Parte AC. LPSN - list of prokaryotic names with standing in nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol. 2018;68:1825–9.
Article
PubMed
Google Scholar
Magee JT, Burnett IA, Hindmarch JM, Spencer RC. Micrococcus and Stomatococcus spp. from human infections. J Hosp Infect. 1990;16:67–73.
Article
CAS
PubMed
Google Scholar
Khan A, Aung TT, Chaudhuri D. The first case of native mitral valve endocarditis due to Micrococcus luteus and review of the literature. Case Rep Cardiol. 2019;2019:5907319.
PubMed
PubMed Central
Google Scholar
Ianniello NM, Andrade DC, Ivancic S, Eckardt PA, Lemos Ramirez JC. Native valve infective endocarditis due to Micrococcus luteus in a non-Hodgkin's lymphoma patient. IDCases. 2019;18:e00657.
Article
PubMed
PubMed Central
Google Scholar
von Eiff C, Kuhn N, Herrmann M, Weber S, Peters G. Micrococcus luteus as a cause of recurrent bacteremia. Pediatr Infect Dis J. 1996;15:711–3.
Article
Google Scholar
Kocur M, Kloos WE, Schleifer K-H. The genus Micrococcus. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E, editors. The Prokaryotes: Volume 3: Archaea Bacteria: Firmicutes, Actinomycetes. New York: Springer New York; 2006. p. 961–71.
Google Scholar
Mukamolova GV, Turapov OA, Kazarian K, Telkov M, Kaprelyants AS, Kell DB, et al. The rpf gene of Micrococcus luteus encodes an essential secreted growth factor. Mol Microbiol. 2002;46:611–21.
Article
CAS
PubMed
Google Scholar
Mukamolova GV, Murzin AG, Salina EG, Demina GR, Kell DB, Kaprelyants AS, et al. Muralytic activity of Micrococcus luteus Rpf and its relationship to physiological activity in promoting bacterial growth and resuscitation. Mol Microbiol. 2006;59:84–98.
Article
CAS
PubMed
Google Scholar
Yu C, Liu Y, Jia Y, Su X, Lu L, Ding L, et al. Extracellular organic matter from Micrococcus luteus containing resuscitation-promoting factor in sequencing batch reactor for effective nutrient and phenol removal. Sci Total Environ. 2020;727:138627.
Article
CAS
PubMed
Google Scholar
Su XM, Liu YD, Hashmi MZ, Ding LX, Shen CF. Culture-dependent and culture-independent characterization of potentially functional biphenyl-degrading bacterial community in response to extracellular organic matter from Micrococcus luteus. Microb Biotechnol. 2015;8:569–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jampasri K, Pokethitiyook P, Kruatrachue M, Ounjai P, Kumsopa A. Phytoremediation of fuel oil and lead co-contaminated soil by Chromolaena odorata in association with Micrococcus luteus. Int J Phytoremediation. 2016;18:994–1001.
Article
CAS
PubMed
Google Scholar
Young M, Artsatbanov V, Beller HR, Chandra G, Chater KF, Dover LG, et al. Genome sequence of the Fleming strain of Micrococcus luteus, a simple free-living actinobacterium. J Bacteriol. 2010;192:841–60.
Article
CAS
PubMed
Google Scholar
Cohan FM. Bacterial species and speciation. Syst Biol. 2001;50:513–24.
Article
CAS
PubMed
Google Scholar
Shapiro BJ, Polz MF. Microbial speciation. Cold Spring Harb Perspect Biol. 2015;7:a018143.
Article
PubMed
PubMed Central
Google Scholar
Pal C, Papp B, Lercher MJ. Adaptive evolution of bacterial metabolic networks by horizontal gene transfer. Nat Genet. 2005;37:1372–5.
Article
CAS
PubMed
Google Scholar
Albalat R, Cañestro C. Evolution by gene loss. Nat Rev Genet. 2016;17:379–91.
Article
CAS
PubMed
Google Scholar
Lin H, Yu M, Wang X, Zhang XH. Comparative genomic analysis reveals the evolution and environmental adaptation strategies of vibrios. BMC Genomics. 2018;19:135.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li Y, Pinto-Tomás AA, Rong X, Cheng K, Liu M, Huang Y. Population genomics insights into adaptive evolution and ecological differentiation in streptomycetes. Appl Environ Microbiol. 2019;85:e02555–18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tian X, Zhang Z, Yang T, Chen M, Li J, Chen F, et al. Comparative genomics analysis of Streptomyces species reveals their adaptation to the marine environment and their diversity at the genomic level. Front Microbiol. 2016;7:998.
Article
PubMed
PubMed Central
Google Scholar
Kutmutia SK, Drautz-Moses DI, Uchida A, Purbojati RW, Wong A, Kushwaha KK, et al. Complete genome sequence of Micrococcus luteus strain SGAir0127, isolated from indoor air samples from Singapore. Microbiol Resour Announc. 2019;8:e00646–19.
Article
PubMed
PubMed Central
Google Scholar
Lee S, An YW, Choi CH, Yun MR, Kim S, Cheong H, et al. Complete genome sequences of Micrococcus luteus strains NCCP 15687 and NCCP 16831, isolated in South Korea. Microbiol Resour Announc. 2020;9:e01558–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lafi FF, Ramirez-Prado JS, Alam I, Bajic VB, Hirt H, Saad MM. Draft genome sequence of plant growth-promoting Micrococcus luteus strain K39 isolated from Cyperus conglomeratus in Saudi Arabia. Genome Announc. 2017;5:e01520–16.
PubMed
PubMed Central
Google Scholar
Chen HH, Zhao GZ, Park DJ, Zhang YQ, Xu LH, Lee JC, et al. Micrococcus endophyticus sp. nov., isolated from surface-sterilized Aquilaria sinensis roots. Int J Syst Evol Microbiol. 2009;59:1070–5.
Article
CAS
PubMed
Google Scholar
Rieser G, Scherer S, Wenning M. Micrococcus cohnii sp. nov., isolated from the air in a medical practice. Int J Syst Evol Microbiol. 2013;63:80–5.
Article
PubMed
Google Scholar
Liu XY, Wang BJ, Jiang CY, Liu SJ. Micrococcus flavus sp. nov., isolated from activated sludge in a bioreactor. Int J Syst Evol Microbiol. 2007;57:66–9.
Article
CAS
PubMed
Google Scholar
Huerta-Cepas J, Szklarczyk D, Heller D, Hernandez-Plaza A, Forslund SK, Cook H, et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 2019;47:D309–14.
Article
CAS
PubMed
Google Scholar
Vandecraen J, Chandler M, Aertsen A. Van Houdt RJCrim. The impact of insertion sequences on bacterial genome plasticity and adaptability. Crit Rev Microbiol. 2017;43:709–30.
Article
CAS
PubMed
Google Scholar
Liu B, Zheng D, Jin Q, Chen L, Yang J. VFDB 2019: a comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res. 2018;47:D687–92.
Article
PubMed Central
CAS
Google Scholar
Zhou C, Bhinderwala F, Lehman MK, Thomas VC, Chaudhari SS, Yamada KJ, et al. Urease is an essential component of the acid response network of Staphylococcus aureus and is required for a persistent murine kidney infection. PLoS Pathog. 2019;15:e1007538.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rutherford JC. The emerging role of urease as a general microbial virulence factor. PLoS Pathog. 2014;10:e1004062.
Article
PubMed
PubMed Central
CAS
Google Scholar
Skaar EP, Tobiason DM, Quick J, Judd RC, Weissbach H, Etienne F, et al. The outer membrane localization of the Neisseria gonorrhoeae MsrA/B is involved in survival against reactive oxygen species. Proc Natl Acad Sci U S A. 2002;99:10108–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Olry A, Boschi-Muller S, Marraud M, Sanglier-Cianferani S, Van Dorsselear A, Branlant G. Characterization of the methionine sulfoxide reductase activities of PILB, a probable virulence factor from Neisseria meningitidis. J Biol Chem. 2002;277:12016–22.
Article
CAS
PubMed
Google Scholar
Contreras-Moreira B, Vinuesa P. GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis. Appl Environ Microbiol. 2013;79:7696–701.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thomas CM, Nielsen KM. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol. 2005;3:711–21.
Article
CAS
PubMed
Google Scholar
Tonkin-Hill G, Lees JA, Bentley SD, Frost SDW, Corander J. Fast hierarchical Bayesian analysis of population structure. Nucleic Acids Res. 2019;47:5539–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Falush D, Stephens M, Pritchard JK. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics. 2003;164:1567–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fraser C, Hanage WP, Spratt BG. Recombination and the nature of bacterial speciation. Science. 2007;315:476–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dixit PD, Pang TY, Maslov S. Recombination-driven genome evolution and stability of bacterial species. Genetics. 2017;207:281–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huson DH, Bryant D. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol. 2006;23:254–67.
Article
CAS
PubMed
Google Scholar
Bruen TC, Philippe H, Bryant D. A simple and robust statistical test for detecting the presence of recombination. Genetics. 2006;172:2665–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin M, Kussell E. Inferring bacterial recombination rates from large-scale sequencing datasets. Nat Methods. 2019;16:199–204.
Article
CAS
PubMed
Google Scholar
Park CJ, Andam CP. Distinct but intertwined evolutionary histories of multiple Salmonella enterica subspecies. mSystems. 2020;5:e00515–9.
Article
PubMed
PubMed Central
Google Scholar
Lee IPA, Andam CP. Pan-genome diversification and recombination in Cronobacter sakazakii, an opportunistic pathogen in neonates, and insights to its xerotolerant lifestyle. BMC Microbiol. 2019;19:306.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smith JT, Amador S, McGonagle CJ, Needle D, Gibson R, Andam CP. Population genomics of Staphylococcus pseudintermedius in companion animals in the United States. Commun Biol. 2020;3:282.
Article
PubMed
PubMed Central
Google Scholar
Mostowy R, Croucher NJ, Andam CP, Corander J, Hanage WP, Marttinen P. Efficient inference of recent and ancestral recombination within bacterial populations. Mol Biol Evol. 2017;34:1167–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yanai I, Wolf YI, Koonin EV. Evolution of gene fusions: horizontal transfer versus independent events. Genome Biol. 2002;3:research0024.
PubMed
PubMed Central
Google Scholar
Schultz JE, Matin A. Molecular and functional characterization of a carbon starvation gene of Escherichia coli. J Mol Biol. 1991;218:129–40.
Article
CAS
PubMed
Google Scholar
Boscari A, Mandon K, Dupont L, Poggi MC, Le Rudulier D. BetS is a major glycine betaine/proline betaine transporter required for early osmotic adjustment in Sinorhizobium meliloti. J Bacteriol. 2002;184:2654–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lamark T, Kaasen I, Eshoo MW, Falkenberg P, McDougall J, Strom AR. DNA sequence and analysis of the bet genes encoding the osmoregulatory choline-glycine betaine pathway of Escherichia coli. Mol Microbiol. 1991;5:1049–64.
Article
CAS
PubMed
Google Scholar
Pimentel ZT, Zhang Y. Evolution of the natural transformation protein, ComEC, in bacteria. Front Microbiol. 2018;9:2980.
Article
PubMed
PubMed Central
Google Scholar
Cascioferro S, Totsika M, Schillaci D. Sortase a: an ideal target for anti-virulence drug development. Microb Pathog. 2014;77:105–12.
Article
CAS
PubMed
Google Scholar
Cossart P, Jonquières R. Sortase, a universal target for therapeutic agents against gram-positive bacteria? Proc Natl Acad Sci U S A. 2000;97:5013–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Spirig T, Weiner EM, Clubb RT. Sortase enzymes in gram-positive bacteria. Mol Microbiol. 2011;82:1044–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fujita Y, Matsuoka H, Hirooka K. Regulation of fatty acid metabolism in bacteria. Mol Microbiol. 2007;66:829–39.
Article
CAS
PubMed
Google Scholar
Hampton HG, Jackson SA, Fagerlund RD, Vogel AIM, Dy RL, Blower TR, et al. AbiEi binds cooperatively to the type IV abiE toxin-antitoxin operator via a positively-charged surface and causes DNA bending and negative autoregulation. J Mol Biol. 2018;430:1141–56.
Article
CAS
PubMed
Google Scholar
Dy RL, Przybilski R, Semeijn K, Salmond GP, Fineran PC. A widespread bacteriophage abortive infection system functions through a type IV toxin-antitoxin mechanism. Nucleic Acids Res. 2014;42:4590–605.
Article
CAS
PubMed
PubMed Central
Google Scholar
Labrie SJ, Samson JE, Moineau S. Bacteriophage resistance mechanisms. Nat Rev Microbiol. 2010;8:317–27.
Article
CAS
PubMed
Google Scholar
MacLean MJ, Ness LS, Ferguson GP, Booth IR. The role of glyoxalase I in the detoxification of methylglyoxal and in the activation of the KefB K+ efflux system in Escherichia coli. Mol Microbiol. 1998;27:563–71.
Article
CAS
PubMed
Google Scholar
Rodriguez-Nava G, Mohamed A, Yanez-Bello MA, Trelles-Garcia DP. Advances in medicine and positive natural selection: prosthetic valve endocarditis due to biofilm producer Micrococcus luteus. IDCases. 2020;20:e00743.
Article
PubMed
PubMed Central
Google Scholar
Miltiadous G, Elisaf M. Native valve endocarditis due to Micrococcus luteus: a case report and review of the literature. J Med Case Rep. 2011;5:251.
Article
PubMed
PubMed Central
Google Scholar
Newell KV, Thomas DP, Brekasis D, Paget MS. The RNA polymerase-binding protein RbpA confers basal levels of rifampicin resistance on Streptomyces coelicolor. Mol Microbiol. 2006;60:687–96.
Article
CAS
PubMed
Google Scholar
Tettelin H, Riley D, Cattuto C, Medini D. Comparative genomics: the bacterial pan-genome. Curr Opin Microbiol. 2008;11:472–7.
Article
CAS
PubMed
Google Scholar
Medini D, Donati C, Tettelin H, Masignani V, Rappuoli R. The microbial pan-genome. Curr Opin Genet Dev. 2005;15:589–94.
Article
CAS
PubMed
Google Scholar
Murayama O, Matsuda M, Moore JE. Studies on the genomic heterogeneity of Micrococcus luteus strains by macro-restriction analysis using pulsed-field gel electrophoresis. J Basic Microbiol. 2003;43:337–40.
Article
CAS
PubMed
Google Scholar
Sun Y, Luo H. Homologous recombination in core genomes facilitates marine bacterial adaptation. Appl Environ Microbiol. 2018;84:e02545–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
González-Torres P, Rodríguez-Mateos F, Antón J, Gabaldón T. Impact of homologous recombination on the evolution of prokaryotic core genomes. mBio. 2019;10:e02494–18.
Article
PubMed
PubMed Central
Google Scholar
Shapiro BJ, Leducq JB, Mallet J. What is speciation? PLoS Genet. 2016;12:e1005860.
Article
PubMed
PubMed Central
CAS
Google Scholar
Vos M. A species concept for bacteria based on adaptive divergence. Trends Microbiol. 2011;19:1–7.
Article
CAS
PubMed
Google Scholar
Toft C, Andersson SG. Evolutionary microbial genomics: insights into bacterial host adaptation. Nat Rev Genet. 2010;11:465–75.
Article
CAS
PubMed
Google Scholar
Chopin MC, Chopin A, Bidnenko E. Phage abortive infection in lactococci: variations on a theme. Curr Opin Microbiol. 2005;8:473–9.
Article
CAS
PubMed
Google Scholar
Shapiro BJ, Friedman J, Cordero OX, Preheim SP, Timberlake SC, Szabo G, et al. Population genomics of early events in the ecological differentiation of bacteria. Science. 2012;336:48–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol. 2017;67:1613–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 2010;11:119.
Article
PubMed
PubMed Central
CAS
Google Scholar
Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, von Mering C, et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol. 2017;34:2115–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60.
Article
CAS
PubMed
Google Scholar
Eddy SR. Profile hidden Markov models. Bioinformatics. 1998;14:755–63.
Article
CAS
PubMed
Google Scholar
Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, et al. The Pfam protein families database. Nucleic Acids Res. 2012;40:D290–301.
Article
CAS
PubMed
Google Scholar
Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M. ISfinder: the reference Centre for bacterial insertion sequences. Nucleic Acids Res. 2006;34:D32–6.
Article
CAS
PubMed
Google Scholar
Bertelli C, Brinkman FSL. Improved genomic island predictions with IslandPath-DIMOB. Bioinformatics. 2018;34:2161–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M, Edalatmand A, et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2020;48:D517–25.
CAS
PubMed
Google Scholar
Li J, Tai C, Deng Z, Zhong W, He Y, Ou HY. VRprofile: gene-cluster-detection-based profiling of virulence and antibiotic resistance traits encoded within genome sequences of pathogenic bacteria. Brief Bioinform. 2018;19:566–74.
CAS
PubMed
Google Scholar
Zhao Y, Jia X, Yang J, Ling Y, Zhang Z, Yu J, et al. PanGP: a tool for quickly analyzing bacterial pan-genome profile. Bioinformatics. 2014;30:1297–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Suyama M, Torrents D, Bork P. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 2006;34:W609–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000;17:540–52.
Article
CAS
PubMed
Google Scholar
Price MN, Dehal PS, Arkin AP. FastTree 2--approximately maximum-likelihood trees for large alignments. PLoS One. 2010;5:e9490.
Article
PubMed
PubMed Central
CAS
Google Scholar
Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016;44:W242–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Suzuki R, Shimodaira H. Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics. 2006;22:1540–2.
Article
CAS
PubMed
Google Scholar
Earl D, Vonholdt BM. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour. 2011;4:359–61.
Article
Google Scholar
Csürös M. Count: evolutionary analysis of phylogenetic profiles with parsimony and likelihood. Bioinformatics. 2010;26:1910–2.
Article
PubMed
CAS
Google Scholar
Brynildsrud O, Bohlin J, Scheffer L, Eldholm V. Rapid scoring of genes in microbial pan-genome-wide association studies with Scoary. Genome Biol. 2016;17:238.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sullivan MJ, Petty NK, Beatson SA. Easyfig: a genome comparison visualizer. Bioinformatics. 2011;27:1009–10.
Article
CAS
PubMed
PubMed Central
Google Scholar