Sopinka NM, Donaldson MR, O’Connor CM, Suski CD, Cooke SJ. Stress indicators in fish. In: Schreck CB, Tort L, Farrell AP, Brauner CJ, editors. Biology of Stress in Fish. Fish Physiology, Vol. 35. Cambridge: Academic Press; 2016. p. 405–62. https://doi.org/10.1016/B978-0-12-802728-8.00011-4.
Chapter
Google Scholar
Faught E, Aluru N, Vijayan MM. The molecular stress response. In: Schreck CB, Tort L, Farrell AP, Brauner CJ, editors. Biology of Stress in Fish. Fish Physiology, Vol. 35. Cambridge: Academic Press; 2016. p. 113–66. https://doi.org/10.1016/B978-0-12-802728-8.00004-7.
Chapter
Google Scholar
Prunet P, Overli Ø, Douxfils J, Bernardini G, Kestemont P, Baron D. Fish welfare and genomics. Fish Physiol Biochem. 2012;38:43–60. https://doi.org/10.1007/s10695-011-9522-z.
Article
CAS
PubMed
Google Scholar
Aluru N, Vijayan MM. Stress transcriptomics in fish: a role for genomic cortisol signaling. Gen Comp Endocrinol. 2009;164(2–3):142–50. https://doi.org/10.1016/j.ygcen.2009.03.020.
Article
CAS
PubMed
Google Scholar
Robinson NA, Johnsen H, Moghadam H, Andersen Ø, Tveiten H. Early developmental stress affects subsequent gene expression response to an acute stress in Atlantic salmon: an approach for creating robust fish for aquaculture? G3: genes, genomes. Genetics. 2019;9(5):1597–611. https://doi.org/10.1534/g3.119.400152.
Article
CAS
Google Scholar
Huang V, Butler AA, Lubin FD. Telencephalon transcriptome analysis of chronically stressed adult zebrafish. Sci Rep. 2019;9(1):1379. https://doi.org/10.1038/s41598-018-37761-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Raposo de Magalhães C, Schrama D, Farinha AP, Revets D, Kuehn A, Planchon S, et al. Protein changes as robust signatures of fish chronic stress: a proteomics approach to fish welfare research. BMC Genomics. 2020;21(1):309. https://doi.org/10.1186/s12864-020-6728-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Groh KJ, Suter MJ. Stressor-induced proteome alterations in zebrafish: a meta-analysis of response patterns. Aquat Toxicol. 2015;159:1–12. https://doi.org/10.1016/j.aquatox.2014.11.013.
Article
CAS
PubMed
Google Scholar
Moghadam HK, Johnsen H, Robinson N, Andersen O, Jorgensen EH, Johnsen HK, et al. Impacts of early life stress on the methylome and transcriptome of Atlantic salmon. Sci Rep. 2017;7:5023. https://doi.org/10.1038/s41598-017-05222-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Todd EV, Ortega-Recalde O, Liu H, Lamm MS, Rutherford KM, Cross H, et al. Stress, novel sex genes, and epigenetic reprogramming orchestrate socially controlled sex change. Sci Adv. 2019;5(7):eaaw7006. https://doi.org/10.1126/sciadv.aaw7006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Uren Webster TM, Rodriguez-Barreto D, Martin SAM, Van Oosterhout C, Orozco-terWengel P, Cable J, et al. Contrasting effects of acute and chronic stress on the transcriptome, epigenome, and immune response of Atlantic salmon. Epigenetics. 2018;13(12):1191–207. https://doi.org/10.1080/15592294.2018.1554520.
Article
PubMed
PubMed Central
Google Scholar
Tort L. Stress and immune modulation in fish. Dev Comp Immunol. 2011;35:1366–75. https://doi.org/10.1016/j.dci.2011.07.002.
Article
CAS
PubMed
Google Scholar
Burgos-Aceves MA, Lionetti L, Faggio C. Multidisciplinary haematology as prognostic device in environmental and xenobiotic stress-induced response in fish. Sci Tot Environm. 2019;670:1170–83. https://doi.org/10.1016/j.scitotenv.2019.03.275.
Article
CAS
Google Scholar
Morera D, Roher N, Ribas L, Balasch JC, Donate C, Callol A, et al. RNA-Seq reveals an integrated immune response in nucleated erythrocytes. PLoS One. 2011;6:e26998. https://doi.org/10.1371/journal.pone.0026998.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dahle MK, Wessel Ø, Timmerhaus G, Nyman IB, Jorgensen SM, Rimstad E, et al. Transcriptome analyses of Atlantic salmon (Salmo salar L.) erythrocytes infected with piscine orthoreovirus (PRV). Fish Shellfish Immunol. 2015;45(2):780–90. https://doi.org/10.1016/j.fsi.2015.05.049.
Article
CAS
PubMed
Google Scholar
Puente-Marin S, Nombela I, Ciordia S, Mena MC, Chico V, Coll J, et al. In silico functional networks identified in fish nucleated red blood cells by means of transcriptomic and proteomic profiling. Genes. 2018;9(4):202. https://doi.org/10.3390/genes9040202.
Article
CAS
PubMed Central
Google Scholar
Gavery MR, Nichols KM, Goetz G, Middleton MA, Swanson P. Characterization of genetic and epigenetic variation in sperm and red blood cells from adult hatchery and natural-origin steelhead, Oncorhynchus mykiss. G3: genes. Genomes, Genetics. 2018;8(11):3723–36. https://doi.org/10.1534/g3.118.200458.
Article
CAS
Google Scholar
Vandeputte M, Gagnaire PA, Allal F. The European sea bass: a key marine fish model in the wild and in aquaculture. Anim Genet. 2019;50(3):195–206. https://doi.org/10.1111/age.12779.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tine M, Kuhl H, Gagnaire PA, Louro B, Desmarais E, Martins RST, et al. European sea bass genome and its variation provide insights into adaptation to euryhalinity and speciation. Nat Commun. 2014;5:5770. https://doi.org/10.1038/ncomms6770.
Article
CAS
PubMed
Google Scholar
Navarro-Martín L, Viñas J, Ribas L, Diaz N, Gutierrez A, Di Croce L, et al. DNA methylation of the gonadal aromatase (cyp19a) promoter is involved in temperature-dependent sex ratio shifts in the European sea bass. PLoS Genet. 2011;7:e1002447. https://doi.org/10.1371/journal.pgen.1002447.
Article
CAS
PubMed
PubMed Central
Google Scholar
Geay F, Zambonino-Infante J, Reinhardt R, Kuhl H, Santigosa E, Cahu C, et al. Characteristics of fads2 gene expression and putative promoter in European sea bass (Dicentrarchus labrax): comparison with salmonid species and analysis of CpG methylation. Mar Genomics. 2012;5:7–13. https://doi.org/10.1016/j.margen.2011.08.003.
Article
PubMed
Google Scholar
Terova G, Díaz N, Rimoldi S, Ceccotti C, Gliozheni E, Piferrer F. Effects of sodium butyrate treatment on histone modifications and the expression of genes related to epigenetic regulatory mechanisms and immune response in European sea bass (Dicentrarchus labrax) fed a plant-based diet. PLoS One. 2016;11(7):e0160332. https://doi.org/10.1371/journal.pone.0160332.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anastasiadi D, Díaz N, Piferrer F. Small ocean temperature increases elicit stage-dependent changes in DNA methylation and gene expression in a fish, the European sea bass. Sci Rep. 2017;7(1):12401. https://doi.org/10.1038/s41598-017-10861-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anastasiadi D, Vandeputte M, Sánchez-Baizán N, Allal F, Piferrer F. Dynamic epimarks in sex-related genes predict gonad phenotype in the European sea bass, a fish with mixed genetic and environmental sex determination. Epigenetics. 2018;13(9):988–1011. https://doi.org/10.1080/15592294.2018.1529504.
Article
PubMed
PubMed Central
Google Scholar
Barrachina F, Anastasiadi D, Jodar M, Castillo J, Estanyol JM, Piferrer F, et al. Identification of a complex population of chromatin-associated proteins in the European sea bass (Dicentrarchus labrax) sperm. Syst Biol Reprod Med. 2018;64(6):502–17. https://doi.org/10.1080/19396368.2018.1482383.
Article
CAS
PubMed
Google Scholar
Anastasiadi D, Piferrer F. Epimutations in developmental genes underlie the onset of domestication in farmed European sea bass. Mol Biol Evol. 2019;36(10):2252–64. https://doi.org/10.1093/molbev/msz153.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anastasiadi D, Piferrer F. A clockwork fish: age prediction using DNA methylation-based biomarkers in the European seabass. Mol Ecol Resour. 2020;20(2):387–97. https://doi.org/10.1111/1755-0998.13111.
Article
CAS
PubMed
Google Scholar
FAO. FAO Yearbook of Fishery and Aquaculture Statistics. 2020. Available at: http://www.fao.org/fishery/statistics/yearbook/en (Accessed 27 Jan 2021).
Google Scholar
Fanouraki E, Mylonas CC, Papandroulakis N, Pavlidis M. Species specificity in the magnitude and duration of the acute stress response in Mediterranean marine fish in culture. Gen Comp Endocrinol. 2011;173:313–22. https://doi.org/10.1016/j.ygcen.2011.06.004.
Article
CAS
PubMed
Google Scholar
Vazzana M, Cammarata M, Cooper EL, Parrinello N. Confinement stress in sea bass (Dicentrarchus labrax) depresses peritoneal leukocyte cytotoxicity. Aquaculture. 2002;210:231–43. https://doi.org/10.1016/S0044-8486(01)00818-3.
Article
CAS
Google Scholar
Cœurdacier JL, Dutto G, Gasset E, Blancheton JP. Is total serum protein a good indicator for welfare in reared sea bass (Dicentrarchus labrax)? Aquat Living Resour. 2011;24:124–7. https://doi.org/10.1051/alr/2011130.
Article
Google Scholar
Samaras A, Dimitroglou A, Sarropoulou E, Papaharisis L, Kottaras L, Pavlidis M. Repeatability of cortisol stress response in the European sea bass (Dicentrarchus labrax) and transcription differences between individuals with divergent responses. Sci Rep. 2016;6:34858. https://doi.org/10.1038/srep34858.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tognoli C, Rossi F, Di Cola F, Baj G, Tongiorgi E, Terova G, et al. Acute stress alters transcript expression pattern and reduces processing of proBDNF to mature BDNF in Dicentrarchus labrax. BMC Neurosci. 2010;11:4. https://doi.org/10.1186/1471-2202-11-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
van Gurp TP, Wagemaker NCAM, Wouters B, Vergeer P, Ouborg JNJ, Verhoeven KJS. epiGBS: reference-free reduced representation bisulfite sequencing. Nat Meth. 2016;13:322–4. https://doi.org/10.1038/nmeth.3763.
Article
CAS
Google Scholar
Allis CD, Jenuwein T. The molecular hallmarks of epigenetic control. Nat Rev Genet. 2016;17(8):487–500. https://doi.org/10.1038/nrg.2016.59.
Article
CAS
PubMed
Google Scholar
Schübeler D. Function and information content of DNA methylation. Nature. 2015;517:321–6. https://doi.org/10.1038/nature14192.
Article
CAS
PubMed
Google Scholar
Rey S, Boltana S, Vargas R, Roher N, MacKenzie S. Combining animal personalities with transcriptomics resolves individual variation within a wild-type zebrafish population and identifies underpinning molecular differences in brain function. Mol Ecol. 2013;22:6100–15. https://doi.org/10.1111/mec.12556.
Article
CAS
PubMed
Google Scholar
Liu J, Dias K, Plagnes-Juan E, Veron V, Panserat S, Marandel L. Long-term programming effect of embryonic hypoxia exposure and high-carbohydrate diet at first feeding on glucose metabolism in juvenile rainbow trout. J Exp Biol. 2017;220(Pt 20):3686–94. https://doi.org/10.1242/jeb.161406.
Article
PubMed
Google Scholar
Wong RY, Lamm MS, Godwin J. Characterizing the neurotranscriptomic states in alternative stress coping styles. BMC Genomics. 2015;16(1):425. https://doi.org/10.1186/s12864-015-1626-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Greenwood AK. Peichel CL social regulation of gene expression in threespine sticklebacks. PLoS One. 2015;10(9):e0137726. https://doi.org/10.1371/journal.pone.0137726.
Article
CAS
PubMed
PubMed Central
Google Scholar
Walsh CA, Engle EC. Allelic diversity in human developmental neurogenetics: insights into biology and disease. Neuron. 2010;68(2):245–53. https://doi.org/10.1016/j.neuron.2010.09.042.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vlasova-St Louis I, Dickson AM, Bohjanen PR, Wilusz CJ. 2013. CELFish ways to modulate mRNA decay. Biochim Biophys Acta. 2013;1829(6–7):695–707. https://doi.org/10.1016/j.bbagrm.2013.01.001.
Article
CAS
PubMed
Google Scholar
Meröndun J, Murray DL, Shafer ABA. Genome-scale sampling suggests cryptic epigenetic structuring and insular divergence in Canada lynx. Mol Ecol. 2019;28(13):3186–96. https://doi.org/10.1111/mec.15131.
Article
PubMed
Google Scholar
Wang J, Xia Y, Li L, Gong DS, Yao Y, Luo HJ, et al. Double restriction-enzyme digestion improves the coverage and accuracy of genome-wide CpG methylation profiling by reduced representation bisulfite sequencing. BMC Genomics. 2013;14:11. https://doi.org/10.1186/1471-2164-14-11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krueger F, Andrews SR. Bismark: A flexible aligner and methylation caller for bisulfite-Seq applications. Bioinformatics. 2011;11:1571–2. https://doi.org/10.1093/bioinformatics/btr167.
Article
CAS
Google Scholar
Wan ZY, Xia JH, Lin G, Wang L, Lin VCL, Yue GH. Genome-wide methylation analysis identified sexually dimorphic methylated regions in hybrid tilapia. Sci Rep. 2016;6:35903. https://doi.org/10.1038/srep35903.
Article
CAS
PubMed
PubMed Central
Google Scholar
Berbel-Filho WM, Berry N, Rodríguez-Barreto D. Texeira SR, de Leaniz CG, Consuegra S. environmental enrichment induces intergenerational behavioural and epigenetic effects on fish. Mol Ecol. 2020;29(12):2888–299. https://doi.org/10.1111/mec.15481.
Article
CAS
Google Scholar
Wang J, Liu Y, Jiang S, Li WH, Gui L, Zhou T, et al. Transcriptomic and epigenomic alterations of Nile tilapia gonads sexually reversed by high temperature. Aquaculture. 2019;508:167–77. https://doi.org/10.1016/j.aquaculture.2019.04.073.
Article
CAS
Google Scholar
Heckwolf MJ, Meyer BS, Häsler R, Hoppner MP, Eizaguirre MC, Reusch TBH. Two different epigenetic information channels in wild three-spined sticklebacks are involved in salinity adaptation. Sci Adv. 2020;6(12):eaaz1138. https://doi.org/10.1126/sciadv.aaz1138.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu J, Pérez-Jvostov F, Blondel L, Barrett RDH. Genome-wide DNA methylation signatures of infection status in Trinidadian guppies (Poecilia reticulata). Mol Ecol. 2018;27(15):3087–102. https://doi.org/10.1111/mec.14771.
Article
CAS
PubMed
Google Scholar
Ehrlich M, Lacey M. DNA methylation and differentiation: silencing, upregulation and modulation of gene expression. Epigenomics. 2013;5(5):553–68. https://doi.org/10.2217/epi.13.43.
Article
CAS
PubMed
Google Scholar
Lev Maor G, Yearim A, Ast G. The alternative role of DNA methylation in splicing regulation. Trends Genet. 2015;31(5):274–80. https://doi.org/10.1016/j.tig.2015.03.002.
Article
CAS
PubMed
Google Scholar
Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D’Souza C, Fouse SD, et al. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature. 2010;466:253–7. https://doi.org/10.1038/nature09165.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hing B, Braun P, Cordner ZA, Ewald ER, Moody L, McKane M, et al. 2018. Chronic social stress induces DNA methylation changes at an evolutionary conserved intergenic region in chromosome X. Epigenetics. 2018;13(6):627–41. https://doi.org/10.1080/15592294.2018.1486654.
Article
PubMed
PubMed Central
Google Scholar
Suzuki M, Oda M, Ramos MP, Pascual M, Lau K, Stasiek E, et al. Late-replicating heterochromatin is characterized by decreased cytosine methylation in the human genome. Genome Res. 2011;21(11):1833–40. https://doi.org/10.1101/gr.116509.110.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gavery MR, Nichols KM, Berejikian BA, Tatara CP, Goetz GW, Dickey JT, et al. Temporal dynamics of DNA methylation patterns in response to rearing juvenile steelhead (Oncorhynchus mykiss) in a hatchery versus simulated stream environment. Genes. 2019;10:356. https://doi.org/10.3390/genes10050356.
Article
CAS
PubMed Central
Google Scholar
Baumgart M, Groth M, Priebe S, Savino A, Testa G, Dix A, et al. RNA-seq of the aging brain in the short-lived fish N. furzeri - conserved pathways and novel genes associated with neurogenesis. Aging Cell. 2014;13(6):965–74. https://doi.org/10.1111/acel.12257.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nie XG. Differential expression of Bmp2, Bmp4 and Bmp3 in embryonic development of mouse anterior and posterior palate. Chin Med J. 2005;118(20):1710–6. 16313756.
CAS
PubMed
Google Scholar
Walker MB, Miller CT, Coffin Talbot J, Stock DW, Kimmel CB. Zebrafish furin mutants reveal intricacies in regulating Endothelin1 signaling in craniofacial patterning. Dev Biol. 2006;295(1):194–205. https://doi.org/10.1016/j.ydbio.2006.03.028.
Article
CAS
PubMed
Google Scholar
Kumari PK, Ali A, Singh SK, Chaurasia A, Raman R. Genetic heterogeneity in Van der Woude syndrome: identification of NOL4 and IRF6 haplotype from the noncoding region as candidates in two families. J Genet. 2018;97(1):275–85 PMID: 2966634.
Article
CAS
PubMed
Google Scholar
Gustafsson MK, Pan H, Pinney DF, Liu YL, Lewandowski A, Epstein DJ, et al. 2002. Myf5 is a direct target of long-range Shh signaling and Gli regulation for muscle specification. Genes Dev. 2002;16(1):114–26. https://doi.org/10.1101/gad.940702.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin CY, Lee HC, Chen HC, Hsieh CC, Tsai HJ. Normal function of Myf5 during gastrulation is required for pharyngeal arch cartilage development in zebrafish embryos. Zebrafish. 2013;10(4):486–99. https://doi.org/10.1089/zeb.2013.09.
Article
CAS
PubMed
PubMed Central
Google Scholar
Friocourt F, Chédotal A. The Robo3 receptor, a key player in the development, evolution, and function of commissural systems. Dev Neurobiol. 2017;77(7):876–90. https://doi.org/10.1002/dneu.22478.
Article
CAS
PubMed
Google Scholar
Kamm GB, Pisciottano F, Kliger R, Franchini LF. The developmental brain gene NPAS3 contains the largest number of accelerated regulatory sequences in the human genome. Mol Biol Evol. 2013;30(5):1088–102. https://doi.org/10.1093/molbev/mst023.
Article
CAS
PubMed
PubMed Central
Google Scholar
McGhee KE, Bell AM. Paternal care in a fish: epigenetics and fitness enhancing effects on offspring anxiety. Proc Biol Sci. 2014;281(1794):20141146. https://doi.org/10.1098/rspb.2014.1146.
Article
PubMed
PubMed Central
Google Scholar
Oliveira RF, Simões JM, Teles MC, Oliveira CR, Becker JD, Lopez JS. Assessment of fight outcome is needed to activate socially driven transcriptional changes in the zebrafish brain. Proc Natl Acad Sci U S A. 2016;113(5):E654–61. https://doi.org/10.1073/pnas.1514292113.
Article
CAS
PubMed
PubMed Central
Google Scholar
Auta J, Smith RC, Dong E, Tueting P, Sershen H, Boules S, et al. DNA-methylation gene network dysregulation in peripheral blood lymphocytes of schizophrenia patients. Schizophr Res. 2013;150(1):312–8. https://doi.org/10.1016/j.schres.2013.07.030.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blaze J, Wang J, Ho L, Mendelev N, Haghighi F, Pasinetti GM. Polyphenolic compounds alter stress-induced patterns of global DNA methylation in brain and blood. Mol Nutr Food Res. 2018;62(8):e1700722. https://doi.org/10.1002/mnfr.20170072.
Article
PubMed
PubMed Central
Google Scholar
Vinkers CH, Geuze E, van Rooij SJH, Kennis M, Schür RR, Nispeling DM, et al. Successful treatment of post-traumatic stress disorder reverses DNA methylation marks. Mol Psychiatry. 2019. https://doi.org/10.1038/s41380-019-0549-3.
Arockiaraj AI, Liu D, Shaffer JR, Koleck TA, Crago EA, Weeks DE, Conley YP. Methylation data processing protocol and comparison of blood and cerebral spinal fluid following aneurysmal subarachnoid hemorrhage. Front Genet. 2020;11:671. https://doi.org/10.3389/fgene.2020.00671.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pértille F, Ibelli AMG, Sharif ME, Poleti MD, Fröhlich AS, Rezaei S, et al. Putative epigenetic biomarkers of stress in red blood cells of chickens reared across different biomes. Front Genet. 2020;11:508809. https://doi.org/10.3389/fgene.2020.508809.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lubin FD, Roth TL, Sweatt JD. Epigenetic regulation of BDNF gene transcription in the consolidation of fear memory. J Neurosci. 2008;28(42):10576–86. https://doi.org/10.1523/JNEUROSCI.1786-08.2008.
Article
CAS
PubMed
PubMed Central
Google Scholar
Coley EJL, Demaestri C, Ganguly P, Honeycutt JA, Peterzell S, Rose N, et al. Cross-generational transmission of early life stress effects on HPA regulators and Bdnf are mediated by sex, lineage, and upbringing. Front Behav Neurosci. 2019;13:101. https://doi.org/10.3389/fnbeh.2019.00101.
Article
CAS
PubMed
PubMed Central
Google Scholar
Numakawa T, Odaka H, Adachi N. Actions of brain-derived neurotrophic factor and glucocorticoid stress in neurogenesis. Int J Mol Sci. 2017;18(11):2312. https://doi.org/10.3390/ijms18112312.
Article
CAS
PubMed Central
Google Scholar
Notaras M, van den Buuse M. Neurobiology of BDNF in fear memory, sensitivity to stress, and stress-related disorders. Mol Psychiatry. 2020;25:2251–74. https://doi.org/10.1038/s41380-019-0639-2.
Article
PubMed
Google Scholar
Pavlidis M, Theodoridi A, Tsalafouta A. Neuroendocrine regulation of the stress response in adult zebrafish, Danio rerio. Prog Neuro-Psychopharmacol Biol Psychiatry. 2015;60:121–31. https://doi.org/10.1016/j.pnpbp.2015.02.014.
Article
CAS
Google Scholar
Vindas MA, Fokos S, Pavlidis M, Hoglund E, Dyonisopoulou S, Ebbesson LOE, et al. Early life stress induces long-term changes in limbic areas of a teleost fish: the role of catecholamine systems in stress coping. Sci Rep. 2018;8(1):5638. https://doi.org/10.1038/s41598-018-23950-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sadoul B, Alfonso S, Bessa E, Bouchareb A, Blondeau-Bidet E, Clair P, et al. Enhanced brain expression of genes related to cell proliferation and neural differentiation is associated with cortisol receptor expression in fishes. Gen Comp Endocrinol. 2018;267:76–81. https://doi.org/10.1016/j.ygcen.2018.06.001.
Article
CAS
PubMed
Google Scholar
Samaras A, Espirito Santo C, Papandroulakis N, Mitrizakis N, Pavlidis M, Hoglund E, et al. Allostatic load and stress physiology in European seabass (Dicentrarchus labrax L.) and gilthead seabream (Sparus aurata L.). Front Endocrinol. 2018;9:451. https://doi.org/10.3389/fendo.2018.00451.
Article
Google Scholar
Alfonso S, Sadoul B, Gesto M, Joassard L, Chatain B, Bégout ML. Coping styles in European sea bass: the link between boldness, stress response and neurogenesis. Physiol Behav. 2019;207:67–85. https://doi.org/10.1016/j.physbeh.2019.04.020.
Article
CAS
Google Scholar
Sassone-Corsi P. The cyclic AMP pathway. Cold Spring Harb Perspect Biol. 2012;4(12):a011148. https://doi.org/10.1101/cshperspect.a011148.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee EH, Seo SR. Neuroprotective roles of pituitary adenylate cyclase-activating polypeptide in neurodegenerative diseases. BMB Rep. 2014;47(7):369–75. https://doi.org/10.5483/bmbrep.2014.47.7.086.
Article
PubMed
PubMed Central
Google Scholar
Marosi K, Mattson MP. BDNF mediates adaptive brain and body responses to energetic challenges. Trends Endocrinol Metab. 2014;25(2):89–98. https://doi.org/10.1016/j.tem.2013.10.006.
Article
CAS
PubMed
Google Scholar
Bennett MR, Lagopoulos J. Stress and trauma: BDNF control of dendritic-spine formation and regression. Prog Neurobiol. 2014;112:80–99. https://doi.org/10.1016/j.pneurobio.2013.10.005.
Article
CAS
PubMed
Google Scholar
Buck JM, O’Neill HC, Stitzel JA. Developmental nicotine exposure elicits multigenerational disequilibria in proBDNF proteolysis and glucocorticoid signaling in the frontal cortices, striata, and hippocampi of adolescent mice. Biochem Pharmacol. 2019;168:438–51. https://doi.org/10.1016/j.bcp.2019.08.003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu B, Zhao L, Luo D, Xue DM, Tan T, Dong ZF, et al. Furin promotes dendritic morphogenesis and learning and memory in transgenic mice. Cell Mol Life Sci. 2018;75(13):2473–88. https://doi.org/10.1007/s00018-017-2742-3.
Article
CAS
PubMed
Google Scholar
Marcinkiewicz M, Seidah NG, Chrétien M. Implications of the subtilisin/kexin-like precursor convertases in the development and function of nervous tissues. Acta Neurobiol Exp. 1996;56(1):287–98 PMID: 8787188.
CAS
Google Scholar
Chen Y, Zhang J, Deng M. Furin mediates brain-derived neurotrophic factor upregulation in cultured rat astrocytes exposed to oxygen-glucose deprivation. J Neurosci Res. 2015;93(1):189–94. https://doi.org/10.1002/jnr.23455.
Article
CAS
PubMed
Google Scholar
Yeh FC, Kao CF, Kuo PH. Explore the features of brain-derived neurotrophic factor in mood disorders. PLoS One. 2015;10(6):e0128605. https://doi.org/10.1371/journal.pone.0128605.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pang PT, Teng HK, Zaitsev E, Woo NT, Sakata K, Zhen SH, et al. Cleavage of proBDNF by tPA/plasmin is essential for long-term hippocampal plasticity. Science. 2004;306:487–91. https://doi.org/10.1126/science.1100135.
Article
CAS
PubMed
Google Scholar
McEwen BS. Central effects of stress hormones in health and disease: understanding the protective and damaging effects of stress and stress mediators. Eur J Pharmacol. 2008;583(2–3):174–85. https://doi.org/10.1016/j.ejphar.2007.11.071.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jeanneteau FD, Lambert WM, Ismaili N, Bath KG, Lee FS, Garabedian MJ, et al. BDNF and glucocorticoids regulate corticotrophin-releasing hormone (CRH) homeostasis in the hypothalamus. Proc Natl Acad Sci U S A. 2012;109(4):1305–10. https://doi.org/10.1073/pnas.1114122109.
Article
PubMed
PubMed Central
Google Scholar
Gray K, Ellis V. Activation of pro-BDNF by the pericellular serine protease plasmin. FEBS Lett. 2008;582(6):907–10. https://doi.org/10.1016/j.febslet.2008.02.026.
Article
CAS
PubMed
Google Scholar
Wang N, Zhang L, Miles L, Hoover-Plow J. Plasminogen regulates pro-opiomelanocortin processing. J Thromb Haemost. 2004;2(5):785–96. https://doi.org/10.1111/j.1538-7836.2004.00694.x.
Article
CAS
PubMed
Google Scholar
Liu X. SLC family transporters. Adv Exp Med Biol. 2019;1141:101–202. https://doi.org/10.1007/978-981-13-7647-4_3.
Article
CAS
PubMed
Google Scholar
Strazielle N, Ghersi-Egea JF. Efflux transporters in blood-brain interfaces of the developing brain. Front Neurosci. 2015;9:21. https://doi.org/10.3389/fnins.2015.00021.
Article
PubMed
PubMed Central
Google Scholar
Couroussé T, Bacq A, Belzung C, Guiard B, Balasse L, Louis F, et al. Brain organic cation transporter 2 controls response and vulnerability to stress and GSK3β signaling. Mol Psychiatry. 2015;20(7):889–900. https://doi.org/10.1038/mp.2014.86.
Article
CAS
PubMed
Google Scholar
Couroussé T, Gautron S. Role of organic cation transporters (OCTs) in the brain. Pharmacol Ther. 2015;146:94–103. https://doi.org/10.1016/j.pharmthera.2014.09.008.
Article
CAS
PubMed
Google Scholar
Gai Y, Liu Z, Cervantes-Sandoval I, Davis RL. Drosophila SLC22A transporter is a memory suppressor gene that influences cholinergic neurotransmission to the mushroom bodies. Neuron. 2016;90(3):581–95. https://doi.org/10.1016/j.neuron.2016.03.017.
Article
CAS
PubMed
PubMed Central
Google Scholar
Erbel-Sieler C, Dudley C, Zhou Y, Wu XL, Estill SJ, Han T, et al. Behavioral and regulatory abnormalities in mice deficient in the NPAS1 and NPAS3 transcription factors. Proc Natl Acad Sci U S A. 2004;101(37):13648–53. https://doi.org/10.1073/pnas.0405310101.
Article
CAS
PubMed
PubMed Central
Google Scholar
Luoma LM, Macintyre G, Tibbo PG, Wild TC, Colman I, Purdon SE. NPAS3 exonic SNP genotype is linked to working memory performance in healthy young adults. Psychiatry Res. 2018;265:263–4. https://doi.org/10.1016/j.psychres.2018.04.063.
Article
CAS
PubMed
Google Scholar
Yang D, Zhang W, Padhiar A, Yue Y, Shi YH, Zheng TZ, et al. NPAS3 regulates transcription and expression of VGF: implications for neurogenesis and psychiatric disorders. Front Mol Neurosci. 2016;9:109. https://doi.org/10.3389/fnmol.2016.00109.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lavedan C, Licamele L, Volpi S, Hamilton J, Heaton C, Mack K, et al. 2009. Association of the NPAS3 gene and five other loci with response to the antipsychotic iloperidone identified in a whole genome association study. Mol Psychiatry. 2009;14(8):804–19. https://doi.org/10.1038/mp.2008.56.
Article
CAS
PubMed
Google Scholar
Walch L. Emerging role of the scaffolding protein Dlg1 in vesicle trafficking. Traffic. 2013;14:964–73. https://doi.org/10.1111/tra.12089.
Article
CAS
PubMed
Google Scholar
Liu Y, Cui L, Schwarz MK, Fog Y, Schlüter OM. Adrenergic gate release for spike timing-dependent synaptic potentiation. Neuron 18. 2017;93(2):394–408. https://doi.org/10.1016/j.neuron.2016.12.039.
Article
CAS
Google Scholar
Jourdi H, Kabbaj M. Acute BDNF treatment upregulates GluR1-SAP97 and GluR2-GRIP1 interactions: implications for sustained AMPA receptor expression. PLoS One. 2013;8(2):e57124. https://doi.org/10.1371/journal.pone.0057124.
Article
CAS
PubMed
PubMed Central
Google Scholar
Singh MD, Jensen M, Lasser M, Huber E, Yusuff T, Pizzo L, et al. NCBP2 modulates neurodevelopmental defects of the 3q29 deletion in Drosophila and Xenopus laevis models. PLoS Genet. 2020;16(2):e1008590. https://doi.org/10.1371/journal.pgen.1008590.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lauschke VM, Ivanov M, Ingelman-Sundberg M. Pitfalls and opportunities for epigenomic analyses focused on disease diagnosis, prognosis, and therapy. Trends Pharmacol Sci. 2017;38(9):765–70. https://doi.org/10.1016/j.tips.2017.05.007.
Article
CAS
PubMed
Google Scholar
van Hamburg JP, Tas SW. Molecular mechanisms underpinning T helper 17 cell heterogeneity and functions in rheumatoid arthritis. J Autoimmun. 2018;87:69–81. https://doi.org/10.1016/j.jaut.2017.12.006.
Article
CAS
PubMed
Google Scholar
Haasch D, Berg C, Clampit JE, Pederson T, Frost L, Kroeger P, et al. PKCtheta is a key player in the development of insulin resistance. Biochem Biophys Res Commun. 2006;343(2):361–8. https://doi.org/10.1016/j.bbrc.2006.02.177.
Article
CAS
PubMed
Google Scholar
Zanin-Zhorov A, Kumari S, Hippen KL, Merkel SC, MacMillan ML, Blazar BR, Dustin ML. Human in vitro-induced regulatory T cells display Dlgh1dependent and PKC-θ restrained suppressive activity. Sci Rep. 2017;7(1):4258. https://doi.org/10.1038/s41598-017-04053-5 Erratum in: Sci Rep. 2020;10(1): 3317.
Article
CAS
PubMed
PubMed Central
Google Scholar
Erion DM, Kotas ME, McGlashon J, Yonemitsu S, Hsiao JJ, Nagai Y, et al. cAMP-responsive element-binding protein (CREB)-regulated transcription coactivator 2 (CRTC2) promotes glucagon clearance and hepatic amino acid catabolism to regulate glucose homeostasis. J Biol Chem. 2013;288(22):16167–76. https://doi.org/10.1074/jbc.M113.460246.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anyamaneeratch K, Rojvirat P, Sukjoi W, Jitrapakdee S. Insights into transcriptional regulation of hepatic glucose production. Int Rev Cell Mol Biol. 2015;318:203–53. https://doi.org/10.1016/bs.ircmb.2015.05.004.
Article
CAS
PubMed
Google Scholar
Hogan MF, Ravnskjaer K, Matsumura S, Huising MO, Hull RL, Kahn SE, et al. Hepatic insulin resistance following chronic activation of the CREB Coactivator CRTC2. J Biol Chem. 2015;290(43):25997–6006. https://doi.org/10.1074/jbc.M115.679266.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hill MJ, Suzuki S, Segars JH, Kino T. CRTC2 is a Coactivator of GR and couples GR and CREB in the regulation of hepatic gluconeogenesis. Mol Endocrinol. 2016;30(1):104–17. https://doi.org/10.1210/me.2015-1237.
Article
CAS
PubMed
Google Scholar
Metzger DCH, Schulte PM. The DNA methylation landscape of stickleback reveals patterns of sex chromosome evolution and effects of environmental salinity. Genome Biol Evol. 2018;10(3):775–85. https://doi.org/10.1093/gbe/evy034.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sagonas K, Meyer BS, Kaufmann J, Lenz TL, Häsler R, Eizaguirre C. Experimental parasite infection causes genome-wide changes in DNA methylation. Mol Biol Evol. 2020;37(8):2287–99. https://doi.org/10.1093/molbev/msaa084.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiu Y, Shao C, Zhu Y, Li YZ, Gan T, Xu WT, et al. Differences in DNA methylation between disease-resistant and disease-susceptible Chinese tongue sole (Cynoglossus semilaevis) families. Front Genet. 2019;10:847. https://doi.org/10.3389/fgene.2019.00847.
Article
CAS
PubMed
PubMed Central
Google Scholar
Triantaphyllopoulos KA, Ikonomopoulos I, Bannister AJ. Epigenetics and inheritance of phenotype variation in livestock. Epigenetics Chromatin. 2016;9:31. https://doi.org/10.1186/s13072-016-0081-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Burggren WW. Dynamics of epigenetic phenomena: intergenerational and intragenerational phenotype 'washout'. J Exp Biol. 2015;218:80–7. https://doi.org/10.1242/jeb.107318.
Article
PubMed
Google Scholar
Trollope AF, Mifsud KR, Saunderson EA, Reul JMHM. Molecular and epigenetic mechanisms underlying cognitive and adaptive responses to stress. Epigenomes. 2017;1(3):17. https://doi.org/10.3390/epigenomes1030017.
Article
CAS
PubMed
Google Scholar
Suzuki M, Liao W, Wos F, Johnston AD, DeGrazia J, Ishii J, et al. Whole-genome bisulfite sequencing with improved accuracy and cost. Genome Res. 2018;28(9):1364–71. https://doi.org/10.1101/gr.232587.117.
Article
CAS
PubMed
PubMed Central
Google Scholar
Werner O, Prudencio ÁS, de la Cruz-Martinez E, Nieto-Lugilde M, Martinez-Gomez P, Ros RM. A cost-reduced variant of epi-genotyping by sequencing for studying DNA methylation in non-model organisms. Front Plant Sci. 2020;11:694. https://doi.org/10.3389/fpls.2020.00694.
Article
PubMed
PubMed Central
Google Scholar
Prudencio ÁS, Werner O, Martínez-García PJ, Dicenta F, Ros RM, Martinez-Gomez P. DNA methylation analysis of dormancy release in almond (Prunus dulcis) flower buds using epi-genotyping by sequencing. Int J Mol Sci. 2018;19(11):3542. https://doi.org/10.3390/ijms19113542.
Article
CAS
PubMed Central
Google Scholar
Crotti M, Adams CE, Elmer KR. Population genomic SNPs from epigenetic RADs: gaining genetic and epigenetic data from a single established next-generation sequencing approach. Methods Ecol Evol. 2020;11:839–49. https://doi.org/10.1111/2041-210X.13395.
Article
Google Scholar
Suravajhala P, Kogelman LJ, Kadarmideen HN. Multi-omic data integration and analysis using systems genomics approaches: methods and applications in animal production, health and welfare. Genet Sel Evol. 2016;48(1):38. https://doi.org/10.1186/s12711-016-0217-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schwartz TS. The promises and the challenges of integrating multi-omics and systems biology in comparative stress biology. Integr Comp Biol. 2020;60(1):89–97. https://doi.org/10.1093/icb/icaa026.
Article
CAS
PubMed
Google Scholar
Gu H, Smith ZD, Bock C, Boyle P, Gnirke A, Meissner A. Preparation of reduced representation bisulfite sequencing libraries for genome-scale DNA methylation profiling. Nat Protocols. 2011;6:468–81. https://doi.org/10.1038/nprot.2010.190.
Article
CAS
PubMed
Google Scholar
Lepais O, Weir JT. SimRAD: an R package for simulation-based prediction of the number of loci expected in RADseq and similar genotyping by sequencing approaches. Mol Ecol Resour. 2014;14:1314–21. https://doi.org/10.1111/1755-0998.12273.
Article
CAS
PubMed
Google Scholar
Catchen J, Hohenlohe P. Bassham S, Amoros A, Cresko WA. Stacks: an analysis tool set for population genomics. Mol Ecol 2013; 22(11): 3124–3140. doi: https://doi.org/10.1111/mec.12354.
Akalin A, Kormaksson M, Li S, Garrett-Bakelman FE, Figueroa ME, Melnick A, et al. MethylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol. 2012;13:R87. https://doi.org/10.1186/gb-2012-13-10-R87.
Article
PubMed
PubMed Central
Google Scholar
Edgar R, Domarachev M, Lash AE. Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30(1):207–1.
Article
CAS
PubMed
PubMed Central
Google Scholar