Paus R, Cotsarelis G. The biology of hair follicles. N Engl J Med. 1999;341(7):491–7.
Article
CAS
PubMed
Google Scholar
Sun H, Zhang Y, Bai L, Wang Y, Yang L, Su W, et al. Heat stress decreased hair follicle population in rex rabbits. J Anim Physiol Anim Nutr. 2019;103(2):501–8.
Article
CAS
Google Scholar
Lanszki J, Thébault RG, Allain D, Szendrõ Z, Eiben C. The effects of melatonin treatment on wool production and hair follicle cycle in angora rabbits. Anim Res. 2001;50(1):79–89.
Article
CAS
Google Scholar
Rafat SA, Allain D, Rochambeau HD. Genetic description of a divergent selection experiment in angora rabbits with overlapping generations. J Anim Breed Genet. 2009;26(3):189–97.
Article
Google Scholar
Rahman SU, Wang X, Yu L. Observations on biotic parameters of angora rabbit breed under controlled conditions in different housing systems. Vet World. 2018;11(1):88–92.
Article
PubMed
PubMed Central
Google Scholar
Chen SJ, Liu T, Liu YJ, Dong B, Gu ZL. Identification of single nucleotide polymorphisms in the CCNA2 gene and its association with wool density in Rex rabbits. Genet Mol Res. 2011;10(4):3365–70.
Article
CAS
PubMed
Google Scholar
Otberg N, Richter H, Schaefer H, Blume-Peytavi U, Sterry W, Lademann J. Variations of hair follicle size and distribution in different body sites. J Invest Dermatol. 2004;122(1):14–9.
Article
CAS
PubMed
Google Scholar
Jönsson EH, Bendas J, Weidner K, Wessberg J, Olausson H, Wasling HB, et al. The relation between human hair follicle density and touch perception. Sci Rep. 2017;7(1):2499.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang Y, Xue JY. Different characteristics of rabbit hair and body parts processing. Chin J Rabbit Farming. 2012;03:40–2.
Google Scholar
Stenn KS, Paus R. Controls of hair follicle cycling. Physiol Rev. 2001;81(1):449–94.
Article
CAS
PubMed
Google Scholar
Tamura Y, Takata K, Eguchi A, Kataoka Y. In vivo monitoring of hair cycle stages via bioluminescence imaging of hair follicle NG2 cells. Sci Rep. 2018;8(1):393.
Article
PubMed
PubMed Central
CAS
Google Scholar
Schneider MR, Ruth SU, Ralf P. The hair follicle as a dynamic miniorgan. Curr Biol. 2009;19(3):R132–42.
Article
CAS
PubMed
Google Scholar
Ding H, Zhao H, Cheng G, Yang Y, Wang X, Zhao X, et al. Analyses of histological and transcriptome differences in the skin of short-hair and long-hair rabbits. BMC Genomics. 2019;20(1):140.
Article
PubMed
PubMed Central
Google Scholar
Zhao B, Chen Y, Yan X, Hao Y, Zhu J, Weng Q, et al. Gene expression profiling analysis reveals fur development in rex rabbits (Oryctolagus cuniculus). Genome. 2017;60(12):1060–7.
Article
CAS
PubMed
Google Scholar
Ding H, Cheng G, Leng J, Yang Y, Zhao X, Wang X, et al. Analysis of histological and microRNA profiles changes in rabbit skin development. Sci Rep. 2020;10(1):454.
Article
CAS
PubMed
PubMed Central
Google Scholar
Higgins CA, Petukhova L, Harel S, Ho YY, Drill E, Shapiro L, et al. FGF5 is a crucial regulator of hair length in humans. Proc Natl Acad Sci U S A. 2014;111(29):10648–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kulessa H, Turk G, Hogan BL. Inhibition of bmp signaling affects growth and differentiation in the anagen hair follicle. EMBO J. 2000;19(24):6664–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Demehri S, Kopan R. Notch signaling in bulge stem cells is not required for selection of hair follicle fate. Development. 2009;136(6):891–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hardy MH. The secret life of the hair follicle. Trends Genet. 1992;8(2):55–61.
Article
CAS
PubMed
Google Scholar
Oro AE, Scott MP. Splitting hairs. Dissecting roles of signaling systems in epidermal development. Cell. 1998;95(5):575–8.
Article
CAS
PubMed
Google Scholar
Lin CM, Yuan YP, Chen XC, Li HH, Cai BZ, Liu Y, et al. Expression of Wnt/beta-catenin signaling, stem-cell markers and proliferating cell markers in rat whisker hair follicles. J Mol Histol. 2015;46(3):233–40.
Article
CAS
PubMed
Google Scholar
Lou X, Ma X, Wang D, Li X, Sun B, Zhang T, et al. Systematic analysis of long non-coding RNA and mRNA expression changes in ApoE-deficient mice during atherosclerosis. Mol Cell Biochem. 2019;462(1–2):61–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Biao Y, Zhen-Hua W, Jin-Tao G. The research strategies for probing the function of long noncoding RNAs. Genomics. 2012;99(2):76–80.
Article
CAS
Google Scholar
Kornienko AE, Guenzl PM, Barlow DP, Pauler FM. Gene regulation by the act of long non-coding RNA transcription. BMC Biol. 2013;11(1):59.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang S, Ge W, Luo Z, Guo Y, Jiao B, Qu L, et al. Integrated analysis of coding genes and non-coding RNAs during hair follicle cycle of cashmere goat ( Capra hircus ). BMC Genomics. 2017;18(1):767.
Article
CAS
PubMed
PubMed Central
Google Scholar
Song S, Yang M, Li Y, Rouzi M, Zhao Q, Pu Y, et al. Genome-wide discovery of lincRNAs with spatiotemporal expression patterns in the skin of goat during the cashmere growth cycle. BMC Genomics. 2018;19(1):495.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhu YB, Wang ZY, Yin RH, Jiao Q, Zhao SJ, Cong YY, et al. A lncRNA-H19 transcript from secondary hair follicle of Liaoning cashmere goat: identification, regulatory network and expression regulated potentially by its promoter methylation. Gene. 2018;641:S0378111917308533.
Article
CAS
Google Scholar
Chang-Min L, Yang L, Keng H, Xian-Cai C, Bo-Zhi C, Hai-Hong L, et al. Long noncoding RNA expression in dermal papilla cells contributes to hairy gene regulation. Biochem Biophys Res Commun. 2014;453(3):508–14.
Article
CAS
Google Scholar
Yue Y, Guo T, Yuan C, Liu J, Guo J, Feng R, et al. Integrated analysis of the roles of long noncoding RNA and coding RNA expression in sheep (Ovis aries) skin during initiation of secondary hair follicle. PLoS One. 2016;11(6):e0156890.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chen S, Liu T, Liu Y, Dong B, Gu Z. Gene expression patterns in different wool densities of Rex rabbit using cDNA microarray. Agr Sci China. 2011;10(4):595–601.
Article
CAS
Google Scholar
Rafat SA, Rochambeau HD, Thébault RG, David I, Deretz S, Bonnet M, et al. Divergent selection for total fleece weight in angora rabbits: correlated responses in wool characteristics. Livest Sci 2008;113(1):0–13.
Choi BY. Hair-growth potential of ginseng and its major metabolites: a review on its molecular mechanisms. Int J Mol Sci. 2018;19(9):2703.
Article
PubMed Central
CAS
Google Scholar
Lin CM, Liu Y, Huang K, Chen XC, Cai BZ, Li HH, et al. Long noncoding RNA expression in dermal papilla cells contributes to hairy gene regulation. Biochem Bioph Res Co. 2014;453(3):508–14.
Article
CAS
Google Scholar
Zhao B, Chen Y, Hu S, Yang N, Wang M, Liu M, et al. Systematic analysis of non-coding RNAs involved in the angora rabbit (Oryctolagus cuniculus) hair follicle cycle by RNA sequencing. Front Genet. 2019;10:407.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu G, Li S, Liu H, Zhu Y, Bai L, Sun H, et al. The functions of ocu-miR-205 in regulating hair follicle development in Rex rabbits. BMC Dev Biol. 2020;20(1):8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arlud S, He N, Sari EM, Ma ZJ, Zhang H, An TW, et al. Highly conserved keratin-associated protein 7-1 gene in yak, taurine and zebu cattle. Folia Biol. 2017;63(4):139–45.
CAS
Google Scholar
Zhao M, Zhou H, Hickford JGH, Gong H, Wang J, Hu J, et al. Variation in the caprine keratin-associated protein 15-1 (KAP15-1) gene affects cashmere fibre diameter. Arch Anim Breed. 2019;62(1):125–33.
Article
PubMed
PubMed Central
Google Scholar
Li B, Qiao L, An L, Wang W, Liu J, Ren Y, et al. Transcriptome analysis of adipose tissues from two fat-tailed sheep breeds reveals key genes involved in fat deposition. BMC Genomics. 2018;19(1):338.
Article
PubMed
PubMed Central
CAS
Google Scholar
Clarke DL, Carruthers AM, Mustelin T, Murray LA. Matrix regulation of idiopathic pulmonary fibrosis: the role of enzymes. Fibrogenesis Tissue Repair. 2013;6(1):20.
Article
PubMed
PubMed Central
CAS
Google Scholar
Leask A. Matrix remodeling in systemic sclerosis. Semin Immunopathol. 2015;37(5):559–63.
Article
CAS
PubMed
Google Scholar
Elliott K, Stephenson TJ, Messenger AG. Differences in hair follicle dermal papilla volume are due to extracellular matrix volume and cell number: implications for the control of hair follicle size and androgen responses. J Invest Dermatol. 2000;113(6):873–7.
Article
Google Scholar
Chiang C, Swan RZ, Grachtchouk M, Bolinger M, Litingtung Y, Robertson EK, et al. Essential role for sonic hedgehog during hair follicle morphogenesis. Dev Biol. 1999;205(1):1–9.
Article
CAS
PubMed
Google Scholar
St-Jacques B, Dassule HR, Karavanova I, Botchkarev VA, Li J, Danielian PS, et al. Sonic hedgehog signaling is essential for hair development. Curr Biol. 1998;8(19):1058–68.
Article
CAS
PubMed
Google Scholar
Wang E, Harel S, Christiano AM. JAK-STAT signaling jump starts the hair cycle. J Invest Dermatol. 2016;136(11):2131–2.
Article
CAS
PubMed
Google Scholar
Harel S, Higgins CA, Cerise JE, Dai Z, Chen JC, Clynes R, et al. Pharmacologic inhibition of JAK-STAT signaling promotes hair growth. Sci Adv. 2015;1(9):e1500973.
Article
PubMed
PubMed Central
Google Scholar
Liu F, Chen Y, Zhu G, Hysi PG, Wu S, Adhikari K, et al. Meta-analysis of genome-wide association studies identifies 8 novel loci involved in shape variation of human head hair. Hum Mol Genet. 2018;27(3):559–75.
Article
CAS
PubMed
Google Scholar
Wu Z, Latendorf T, Meyer-Hoffert U, Schroder JM. Identification of trichohyalin-like 1, an s100 fused-type protein selectively expressed in hair follicles. J Invest Dermatol. 2011;131(8):1761–3.
Article
CAS
PubMed
Google Scholar
Furstenberger G, Marks F, Krieg P. Arachidonate 8(S)-lipoxygenase. Prostaglandins Other Lipid Mediat. 2002;68–69:235–43.
Article
PubMed
Google Scholar
Clements SE, Techanukul T, Lai-Cheong JE, Mee JB, South AP, Pourreyron C, et al. Mutations in AEC syndrome skin reveal a role for p63 in basement membrane adhesion, skin barrier integrity and hair follicle biology. Brit J Dermatol. 2012;167(1):134–44.
Article
CAS
Google Scholar
Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL. Transcript-level expression analysis of RNA-seq experiments with HISAT. StringTie and Ballgown Nat Protoc. 2016;11(9):1650–67.
Article
CAS
PubMed
Google Scholar
Young MD, Wakefield MJ, Smyth GK, Oshlack A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol. 2010;11(2):R14.
Article
PubMed
PubMed Central
CAS
Google Scholar