Schutte NM, Nederend I, Hudziak JJ, Bartels M, de Geus EJ. Twin-sibling study and meta-analysis on the heritability of maximal oxygen consumption. Physiol Genomics. 2016;48:210–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gaowa DCJ, Gu Z, Gerile W, Yang R, Diaz-Pena R, et al. Interindividual variation in cardiorespiratory fitness: a candidate gene study in Han Chinese people. Genes. 2020;11:555.
Article
CAS
PubMed Central
Google Scholar
Williams CJ, Williams MG, Eynon N, Ashton KJ, Little JP, Wisloff U, et al. Genes to predict VO2max trainability: a systematic review. BMC Genomics. 2017;18:831.
Article
PubMed
PubMed Central
CAS
Google Scholar
Harvey NR, Voisin S, Lea RA, Yan X, Benton MC, Papadimitriou ID, et al. Investigating the influence of mtDNA and nuclear encoded mitochondrial variants on high intensity interval training outcomes. Sci Rep. 2020;10:11089.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marcuello A, Martinez-Redondo D, Dahmani Y, Casajus JA, Ruiz-Pesini E, Montoya J, et al. Human mitochondrial variants influence on oxygen consumption. Mitochondrion. 2009;9:27–30.
Article
CAS
PubMed
Google Scholar
Bouchard C, An P, Rice T, Skinner JS, Wilmore JH, Gagnon J, et al. Familial aggregation of VO2(max) response to exercise training: results from the HERITAGE family study. J Appl Physiol. 1999;87:1003–8.
Article
CAS
PubMed
Google Scholar
Wei W, Tuna S, Keogh MJ, Smith KR, Aitman TJ, Beales PL, et al. Germline selection shapes human mitochondrial DNA diversity. Science. 2019;364:eaau6520.
Article
CAS
PubMed
Google Scholar
Suissa S, Wang Z, Poole J, Wittkopp S, Feder J, Shutt TE, et al. Ancient mtDNA genetic variants modulate mtDNA transcription and replication. PLoS Genet. 2009;5:e1000474.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mishmar D. mtDNA in the crossroads of evolution and disease. Nat Rev Mol Cell Biol. 2020;21:181.
Article
CAS
PubMed
Google Scholar
Wallace DC. Mitochondrial genetic medicine. Nat Genet. 2018;50:1642–9.
Article
CAS
PubMed
Google Scholar
Craven L, Alston C, Taylor R, Turnbull D. Recent advances in mitochondrial disease. Annu Rev Genomics Hum Genet. 2017;18:257–75.
Article
CAS
PubMed
Google Scholar
Niemi AK, Majamaa K. Mitochondrial DNA and ACTN3 genotypes in Finnish elite endurance and sprint athletes. Eur J Hum Genet. 2005;13:965–9.
Article
CAS
PubMed
Google Scholar
Castro MG, Terrados N, Reguero JR, Alvarez V, Coto E. Mitochondrial haplogroup T is negatively associated with the status of elite endurance athlete. Mitochondrion. 2007;7:354–7.
Article
CAS
PubMed
Google Scholar
Scott RA, Fuku N, Onywera VO, Boit M, Wilson RH, Tanaka M, et al. Mitochondrial haplogroups associated with elite Kenyan athlete status. Med Sci Sports Exerc. 2009;41:123–8.
Article
PubMed
Google Scholar
Mikami E, Fuku N, Takahashi H, Ohiwa N, Scott RA, Pitsiladis YP, et al. Mitochondrial haplogroups associated with elite Japanese athlete status. Br J Sports Med. 2011;45:1179–83.
Article
PubMed
Google Scholar
Hwang IW, Kim K, Choi EJ, Jin HJ. Association of mitochondrial haplogroup F with physical performance in Korean population. Genomics Inform. 2019;17:e11.
Article
PubMed
PubMed Central
Google Scholar
Eynon N, Morán M, Birk R, Lucia A. The champions’ mitochondria: is it genetically determined? A review on mitochondrial DNA and elite athletic performance. Physiol Genomics. 2011;43:789–98.
Article
CAS
PubMed
Google Scholar
Stefàno E, Marsigliante S, Vetrugno C, Muscella A. Is mitochondrial DNA profiling predictive for athletic performance? Mitochondrion. 2019;47:125–38.
Article
PubMed
CAS
Google Scholar
Kiiskilä J, Moilanen JS, Kytövuori L, Niemi AK, Majamaa K. Analysis of functional variants in mitochondrial DNA of Finnish athletes. BMC Genomics. 2019;20:784.
Article
PubMed
PubMed Central
CAS
Google Scholar
Maruszak A, Adamczyk JG, Siewierski M, Sozanski H, Gajewski A, Zekanowski C. Mitochondrial DNA variation is associated with elite athletic status in the polish population. Scand J Med Sci Sports. 2014;24:311–8.
Article
CAS
PubMed
Google Scholar
Arjmand S, Khaledi N, Fayazmilani R, Lotfi AS, Tavana H. Association of mitochondrial DNA haplogroups with elite athletic status in Iranian population. Meta Gene. 2017;11:81–4.
Article
Google Scholar
Vellers HL, Kleeberger SR, Lightfoot JT. Inter-individual variation in adaptations to endurance and resistance exercise training: genetic approaches towards understanding a complex phenotype. Mamm Genome. 2018;29:48–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bouchard C, Rankinen T. Individual differences in response to regular physical activity. Med Sci Sports Exerc. 2001;33:S446–53.
Article
CAS
PubMed
Google Scholar
Cooper KH. A means of assessing maximal oxygen uptake. JAMA. 1968;203:201–4.
Article
CAS
PubMed
Google Scholar
Heyward VH. The Physical Fitness Specialist Certification Manual, The Cooper Institute for Aerobics Research, Dallas TX, revised 1997 printed in Advance Fitness Assessment & Exercise Prescription, 3rd Edition; 1998. p. 48.
Google Scholar
Santtila M, Pihlainen K, Viskari J, Kyröläinen H. Optimal physical training during military basic training period. J Strength Cond Res. 2015;29:S154–7.
Article
PubMed
Google Scholar
Mikkola I, Keinänen-Kiukaanniemi S, Jokelainen J, Peitso A, Härkönen P, Timonen M, et al. Aerobic performance and body composition changes during military service. Scand J Prim Health Care. 2012;30:95–100.
Article
PubMed
PubMed Central
Google Scholar
Bouchard C, Rankinen T, Timmons JA. Genomics and genetics in the biology of adaptation to exercise. Compr Physiol. 2011;1:1603–48.
PubMed
PubMed Central
Google Scholar
Pérusse L, Gagnon J, Province MA, Rao DC, Wilmore JH, Leon AS, et al. Familial aggregation of submaximal aerobic performance in the HERITAGE family study. Med Sci Sports Exerc. 2001;33:597–604.
Article
PubMed
Google Scholar
Vellers HL, Verhein KC, Burkholder AB, Lee L, Kim Y, Lightfoot JT, et al. Association between mitochondrial DNA sequence variants and VO2 max trainability. Med Sci Sports Exerc. 2020;52:2303–9.
CAS
PubMed
Google Scholar
Lakoski SG, Barlow CE, Farrell SW, Berry JD, Morrow JR Jr, Haskell WL. Impact of body mass index, physical activity, and other clinical factors on cardiorespiratory fitness (from the Cooper Center longitudinal study). Am J Cardiol. 2011;108:34–9.
Article
PubMed
Google Scholar
Pillon NJ, Gabriel BM, Dollet L, Smith J, Sardón Puig L, Botella J, et al. Transcriptomic profiling of skeletal muscle adaptations to exercise and inactivity. Nat Commun. 2020;11:470.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gomez-Duran A, Pacheu-Grau D, Martinez-Romero I, Lopez-Gallardo E, Lopez-Perez MJ, Montoya J, et al. Oxidative phosphorylation differences between mitochondrial DNA haplogroups modify the risk of Leber's hereditary optic neuropathy. Biochim Biophys Acta. 1822;2012:1216–22.
Google Scholar
Strobbe D, Caporali L, Iommarini L, Maresca A, Montopoli M, Martinuzzi A, et al. Haplogroup J mitogenomes are the most sensitive to the pesticide rotenone: relevance for human diseases. Neurobiol Dis. 2018;114:129–39.
Article
CAS
PubMed
Google Scholar
Cortés-Pereira E, Fernández-Tajes J, Fernández-Moreno M, Vazquez-Mosquera ME, Relano S, Ramos-Louru P, et al. Differential association of mitochondrial DNA haplogroups J and H with the methylation status of articular cartilage: potential role in apoptosis and metabolic and developmental processes. Arthritis Rheumatol. 2019;71:1191–200.
Article
PubMed
CAS
Google Scholar
Vaara JP, Kyröläinen H, Niemi J, Ohrankämmen O, Häkkinen A, Kocay S, et al. Associations of maximal strength and muscular endurance test scores with cardiorespiratory fitness and body composition. J Strength Cond Res. 2012;26:2078–86.
Article
PubMed
Google Scholar
Mattila VM, Tallroth K, Marttinen M, Pihlajamaki H. Body composition by DEXA and its association with physical fitness in 140 conscripts. Med Sci Sports Exerc. 2007;39:2242–7.
Article
PubMed
Google Scholar
Nazarov IB, Woods DR, Montgomery HE, Shneider OV, Kazakov VI, Tomilin NV, et al. The angiotensin converting enzyme I/D polymorphism in Russian athletes. Eur J Hum Genet. 2001;9:797–801.
Article
CAS
PubMed
Google Scholar
Guilherme PLF, Tritto ACC, North KN, Lancha Junior AH, Artioli GG. Genetics and sport performance: current challenges and directions to the future. Rev Bras Educ Fís Esporte. 2014;28:177–93.
Article
Google Scholar
Huyghe JR, Fransen E, Hannula S, Van Laer L, Van Eyken E, Mäki-Torkko E, et al. A genome-wide analysis of population structure in the Finnish Saami with implications for genetic association studies. Eur J Hum Genet. 2011;19:347–52.
Article
PubMed
Google Scholar
Meinilä M, Finnilä S, Majamaa K. Evidence for mtDNA admixture between the Finns and the Saami. Hum Hered. 2001;52:160–70.
Article
PubMed
Google Scholar
Sajantila A, Lahermo P, Anttinen T, Lukka M, Sistonen P, Savontaus ML, et al. Genes and languages in Europe: an analysis of mitochondrial lineages. Genome Res. 1995;5:42–52.
Article
CAS
PubMed
Google Scholar
Tambets K, Rootsi S, Kivisild T, Help H, Serk P, Loogväli EL, et al. The western and eastern roots of the Saami--the story of genetic “outliers” told by mitochondrial DNA and Y chromosomes. Am J Hum Genet. 2004;74:661–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Santtila M. Description of the military service and physical training of conscripts. In: Effects of added endurance or strength training on cardiovascular and neuromuscular performance of conscripts during the 8-week basic training period (PhD Dissertation). 2010; https://jyx.jyu.fi/dspace/handle/123456789/23094. Accessed 30 Nov 2020.
Google Scholar
Tähtinen T, Vanhala M, Oikarinen J, Keinänen-Kiukaanniemi S. Changes in insulin resistance-associated cardiovascular risk factors of Finnish men during military service. Ann Med Milit Fenn. 2000;75:163–9.
Google Scholar
Pihlajamäki H, Parviainen M, Kyröläinen H, Kautiainen H, Kiviranta I. Regular physical exercise before entering military service may protect young adult men from fatigue fractures. BMC Musculoskelet Disord. 2019;20:126.
Article
PubMed
PubMed Central
Google Scholar
Santtila M, Häkkinen K, Nindl BC, Kyröläinen H. Cardiovascular and neuromuscular performance responses induced by 8 weeks of basic training followed by 8 weeks of specialized military training. J Strength Cond Res. 2012;26:745–51.
Article
PubMed
Google Scholar
Jackson AS, Blair SN, Mahar MT, Wier LT, Ross RM, Stuteville JE. Prediction of functional aerobic capacity without exercise testing. Med Sci Sports Exerc. 1990;22:863–70.
Article
CAS
PubMed
Google Scholar
Matthews CE, Heil DP, Freedson PS, Pastides H. Classification of cardiorespiratory fitness without exercise testing. Med Sci Sports Exerc. 1999;31:486–93.
Article
CAS
PubMed
Google Scholar
Mikkola I, Jokelainen JJ, Timonen MJ, Härkönen PK, Saastamoinen E, Laakso MA, et al. Physical activity and body composition changes during military service. Med Sci Sports Exerc. 2009;41:1735–42.
Article
PubMed
Google Scholar
Finnilä S, Lehtonen MS, Majamaa K. Phylogenetic network for European mtDNA. Am J Hum Genet. 2001;68:1475–84.
Article
PubMed
PubMed Central
Google Scholar
van Oven M, Kayser M. Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation. Hum Mutat. 2009;30(2):E386–94.
Article
PubMed
Google Scholar
Jansen PA, Hirsch BT, Emsens WJ, Zamora-Gutierrez V, Wikelski M, Kays R. Thieving rodents as substitute dispersers of megafaunal seeds. Proc Natl Acad Sci U S A. 2012;109:12610–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tella JL, Dénes FV, Zulian V, Prestes NP, Martínez J, Blanco G, et al. Endangered plant-parrot mutualisms: seed tolerance to predation makes parrots pervasive dispersers of the Parana pine. Sci Rep. 2016;22:31709.
Article
CAS
Google Scholar