vaughan SP, Chandler PM, Wilhelm EP, Sparks CA, Hedden P. Molecular characterization of Rht-1 dwarfing genes in hexaploid wheat. Plant Physiol. 2011;157(4):1820–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vikhe P, Patil RM, Chavan A, Oak MD, Tamhankar SA. Mapping gibberellin- sensitive dwarfing locus Rht18 in durum wheat and development of SSR and SNP markers for selection in breeding. Mol Breeding. 2017;37(3):28.
Article
CAS
Google Scholar
Watanabe N. Triticum polonicum IC12196: a possible alternative source of GA3-insensitive semi-dwarfism. Cereal Res Commun. 2004;32(4):429–34.
Article
Google Scholar
Watanabe N. Genetic mapping of the genes and development of near-isogenic lines in durum wheat. EWAC Newsletters; 2008. p. 27–8.
Google Scholar
Würschum T, Langer SM, Longin CFH, Tucker MR, Leiser WL. A modern green revolution gene for reduced height in wheat. Plant J. 2017;92(5):892–903.
Article
PubMed
CAS
Google Scholar
Gasperini D, Greenland A, Hedden P, Dreos R, Harwood W, Griffiths S. Genetic and physiological analysis of Rht8 in bread wheat: an alternative source of semi-dwarfism with a reduced sensitivity to brassinosteroids. J Exp Bot. 2012;63(12):6760.
Google Scholar
Rebetzke GJ, Ellis MH, Bonnett DG, Mickelson B, Condon AG, Richards RA. Height reduction and agronomic performance for selected gibberellin-responsive dwarfing genes in bread wheat (Triticum aestivum L). Field Crop Res. 2012;126:87–96.
Article
Google Scholar
Haque MA, Martinek P, Kobayashi S, Kita I, Ohwaku K, Watanabe N, Kuboyama T. Microsatellite mapping of genes for semi-dwarfism and branched spike in Triticum durum Desf var ramosoobscurum Jakubz “Vetvistokoloskaya”. Genet Resour Crop Ev. 2012;59(5):831–7.
Article
CAS
Google Scholar
Konzak CF. Mutations and mutation breeding. Wisconsin, American. In: Heyne EG, editor. wheat and wheat improvement 2nd Edition American Society of Agronomy; 1987. p. 428–43.
Google Scholar
Peng ZS, Li X, Yang ZJ, Liao ML. A new reduced height gene found in the tetraploid semi-dwarf wheat landrace Aiganfanmai. Genet Mol Res. 2011;10(4):2349–57.
Article
CAS
PubMed
Google Scholar
Wiwart M, Suchowilska E, Kandler W, Sulyok M, Groenwald P, Krska R. Can polish wheat (Triticum polonicum L) be an interesting gene source for breeding wheat cultivars with increased resistance to Fusarium head blight. Genet Resour Crop Ev. 2013;60(8):2359–73.
Article
CAS
Google Scholar
Liu GX, Zhou YH, Zheng YL, Yang RW, Ding CB. The reaction of hormone gibberellic acid in dwarfing polish wheat (Triticum polonicum) from Tulufan, Xinjiang. J Sichuan Agric Univ. 2002;20:81–3.
Google Scholar
Wang Y, Xiao X, Wang XL, Zeng J, Kang HY, Fan X, Sha LN, Zhang HQ, Zhou YH. RNA-Seq and iTRAQ reveal the dwarfing mechanism of dwarf polish wheat (Triticum polonicum L). Int J Bio Sci. 2016;12(6):653.
Article
CAS
Google Scholar
Bazhenov MS, Divashuk MG, Amagai Y, Watanabe N, Karlov GI. Isolation of the dwarfing Rht-B1p (Rht17) gene from wheat and the development of an allele-specific PCR marker. Mol Breeding. 2015;35(11):1–8.
Article
CAS
Google Scholar
Wen W, Deng QY, Jia HY, Wei LZ, Wei JB, Wan HS, Yang LM, Cao WJ, Ma ZQ. Sequence variations of the partially dominant DELLA gene Rht-B1c in wheat and their functional impacts. J Exp Bot. 2013;64(11):3299–312.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reitz LP, Salmon SC. Origin, history, and use of Norin 10 wheat 1. Crop Sci. 1968;8:686–9.
Article
Google Scholar
Quick JS, Miller JD, Donnelly BJ. Cando North Dakota's first Semidwarf durum. North Dakota Farm Res. 1976;33:15–8.
Google Scholar
Börner A, Plaschke J, Korzun V, Worland AJ. The relationships between the dwarfing genes of wheat and rye. Euphytica. 1996;89(1):69–75.
Article
Google Scholar
Haque MA, Martinek P, Watanabe N, Kuboyama T. Genetic mapping of gibberellic acid-sensitive genes for semi-dwarfism in durum wheat. Cereal Res Commun. 2011;39(2):171–8.
Article
CAS
Google Scholar
Beier S, Thiel T, Münch T, Scholz U, Mascher M. MISA-web: a web server for microsatellite prediction. Bioinformatics. 2017;33(16):2583–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thiel T, Michalek W, Varshney RK, Graner A. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L). Theor Appl Genet. 2003;106(3):411–22.
Article
CAS
PubMed
Google Scholar
Kosambi DD. The estimation of map distances from recombination values. Ann Hum Genet. 1943;12(1):172–5.
Google Scholar
Wang Y, Wang XL, Gu MX, Kang HY, Zeng J, Fan X, Sha LN, Yu KF, Zhou YH. Cloning and characterization of four novel SnRK2 genes from Triticum polonicum. Biol Plantarum. 2015;59(2):211–9.
Article
CAS
Google Scholar
Trapnell C, Roberts A, Goff L, Pertea KGD, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc. 2012;7(3):562.
Article
CAS
PubMed
PubMed Central
Google Scholar
Knopf C, Becker HC, Ebmeyer E, Korzun V. Occurrence of three dwarfing Rht genes in German winter wheat varieties. Cereal Res Commun. 2008;36(4):553–60.
Article
Google Scholar
Zhang XK, Yang SJ, Zhou Y, He ZH, Xia XC. Distribution of the Rht-B1b, Rht-D1b and Rht8 reduced height genes in autumn-sown Chinese wheats detected by molecular markers. Euphytica. 2006;152(1):109–16.
Article
CAS
Google Scholar
Guedira M, Brown-Guedira G, Van Sanford DA, Sneller C, Souza E, Marshall D. Distribution of Rht genes in modern and historic winter wheat cultivars from the eastern and Central USA. Crop Sci. 2010;50(5):1811–22.
Article
CAS
Google Scholar
Liu Y, Zhang J, Hu YG, Chen J. Dwarfing genes Rht4 and Rht-B1b affect plant height and key agronomic traits in common wheat under two water regimes. Field Crop Res. 2017;204(204):242–8.
Article
Google Scholar
Van De Velde K, Ruelens P, Geuten K, Rohde A, Van Der Straeten D. Exploiting DELLA signaling in cereals. Trends Plant Sci. 2017;22(10):880–93.
Article
CAS
Google Scholar
Achard P, Renou JP. BerthoméR, Harberd NP, Genschik P. plant DELLAs restrain growth and promote survival of adversity by reducing the levels of reactive oxygen species. Curr Biol. 2008;18(9):656–60.
Article
CAS
PubMed
Google Scholar
Carrera E, Ruiz-Rivero O, Peres LE, Atares A, Garcia-Martinez JL. Characterization of the procera tomato mutant shows novel functions of the SlDELLA protein in the control flower morphology, cell division and expansion, and the auxin-signaling pathway during fruit-set and development. Plant Physiol. 2012;160(3):1581–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li S, Tian YH, Wu K, Ye YF, Yu JP, Zhang JQ, Liu Q, Hu MY, Li H, Tong YP, Harberd NP, Fu XD. Modulating plant growth–metabolism coordination for sustainable agriculture. Nature. 2018;560(7720):595–600.
Article
CAS
PubMed
PubMed Central
Google Scholar
Locascio A, Blázquez MA, Alabadí D. Genomic analysis of DELLA protein activity. Plant Cell Physiol. 2013;54(8):1229–37.
Article
CAS
PubMed
Google Scholar
Cao DN, Cheng H, Wu W, Soo HM, Peng JR. Gibberellin mobilizes distinct DELLA-dependent transcriptomes to regulate seed germination and floral development in Arabidopsis. Plant Physiol. 2006;142(2):509–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Claeys H, De Bodt S. InzéD. Gibberellins and DELLAs: central nodes in growth regulatory networks. Trends Plant Sci. 2014;19(4):231–9.
Article
CAS
PubMed
Google Scholar
Bai MY, Shang JXOE, Fan M, Bai Y, Zentella R, Suin TP, Wang ZY. Brassinosteroid gibberellin and phytochrome impinge on a common transcription module in Arabidopsis. Nat Cell Biol. 2012;14(8):810–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Willige BC, Losno E, Richter R, Zourelidou M, Schwechheimer C. Gibberellin regulates PIN-FORMED abundance and is required for auxin transport-dependent growth and development in Arabidopsis thaliana. Plant Cell. 2011;23(6):2184–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou AF, Li J. Arabidopsis BRS1 is a secreted and active serine carboxypeptidase. J Biol Chem. 2005;280(42):35554–61.
Article
CAS
PubMed
Google Scholar
Lee J, Han CT, Hur Y. Molecular characterization of the Brassica rapa auxin-repressed, superfamily genes, BrARP1 and BrDRM1. Mol Biol Rep. 2013;40(1):197–209.
Article
CAS
PubMed
Google Scholar
Park S, Han KH. An auxin-repressed gene (RpARP) from black locust (Robinia pseudoacacia) is posttranscriptionally regulated and negatively associated with shoot elongation. Tree Physiol. 2003;23(12):815–23.
Article
CAS
PubMed
Google Scholar
Li R, Xin S, Tao CC, Jin X, Li HB. Cotton ascorbate oxidase promotes cell growth in cultured tobacco bright Yellow-2 cell through generation of apoplast oxidation. Int J Mol Sci. 2017;18(7):1346.
Article
PubMed Central
CAS
Google Scholar
Yamamoto A, Bhuiyan MN, Waditee R, Tanaka Y, Esaka M, Oba K, Jagendorf AT, Takabe T. Supressed expression of the appoplastic ascorbate oxidase gene increases salt tolerance in tobacco and Arabidopsis plants. J Exp Bot. 2005;56(417):1785–96.
Article
CAS
PubMed
Google Scholar
Liszkay A, Der Zalm EV, Schopfer P. Production of reactive oxygen intermediates (O2−, H2O2 and OH) by maize roots and their role in wall loosening and elongation growth. Plant Physiol. 2004;136(2):3114–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bi YM, Kant S, Clark J, Gidda S, Ming F, Xu JY, Rochon A, Shelp BJ, Hao LX, Zhao R, Mullen RT, Zhu T, Rothstein SJ. Increased nitrogen-use efficiency in transgenic rice plants over-expressing a nitrogen-responsive early nodulin gene identified from rice expression profiling. Plant Cell Environ. 2009;32(12):1749–60.
Article
CAS
PubMed
Google Scholar
Fukayama H, Tamai T, Taniguchi Y, Sullivan S, Miyao M, Nimmo HG. Characterization and functional analysis of phosphoenolpyruvate carboxylase kinase genes in rice. Plant J. 2006;47(2):258–68.
Article
CAS
PubMed
Google Scholar
Van Quy L, Foyper C, Champigny ML. Effect of light and NO3− on wheat leaf phosphoenolpyruvate carboxylase activity: evidence for covalent modification of the C3 enzyme. Plant Physiol. 1991;97(4):1476–82.
Article
Google Scholar
Chollet R, Vidal J, O’Leary MH. Phosphoenolpyruvate carboxylase: a ubiquitous, highly regulated enzyme in plants, annual review of plant physiology and plant. Mol Biol. 1996;47(1):273–98.
CAS
Google Scholar
Nimmo HG. Control of the phosphorylation of phosphoenolpyruvate carboxylase in higher plants. Arch Bioche Biophysisc. 2003;414(2):189–96.
Article
CAS
Google Scholar
Chen L, Hao L, Condon AG, Hu YG. Exogenous GA3 application can compensate the morphogenetic effects of the GA-responsive dwarfing gene Rht12 in bread wheat. PLoS One. 2014;9(1):e86431.
Article
PubMed
PubMed Central
CAS
Google Scholar
Schultink A, Naylor D, Dama M, Pauly M. The role of the plant-specific ALTERED XYLOGLUCAN19 protein in Arabidopsis cell wall polysaccharide O-acetylation. Plant Physiol. 2015;167(4):1271–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sénéchal F, Graff L, Surcout O, Marcelo P, Rayon C, Bouton S, Mareck A, Mouille G, Stintzi A, Höfte H, Lerouge P, Schaller A, Pelloux J. Arabidopsis PECTIN METHYLESTERASE17 is co-expressed with and processed by SBT35, a subtilisin-like serine protease. Ann Bot. 2014;114(6):1161–75.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang HH, Guo Y, Lv F, Zhu HY, Wu SJ, Jiang YJ, Li FF, Zhou BL, Guo WZ, Zhang TZ. The essential role of GhPEL gene, encoding a pectate lyase, in cell wall loosening by depolymerization of the de-esterified pectin during fiber elongation in cotton. Plant Mol Biol. 2010;72(s4–5):397–406.
Article
CAS
PubMed
Google Scholar
Zhang BC, Zhang LJ, Li F, Zhang DM, Liu XL, Wang H, Xu ZP, Chu CC, Zhou YH. Control of secondary cell wall patterning involves xylan deaceylation by a GDSL esterase. Nat Plants. 2017;3:17017.
Article
CAS
PubMed
Google Scholar
Schaller A, Stintzi A, Graff L. Subtilases-versatile tools for protein turnover, plant development, and interactions with the environment. Plant Plantarum. 2012;145(1):52–66.
Article
CAS
Google Scholar
Voiniciuc C, Heinrich-Wilhelm Schmidt M, Berger A, Yang B, Ebert B, Scheller HV, North HM, Usadel B, Günl M. MUCILAGE-RELATED10 produces galactoglucomannan that maintains pectin and cellulose architecture in Arabidopsis seed mucilage. Plant Physiol. 2015;169(1):403–20.
Article
PubMed
PubMed Central
CAS
Google Scholar
Busse-Wicher M, Gomes TCF, Tryfona T, Nikolovski N, Stott K, Grantham NJ, Bolam DN, Skaf MS, Dupree P. The pattern of xylan acetylation suggests xylan may interact with cellulose microfibrils as a twofold helical screw in the secondary plant cell wall of Arabidopsis thaliana. Plant J. 2014;79(3):492–506.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jensen JK, Kim H, Cocuron JC, Orler R, Ralph J, Wilkerson CG. The DUF579 domain containing proteins IRX15 and IRX15-L affect xylan synthesis in Arabidopsis. Plant J. 2011;66(3):387–400.
Article
CAS
PubMed
Google Scholar
Lefebvre V, Fortabat MN, Ducamp A, North HM, Maia-Grondard A, Trouverie J, Boursiac Y, Mouille G, Durand-Tardif M. ESKIMO1 disruption in Arabidopsis alters vascular tissue and impairs water transport. PLoS One. 2011;6(2):e16645.
Article
CAS
PubMed
PubMed Central
Google Scholar
Manabe Y, Verhertbruggen Y, Gille S, Harholt J, Chong SL, Pawar PMA, Mellerowicz EJ, Tenkanen M, Cheng K, Pauly M, Scheller HV. Reduced wall acetylation proteins play vital and distinct roles in cell wall O-acetylaton in Arabidopsis thaliana. Plant Physiol. 2013;163(3):1107–17.
Article
CAS
PubMed
PubMed Central
Google Scholar