Cavalli E, Petralia M, Basile M, Bramanti A, Bramanti P, Nicoletti F, et al. Transcriptomic analysis of COVID-19 lungs and bronchoalveolar lavage fluid samples reveals predominant B cell activation responses to infection. Int J Mol Med. 2020;46:1266–73.
CAS
PubMed
PubMed Central
Google Scholar
Patel MR, Carroll D, Ussery E, Whitham H, Elkins CA, Noble-Wang J, et al. Performance of oropharyngeal swab testing compared to nasopharyngeal swab testing for diagnosis of COVID-19 —United States, January–February 2020. Clin Infect Dis. 2020;4(Xx Xxxx):1–4.
Google Scholar
Tang Y, Schmitz JE, Persing DH, Stratton CW. Laboratory diagnosis of COVID-19: current issues and challenges. J Clin Microbiol. 2020;58(6):1–9.
Article
Google Scholar
Wang W, Xu Y, Lu R. Detection of SARS - CoV - 2 in Different Types of Clinical Specimens. JAMA. 2020;323:2762997.
Google Scholar
Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med. 2020;382(13):1199–207.
Article
CAS
PubMed
PubMed Central
Google Scholar
Murthy S, Gomersall CD, Fowler RA. Care for Critically ill Patients with COVID-19. JAMA. 2020;323(15):1499–500.
Article
PubMed
Google Scholar
Hou Y, Zhao J, Martin W, Kallianpur A, Chung MK, Jehi L, et al. New insights into genetic susceptibility of COVID-19: an ACE2 and TMPRSS2 polymorphism analysis. BMC Med. 2020;18(1):1–8.
Article
CAS
Google Scholar
Thomson G. COVID-19: Social distancing, ACE 2 receptors, protease inhibitors and beyond? 2020. p. 2–3.
Google Scholar
Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181(2):271–280.e8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu C, Zheng M. Single-cell RNA expression profiling shows that ACE2 , the putative receptor of COVID-2019, has significant expression in nasal and mouth tissue , and is co-expressed with TMPRSS2 and not co-expressed with SLC6A19 in the tissues; 2019.
Google Scholar
Zipeto D, Palmeira J. ACE2 / ADAM17 / TMPRSS2 interplay may be the main risk factor for COVID-19; 2020.
Book
Google Scholar
Palau V, Riera M, Soler MJ. ADAM17 inhibition may exert a protective effect on COVID-19. Nephrol Dial Transplant. 2020;35(6):1071–2.
Article
CAS
PubMed
Google Scholar
Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lippi G, Simundic AM, Plebani M. Potential preanalytical and analytical vulnerabilities in the laboratory diagnosis of coronavirus disease 2019 (COVID-19). Clin Chem Lab Med. 2020;58(7):1070–6.
Article
CAS
PubMed
Google Scholar
Sanders JM, Monogue ML, Jodlowski TZ, Cutrell JB. Pharmacologic treatments for coronavirus disease 2019 (COVID-19): a review. JAMA. 2020;323(18):1824–36.
CAS
PubMed
Google Scholar
Wang Y, Zhang D, Du G, Du R, Zhao J, Jin Y, et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet. 2020;395(10236):1569–78. https://doi.org/10.1016/S0140-6736(20)31022-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
RECOVERY Collaborative Group. Dexamethasone in Hospitalized Patients with Covid-19 — Preliminary Report. N Engl J Med. 2020:1–11. https://doi.org/10.1056/NEJMoa2021436.
Bild AH, Yao G, Chang JT, Wang Q, Potti A, Chasse D, et al. Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature. 2006;439(7074):353–7.
Article
CAS
PubMed
Google Scholar
Rahman M, Macneil SM, Jenkins DF, Shrestha G, Wyatt SR, Mcquerry JA, et al. Activity of distinct growth factor receptor network components in breast tumors uncovers two biologically relevant subtypes; 2017. p. 1–19.
Google Scholar
Nikolayeva I, Bost P, Casademont I, Duong V, Koeth F, Prot M, et al. A blood RNA signature detecting severe disease in young dengue patients at hospital arrival. J Infect Dis. 2018;217(11):1690–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Babayan SA, Orton RJ, Streicker DG. Predicting reservoir hosts and arthropod vectors from evolutionary signatures in RNA virus genomes. Science. 2018;362(6414):577–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiong Y, Liu Y, Cao L, Wang D, Guo M, Jiang A, et al. Transcriptomic characteristics of bronchoalveolar lavage fluid and peripheral blood mononuclear cells in COVID-19 patients. Emerg Microbes Infect. 2020;9(1):761–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Itadani H, Mizuarai S, Kotani H. Can systems biology understand pathway activation? Gene expression signatures as surrogate markers for understanding the complexity of pathway activation. Curr Genomics. 2008;9(5):349–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu J, Campen A, Huang S, Peng S-B, Ye X, Palakal M, et al. Identification of a gene signature in cell cycle pathway for breast cancer prognosis using gene expression profiling data. BMC Med Genet. 2008;1(1):1–12.
Google Scholar
Shen Y, Rahman M, Piccolo SR, Gusenleitner D, El-chaar NN, Cheng L, et al. ASSIGN : context-specific genomic profiling of multiple heterogeneous biological pathways. Bioinformatics. 2015;31(January):1745–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blanco-Melo D, Nilsson-Payant BE, Liu WC, Uhl S, Hoagland D, Møller R, et al. Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. Cell. 2020;181(5):1036–1045.e9. https://doi.org/10.1016/j.cell.2020.04.026.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liao M, Liu Y, Yuan J, Wen Y, Xu G, Zhao J, et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat Med. 2020;26(6):842–4. https://doi.org/10.1038/s41591-020-0901-9.
Article
CAS
PubMed
Google Scholar
Kemp PA, Sugar RA, Jackson AD. Nucleotide-mediated mucin secretion from differentiated human bronchial epithelial cells. Am J Respir Cell Mol Biol. 2004;31(4):446–55.
Article
CAS
PubMed
Google Scholar
Buszko M, Park JH, Verthelyi D, Sen R, Young HA, Rosenberg AS. The dynamic changes in cytokine responses in COVID-19: a snapshot of the current state of knowledge. Nat Immunol. 2020;21:1146–51.
Article
CAS
PubMed
Google Scholar
Burch RM. Bradykinin receptors. Encycl Biol Chem Second Ed. 2013;28(1):240–3.
Google Scholar
Massrieh W, Derjuga A, Doualla-Bell F, Ku CY, Sanborn BM, Blank V. Regulation of the MAFF transcription factor by proinflammatory cytokines in myometrial cells. Biol Reprod. 2006;74(4):699–705.
Article
CAS
PubMed
Google Scholar
Zhang Y, Cardell LO, Edvinsson L, Xu CB. MAPK/NF-κB-dependent upregulation of kinin receptors mediates airway hyperreactivity: a new perspective for the treatment. Pharmacol Res. 2013;71:9–18. https://doi.org/10.1016/j.phrs.2013.02.004.
Article
CAS
PubMed
Google Scholar
Cardoso AM. COVID-19 and purinergic signaling: the need for investigation. Purinergic Signal. 2020;16:19–21.
Article
CAS
Google Scholar
Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017;2:17023.
Article
PubMed
PubMed Central
Google Scholar
Mahmudpour M, Roozbeh J, Keshavarz M, Farrokhi S, Nabipour I. COVID-19 cytokine storm: The anger of inflammation. Cytokine. 2020;133:155151.
Article
CAS
PubMed
PubMed Central
Google Scholar
Joung HJ, Jetten AM. NF-κB-dependent transcriptional activation in lung carcinoma cells by farnesol involves p65/RelA (Ser276) phosphorylation via the MEK-MSK1 signaling pathway. J Biol Chem. 2008;283(24):16391–9.
Article
CAS
Google Scholar
Vereecke L, Beyaert R, van Loo G. The ubiquitin-editing enzyme A20 (TNFAIP3) is a central regulator of immunopathology. Trends Immunol. 2009;30(8):383–91.
Article
CAS
PubMed
Google Scholar
Meizlish ML, Pine AB, Bishai JD, Goshua G, Nadelmann ER, Simonov M, et al. A neutrophil activation signature predicts critical illness and mortality in COVID-19. medRxiv. 2020. https://doi.org/10.1101/2020.09.01.20183897.
Müller T, Idzko M. P2Y receptors in lung inflammation. Wiley Interdiscip Rev Membr Transp Signal. 2012;1(6):755–62.
Article
CAS
Google Scholar
Cicko S, Lucattelli M, Müller T, Lommatzsch M, De Cunto G, Cardini S, et al. Purinergic receptor inhibition prevents the development of smoke-induced lung injury and emphysema. J Immunol. 2010;185(1):688–97.
Article
CAS
PubMed
Google Scholar
Meshki J, Tuluc F, Bredetean O, Ding Z, Kunapuli SP. Molecular mechanism of nucleotide-induced primary granule release in human neutrophils: Role for the P2Y2 receptor. Am J Physiol Cell Physiol. 2004;286(2 55–2):264–71.
Article
Google Scholar
Idzko M, Dichmann S, Ferrari D, Di Virgilio F, La Sala A, Girolomoni G, et al. Nucleotides induce chemotaxis and actin polymerization in immature but not mature human dendritic cells via activation of pertussis toxin-sensitive P2y receptors. Blood. 2002;100(3):925–32.
Article
CAS
PubMed
Google Scholar
Idzko M, Dichmann S, Panther E, Ferrari D, Herouy Y, Virchow C, et al. Functional characterization of P2Y and P2X receptors in human eosinophils. J Cell Physiol. 2001;188(3):329–36.
Article
CAS
PubMed
Google Scholar
Vanderstocken G, Bondue B, Horckmans M, Di Pietrantonio L, Robaye B, Boeynaems J-M, et al. P2Y2 receptor regulates VCAM-1 membrane and soluble forms and eosinophil accumulation during lung inflammation. J Immunol. 2010;185(6):3702–7.
Article
CAS
PubMed
Google Scholar
Kouzaki H, Iijima K, Kobayashi T, O’Grady SM, Kita H. The danger signal, extracellular ATP, is a sensor for an airborne allergen and triggers IL-33 release and innate Th2-type responses. J Immunol. 2011;186(7):4375–87.
Article
CAS
PubMed
Google Scholar
Douillet CD, Robinson WP, Milano PM, Boucher RC, Rich PB. Nucleotides induce IL-6 release from human airway epithelia via P2Y 2 and p38 MAPK-dependent pathways. Am J Physiol Lung Cell Mol Physiol. 2006;291:919–66.
Article
CAS
Google Scholar
Relvas LJM, Makhoul M, Dewispelaere R, Caspers L, Communi D, Boeynaems JM, et al. P2Y2R deficiency attenuates experimental autoimmune uveitis development. PLoS One. 2015;10(2):1–14.
Article
CAS
Google Scholar
Salem M, Tremblay A, Pelletier J, Robaye B, Sévigny J. P2Y6 receptors regulate CXCL10 expression and secretion in mouse intestinal epithelial cells. Front Pharmacol. 2018;9:1–13.
Article
CAS
Google Scholar
Thorstenberg ML, Ferreira MVR, Amorim N, Canetti C, Morrone FB, Filho JCA, et al. Purinergic cooperation between P2Y2 and P2X7 receptors promote cutaneous leishmaniasis control: Involvement of pannexin-1 and leukotrienes. Front Immunol. 2018;9:1531.
Article
PubMed
PubMed Central
CAS
Google Scholar
Graziano F, Desdouits M, Garzetti L, Podini P, Alfano M, Rubartelli A, et al. Extracellular ATP induces the rapid release of HIV-1 from virus containing compartments of human macrophages. Proc Natl Acad Sci U S A. 2015;112(25):E3265–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krick S, Wang J, St-Pierre M, Gonzalez C, Dahl G, Salathe M. Dual oxidase 2 (Duox2) regulates Pannexin 1-mediated ATP release in primary human airway epithelial cells via changes in intracellular pH and not H2O2 production. J Biol Chem. 2016;291(12):6423–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee BH, Hwang DM, Palaniyar N, Grinstein S, Philpott DJ, Hu J. Activation of P2X7 receptor by ATP plays an important role in regulating inflammatory responses during acute viral infection. PLoS One. 2012;7(4):e35812.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang C, He H, Wang L, Zhang N, Huang H, Xiong Q, et al. Virus-triggered ATP release limits viral replication through facilitating IFN-β production in a P2X7-dependent manner. J Immunol. 2017;199(4):1372–81.
Article
CAS
PubMed
Google Scholar
Swayne LA, Johnstone SR, Ng CS, Sanchez-Arias JC, Good ME, Penuela S, et al. Consideration of pannexin 1 channels in covid-19 pathology and treatment. Am J Physiol Lung Cell Mol Physiol. 2020;319(1):L121–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fensterl V, Sen GC. Interferon-induced Ifit proteins: their role in viral pathogenesis. J Virol. 2015;89(5):2462–8.
Article
PubMed
CAS
Google Scholar
Siegfried A, Berchtold S, Manncke B, Deuschle E, Reber J, Ott T, et al. IFIT2 is an effector protein of type I IFN–mediated amplification of lipopolysaccharide (LPS)-induced TNF-α secretion and LPS-induced endotoxin shock. J Immunol. 2013;191(7):3913–21.
Article
CAS
PubMed
Google Scholar
Tran V, Ledwith MP, Thamamongood T, Higgins CA, Tripathi S, Chang MW, et al. Influenza virus repurposes the antiviral protein IFIT2 to promote translation of viral mRNAs. Nat Microbiol. 2020;5:1–14 Available from: http://www.nature.com/articles/s41564-020-0778-x.
Article
CAS
Google Scholar
Pierelli G, Stanzione R, Forte M, Migliarino S, Perelli M, Volpe M, et al. Uncoupling protein 2: a key player and a potential therapeutic target in vascular diseases. Oxidative Med Cell Longev. 2017;2017:7348372.
Article
CAS
Google Scholar
Moriyama M, Chen I-Y, Kawaguchi A, Koshiba T, Nagata K, Takeyama H, et al. The RNA- and TRIM25-binding domains of influenza virus NS1. J Virol. 2016;90(8):4105–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shishodia S, Koul D, Aggarwal BB. Cyclooxygenase (COX)-2 inhibitor Celecoxib abrogates TNF-induced NF-κB activation through inhibition of activation of IκBα kinase and Akt in human non-small cell lung carcinoma: correlation with suppression of COX-2 synthesis. J Immunol. 2004;173(3):2011–22.
Article
CAS
PubMed
Google Scholar
Moore N, Carleton B, Blin P, Bosco-Levy P, Droz C. Does Ibuprofen Worsen COVID-19? Drug Saf. 2020;43(7):611–4. https://doi.org/10.1007/s40264-020-00953-0.
Article
CAS
PubMed
Google Scholar
Fortson WS, Kayarthodi S, Fujimura Y, Xu H, Matthews R, Grizzle WE, et al. Histone deacetylase inhibitors, valproic acid and trichostatin-a induce apoptosis and affect acetylation status of p53 in ERG-positive prostate cancer cells. Int J Oncol. 2011;39(1):111–9.
CAS
PubMed
Google Scholar
Mollica V, Rizzo A, Massari F. The pivotal role of TMPRSS2 in coronavirus disease 2019 and prostate cancer. Future Oncol. 2020;16(27):2029–33.
Article
CAS
PubMed
Google Scholar
Kenis G, Maes M. Effects of antidepressants on the production of cytokines. Int J Neuropsychopharmacol. 2002;5(4):401–12.
Article
CAS
PubMed
Google Scholar
Hamed MGM, Hagag RS. The possible immunoregulatory and anti-inflammatory effects of selective serotonin reuptake inhibitors in coronavirus disease patients. Med Hypotheses. 2020;144:110140. https://doi.org/10.1016/j.mehy.2020.110140.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eyre HA, Lavretsky H, Kartika J, Qassim A, Baune BT. Modulatory effects of antidepressant classes on the innate and adaptive immune system in depression. Pharmacopsychiatry. 2016;49(3):85–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Michalovich D, Rodriguez-Perez N, Smolinska S, Pirozynski M, Mayhew D, Uddin S, et al. Obesity and disease severity magnify disturbed microbiome-immune interactions in asthma patients. Nat Commun. 2019;10(1). https://doi.org/10.1038/s41467-019-13751-9.
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, vol. 21; 2014. p. 1.
Google Scholar
Jiménez-Marín Á, Collado-Romero M, Ramirez-Boo M, Arce C, Garrido JJ. Biological pathway analysis by ArrayUnlock and ingenuity pathway analysis. BMC Proc. 2009;3(Suppl 4):S6.
Article
PubMed
PubMed Central
Google Scholar
Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, et al. A survey of best practices for RNA-seq data analysis. Genome Biol. 2016;17(1):13 2016/01/28. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=26813401.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dobin A, Gingeras TR, Spring C, Flores R, Sampson J, Knight R, et al. Mapping RNA-seq with STAR. Curr Protoc Bioinform. 2016;51(4):586–97 Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4631051/.
Google Scholar
Ebbert MTW, Wadsworth ME, Staley LA, Hoyt KL, Pickett B, Miller J, et al. Evaluating the necessity of PCR duplicate removal from next-generation sequencing data and a comparison of approaches. BMC Bioinformatics. 2016;17(Suppl 7). https://doi.org/10.1186/s12859-016-1097-3.
Liao Y, Smyth GK, Shi W. feature Counts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30(7):923–30.
Article
CAS
PubMed
Google Scholar
Leek JT, Storey JD. Capturing heterogeneity in gene expression studies by surrogate variable analysis. PLoS Genet. 2007;3(9):1724–35.
Article
CAS
PubMed
Google Scholar
Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The SVA package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics. 2012;28(6):882–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, et al. Comprehensive integration of single-cell data. Cell. 2019;177(7):1888–1902.e21. https://doi.org/10.1016/j.cell.2019.05.031.
Article
CAS
PubMed
PubMed Central
Google Scholar
Subramanian A, Narayan R, Corsello SM, Peck DD, Natoli TE, Lu X, et al. A Next Generation Connectivity Map: L1000 Platform and the First 1,000,000 Profiles. Cell. 2017;171(6):1437–1452.e17. https://doi.org/10.1016/j.cell.2017.10.049.
Article
CAS
PubMed
PubMed Central
Google Scholar