Hane JK, Lowe RG, Solomon PS, Tan K-C, Schoch CL, Spatafora JW, et al. Dothideomycete–plant interactions illuminated by genome sequencing and EST analysis of the wheat pathogen Stagonospora nodorum. Plant Cell. 2007;19(11):3347–68. https://doi.org/10.1105/tpc.107.052829.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Z, Friesen TL, Ling H, Meinhardt SW, Oliver RP, Rasmussen JB, et al. The Tsn1–ToxA interaction in the wheat–Stagonospora nodorum pathosystem parallels that of the wheat–tan spot system. Genome. 2006;49(10):1265–73. https://doi.org/10.1139/g06-088.
Article
CAS
PubMed
Google Scholar
Liu Z, Zhang Z, Faris JD, Oliver RP, Syme R, McDonald MC, et al. The cysteine rich Necrotrophic effector SnTox1 produced by Stagonospora nodorum triggers susceptibility of wheat lines harboring Snn1. PLoS Pathog. 2012;8(1):e1002467. https://doi.org/10.1371/journal.ppat.1002467.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Z, Faris JD, Oliver RP, Tan K-C, Solomon PS, McDonald MC, et al. SnTox3 acts in effector triggered susceptibility to induce disease on wheat carrying the Snn3 gene. PLoS Pathog. 2009;5(9):e1000581. https://doi.org/10.1371/journal.ppat.1000581.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abeysekara NS, Friesen TL, Keller B, Faris JD. Identification and characterization of a novel host–toxin interaction in the wheat–Stagonospora nodorum pathosystem. Theor Appl Genet. 2009;120(1):117–26. https://doi.org/10.1007/s00122-009-1163-6.
Article
CAS
PubMed
Google Scholar
Friesen TL, Chu C, Xu SS, Faris JD. SnTox5–Snn5: a novel S tagonospora nodorum effector–wheat gene interaction and its relationship with the SnToxA–Tsn1 and SnTox3–Snn3–B1 interactions. Mol Plant Pathol. 2012;13(9):1101–9. https://doi.org/10.1111/j.1364-3703.2012.00819.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Friesen TL, Meinhardt SW, Faris JD. The Stagonospora nodorum-wheat pathosystem involves multiple proteinaceous host-selective toxins and corresponding host sensitivity genes that interact in an inverse gene-for-gene manner. Plant J. 2007;51(4):681–92. https://doi.org/10.1111/j.1365-313X.2007.03166.x.
Article
CAS
PubMed
Google Scholar
Gao Y, Faris J, Liu Z, Kim Y, Syme R, Oliver R, et al. Identification and characterization of the SnTox6-Snn6 interaction in the Parastagonospora nodorum–wheat pathosystem. Mol Plant-Microbe Interact. 2015;28(5):615–25. https://doi.org/10.1094/MPMI-12-14-0396-R.
Article
CAS
PubMed
Google Scholar
Lo Presti L, Lanver D, Schweizer G, Tanaka S, Liang L, Tollot M, et al. Fungal effectors and plant susceptibility. Annu Rev Plant Biol. 2015;66(1):513–45. https://doi.org/10.1146/annurev-arplant-043014-114623.
Article
CAS
PubMed
Google Scholar
McDonald MC, Solomon PS. Just the surface: advances in the discovery and characterization of necrotrophic wheat effectors. Curr Opin Microbiol. 2018;46:14–8. https://doi.org/10.1016/j.mib.2018.01.019.
Article
PubMed
Google Scholar
Shi G, Friesen TL, Saini J, Xu SS, Rasmussen JB, Faris JD. The wheat Snn7 gene confers susceptibility on recognition of the Parastagonospora nodorum necrotrophic effector SnTox7. Plant Genome. 2015;8(2):1–10.
Article
Google Scholar
van Dam P, Fokkens L, Ayukawa Y, van der Gragt M, ter Horst A, Brankovics B, et al. A mobile pathogenicity chromosome in Fusarium oxysporum for infection of multiple cucurbit species. Sci Rep. 2017;7(1):9042. https://doi.org/10.1038/s41598-017-07995-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017;27(5):722–36. https://doi.org/10.1101/gr.215087.116.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moolhuijzen P, See PT, Hane JK, Shi G, Liu Z, Oliver RP, et al. Comparative genomics of the wheat fungal pathogen Pyrenophora tritici-repentis reveals chromosomal variations and genome plasticity. BMC Genomics. 2018;19(1):279. https://doi.org/10.1186/s12864-018-4680-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Richards JK, Wyatt NA, Liu Z, Faris JD, Friesen TL. Reference quality genome assemblies of three Parastagonospora nodorum isolates differing in virulence on wheat. G3. 2018;8(2):393.
Article
CAS
PubMed
Google Scholar
Van Kan JA, Stassen JH, Mosbach A, Van Der Lee TA, Faino L, Farmer AD, et al. A gapless genome sequence of the fungus Botrytis cinerea. Mol Plant Pathol. 2017;18(1):75–89. https://doi.org/10.1111/mpp.12384.
Article
CAS
PubMed
Google Scholar
Wyatt NA, Richards JK, Brueggeman RS, Friesen TL. A comparative genomic analysis of the barley pathogen Pyrenophora teres f. teres identifies Subtelomeric regions as drivers of virulence. Mol Plant-Microbe Interact. 2020;33(2):173–88. https://doi.org/10.1094/MPMI-05-19-0128-R.
Article
CAS
PubMed
Google Scholar
Derbyshire M, Denton-Giles M, Hegedus D, Seifbarghy S, Rollins J, van Kan J, et al. The complete genome sequence of the phytopathogenic fungus Sclerotinia sclerotiorum reveals insights into the genome architecture of broad host range pathogens. Genome Biol Evol. 2017;9(3):593–618. https://doi.org/10.1093/gbe/evx030.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cooley RN, Caten CE. Variation in electrophoretic karyotype between strains of Septoria nodorum. Mol Gen Genet. 1991;228(1–2):17–23. https://doi.org/10.1007/BF00282442.
Article
CAS
PubMed
Google Scholar
Syme RA, Hane JK, Friesen TL, Oliver RP. Resequencing and comparative genomics of Stagonospora nodorum: sectional gene absence and effector discovery. G3. 2013;3(6):959–69.
Article
PubMed
PubMed Central
Google Scholar
Bringans S, Hane JK, Casey T, Tan K-C, Lipscombe R, Solomon PS, et al. Deep proteogenomics; high throughput gene validation by multidimensional liquid chromatography and mass spectrometry of proteins from the fungal wheat pathogen Stagonospora nodorum. BMC Bioinformatics. 2009;10(1):301. https://doi.org/10.1186/1471-2105-10-301.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ipcho SV, Hane JK, Antoni EA, Ahren D, Henrissat B, Friesen TL, et al. Transcriptome analysis of Stagonospora nodorum: gene models, effectors, metabolism and pantothenate dispensability. Mol Plant Pathol. 2012;13(6):531–45. https://doi.org/10.1111/j.1364-3703.2011.00770.x.
Article
CAS
PubMed
Google Scholar
Syme RA, Tan K-C, Rybak K, Friesen TL, McDonald BA, Oliver RP, et al. Pan-Parastagonospora comparative genome analysis—effector prediction and genome evolution. Genome Biol Evol. 2018;10(9):2443–57. https://doi.org/10.1093/gbe/evy192.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hane JK, Oliver RP. RIPCAL: a tool for alignment-based analysis of repeat-induced point mutations in fungal genomic sequences. BMC Bioinformatics. 2008;9(1):478. https://doi.org/10.1186/1471-2105-9-478.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hane JK, Oliver RP. In silico reversal of repeat-induced point mutation (RIP) identifies the origins of repeat families and uncovers obscured duplicated genes. BMC Genomics. 2010;11(1):655. https://doi.org/10.1186/1471-2164-11-655.
Article
CAS
PubMed
PubMed Central
Google Scholar
Testa AC, Oliver RP, Hane JK. OcculterCut: a comprehensive survey of AT-rich regions in fungal genomes. Genome Biol Evol. 2016;8(6):2044–64. https://doi.org/10.1093/gbe/evw121.
Article
PubMed
PubMed Central
Google Scholar
Hane JK, Rouxel T, Howlett BJ, Kema GHJ, Goodwin SB, Oliver RP. A novel mode of chromosomal evolution peculiar to filamentous Ascomycete fungi. Genome Biol. 2011;12(5):R45. https://doi.org/10.1186/gb-2011-12-5-r45.
Article
PubMed
PubMed Central
Google Scholar
McDonald MC, Taranto AP, Hill E, Schwessinger B, Liu Z, Simpfendorfer S, et al. Transposon-mediated horizontal transfer of the host-specific virulence protein ToxA between three fungal wheat pathogens. mBio. 2019;10(5):e01515.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ohm RA, Feau N, Henrissat B, Schoch CL, Horwitz BA, Barry KW, et al. Diverse lifestyles and strategies of plant pathogenesis encoded in the genomes of eighteen Dothideomycetes Fungi. PLoS Pathog. 2012;8(12):e1003037. https://doi.org/10.1371/journal.ppat.1003037.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bertazzoni S, Williams AH, Jones DA, Syme RA, Tan K-C, Hane JK. Accessories make the outfit: accessory chromosomes and other dispensable DNA regions in plant-pathogenic Fungi. Mol Plant-Microbe Interact. 2018;31(8):779–88. https://doi.org/10.1094/MPMI-06-17-0135-FI.
Article
PubMed
Google Scholar
Richards JK, Stukenbrock EH, Carpenter J, Liu Z, Cowger C, Faris JD, et al. Local adaptation drives the diversification of effectors in the fungal wheat pathogen Parastagonospora nodorum in the United States. PLoS Genet. 2019;15(10):e1008223. https://doi.org/10.1371/journal.pgen.1008223.
Article
CAS
PubMed
PubMed Central
Google Scholar
Croll D, McDonald BA. The accessory genome as a cradle for adaptive evolution in pathogens. PLoS Pathog. 2012;8(4):e1002608. https://doi.org/10.1371/journal.ppat.1002608.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gardiner DM, Benfield AH, Stiller J, Stephen S, Aitken K, Liu C, et al. A high-resolution genetic map of the cereal crown rot pathogen Fusarium pseudograminearum provides a near-complete genome assembly. Mol Plant Pathol. 2018;19(1):217–26. https://doi.org/10.1111/mpp.12519.
Article
CAS
PubMed
Google Scholar
Plissonneau C, Hartmann FE, Croll D. Pangenome analyses of the wheat pathogen Zymoseptoria tritici reveal the structural basis of a highly plastic eukaryotic genome. BMC Biol. 2018;16(1):1–16.
Article
Google Scholar
Mendelowitz L, Pop M. Computational methods for optical mapping. Gigascience. 2014;3(1):33. https://doi.org/10.1186/2047-217X-3-33.
Article
PubMed
PubMed Central
Google Scholar
Burkhardt AK, Childs KL, Wang J, Ramon ML, Martin FN. Assembly, annotation, and comparison of Macrophomina phaseolina isolates from strawberry and other hosts. BMC Genomics. 2019;20(1):802. https://doi.org/10.1186/s12864-019-6168-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Farman ML. Telomeres in the rice blast fungus Magnaporthe oryzae : the world of the end as we know it. FEMS Microbiol Lett. 2007;273(2):125–32. https://doi.org/10.1111/j.1574-6968.2007.00812.x.
Article
CAS
PubMed
Google Scholar
Rehmeyer C, Li W, Kusaba M, Kim Y-S, Brown D, Staben C, et al. Organization of chromosome ends in the rice blast fungus, Magnaporthe oryzae. Nucleic Acids Res. 2006;34(17):4685–701. https://doi.org/10.1093/nar/gkl588.
Article
CAS
PubMed
PubMed Central
Google Scholar
Soyer JL, El Ghalid M, Glaser N, Ollivier B, Linglin J, Grandaubert J, et al. Epigenetic control of effector gene expression in the plant pathogenic fungus Leptosphaeria maculans. PLoS Genet. 2014;10(3):e1004227. https://doi.org/10.1371/journal.pgen.1004227.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tashiro S, Nishihara Y, Kugou K, Ohta K, Kanoh J. Subtelomeres constitute a safeguard for gene expression and chromosome homeostasis. Nucleic Acids Res. 2017;45(18):10333–49. https://doi.org/10.1093/nar/gkx780.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jones DA, Bertazzoni S, Turo CJ, Syme RA, Hane JK. Bioinformatic prediction of plant-pathogenicity effector proteins of fungi. Curr Opin Microbiol. 2018;46:43–9. https://doi.org/10.1016/j.mib.2018.01.017.
Article
CAS
PubMed
Google Scholar
Testa AC, Hane JK, Ellwood SR, Oliver RP. CodingQuarry: highly accurate hidden Markov model gene prediction in fungal genomes using RNA-seq transcripts. BMC Genomics. 2015;16(1):170. https://doi.org/10.1186/s12864-015-1344-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jones DAB, John E, Rybak K, Phan HTT, Singh KB, Lin S-Y, et al. A specific fungal transcription factor controls effector gene expression and orchestrates the establishment of the necrotrophic pathogen lifestyle on wheat. Sci Rep. 2019;9(1):15884. https://doi.org/10.1038/s41598-019-52444-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Manning VA, Pandelova I, Dhillon B, Wilhelm LJ, Goodwin SB, Berlin AM, et al. Comparative genomics of a plant-pathogenic fungus, Pyrenophora tritici-repentis, reveals transduplication and the impact of repeat elements on pathogenicity and population divergence. G3. 2013;3(1):41–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
McClintock B. The fusion of broken ends of chromosomes following nuclear fusion. Proc Natl Acad Sci. 1942;28(11):458–63. https://doi.org/10.1073/pnas.28.11.458.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ferris MM, Yan X, Habbersett RC, Shou Y, Lemanski CL, Jett JH, et al. Performance assessment of DNA fragment sizing by high-sensitivity flow cytometry and pulsed-field gel electrophoresis. J Clin Microbiol. 2004;42(5):1965–76. https://doi.org/10.1128/JCM.42.5.1965-1976.2004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sperschneider J, Dodds PN, Gardiner DM, Singh KB, Taylor JM. Improved prediction of fungal effector proteins from secretomes with EffectorP 2.0. Mol Plant Pathol. 2018;19(9):2094–110. https://doi.org/10.1111/mpp.12682.
Article
CAS
PubMed
PubMed Central
Google Scholar
Urban M, Cuzick A, Seager J, Wood V, Rutherford K, Venkatesh SY, et al. PHI-base: the pathogen–host interactions database. Nucleic Acids Res. 2020;48(D1):D613–20. https://doi.org/10.1093/nar/gkz904.
Article
CAS
PubMed
Google Scholar
Mohanta TK, Bae H. The diversity of fungal genome. Biol Proced Online. 2015;17(1):8–8. https://doi.org/10.1186/s12575-015-0020-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Denton JF, Lugo-Martinez J, Tucker AE, Schrider DR, Warren WC, Hahn MW. Extensive error in the number of genes inferred from draft genome assemblies. PLoS Comput Biol. 2014;10(12):e1003998. https://doi.org/10.1371/journal.pcbi.1003998.
Article
PubMed
PubMed Central
Google Scholar
Magrini V, Gao X, Rosa BA, McGrath S, Zhang X, Hallsworth-Pepin K, et al. Improving eukaryotic genome annotation using single molecule mRNA sequencing. BMC Genomics. 2018;19(1):172. https://doi.org/10.1186/s12864-018-4555-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Syme RA, Martin A, Wyatt NA, Lawrence JA, Muria-Gonzalez MJ, Friesen TL, et al. Transposable element genomic fissuring in Pyrenophora teres is associated with genome expansion and dynamics of host-pathogen genetic interactions. Front Genet. 2018;9:130. https://doi.org/10.3389/fgene.2018.00130.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zolan ME. Chromosome-length polymorphism in fungi. Microbiol Rev. 1995;59(4):686–98. https://doi.org/10.1128/MR.59.4.686-698.1995.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mossessova E, Lima CD. Ulp1-SUMO crystal structure and genetic analysis reveal conserved interactions and a regulatory element essential for cell growth in yeast. Mol Cell. 2000;5(5):865–76. https://doi.org/10.1016/S1097-2765(00)80326-3.
Article
CAS
PubMed
Google Scholar
Nagano N, Umemura M, Izumikawa M, Kawano J, Ishii T, Kikuchi M, et al. Class of cyclic ribosomal peptide synthetic genes in filamentous fungi. Fungal Genet Biol. 2016;86:58–70. https://doi.org/10.1016/j.fgb.2015.12.010.
Article
CAS
PubMed
Google Scholar
Stahelin RV, Long F, Diraviyam K, Bruzik KS, Murray D, Cho W. Phosphatidylinositol 3-phosphate induces the membrane penetration of the FYVE domains of Vps27p and Hrs. J Biol Chem. 2002;277(29):26379–88. https://doi.org/10.1074/jbc.M201106200.
Article
CAS
PubMed
Google Scholar
Phan HTT, Rybak K, Bertazzoni S, Furuki E, Dinglasan E, Hickey LT, et al. Novel sources of resistance to Septoria nodorum blotch in the Vavilov wheat collection identified by genome-wide association studies. Theor Appl Genet. 2018;131(6):1223–38. https://doi.org/10.1007/s00122-018-3073-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tan K-C, Phan HTT, Rybak K, John E, Chooi YH, Solomon PS, et al. Functional redundancy of necrotrophic effectors – consequences for exploitation for breeding. Front Plant Sci. 2015;6:501.
PubMed
PubMed Central
Google Scholar
Phan HTT, Rybak K, Furuki E, Breen S, Solomon PS, Oliver RP, et al. Differential effector gene expression underpins epistasis in a plant fungal disease. Plant J. 2016;87(4):343–54. https://doi.org/10.1111/tpj.13203.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rybak K, See PT, Phan HT, Syme RA, Moffat CS, Oliver RP, et al. A functionally conserved Zn (2) Cys (6) binuclear cluster transcription factor class regulates necrotrophic effector gene expression and host-specific virulence of two major Pleosporales fungal pathogens of wheat. Mol Plant Pathol. 2017;18(3):420–34. https://doi.org/10.1111/mpp.12511.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu W, Wei W, Wu Y, Zhou Y, Peng F, Zhang S, et al. BcCFEM1, a CFEM domain-containing protein with putative GPI-anchored site, is involved in pathogenicity, conidial production, and stress tolerance in Botrytis cinerea. Front Microbiol. 2017;8:1807. https://doi.org/10.3389/fmicb.2017.01807.
Article
PubMed
PubMed Central
Google Scholar
Kombrink A, Thomma BPHJ. LysM effectors: secreted proteins supporting fungal life. PLoS Pathog. 2013;9(12):e1003769. https://doi.org/10.1371/journal.ppat.1003769.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang J, Wang F, Liang F, Zhang Y, Ma L, Wang H, et al. Functional analysis of a pathogenesis-related thaumatin-like protein gene TaLr35PR5 from wheat induced by leaf rust fungus. BMC Plant Biol. 2018;18(1):76. https://doi.org/10.1186/s12870-018-1297-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
de Guillen K, Lorrain C, Tsan P, Barthe P, Petre B, Saveleva N, et al. Structural genomics applied to the rust fungus Melampsora larici-Populina reveals two candidate effector proteins adopting cystine knot and NTF2-like protein folds. Sci Rep. 2019;9(1):18084. https://doi.org/10.1038/s41598-019-53816-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Burke JE, Dennis EA. Phospholipase A2 structure/function, mechanism, and signaling. J Lipid Res. 2009;50(Suppl (Suppl)):S237–42.
Article
PubMed
PubMed Central
Google Scholar
Chruszcz M, Chapman MD, Osinski T, Solberg R, Demas M, Porebski PJ, et al. Alternaria alternata allergen Alt a 1: a unique β-barrel protein dimer found exclusively in fungi. J Allergy Clin Immunol. 2012;130(1):241–247.e249.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, Gao Y, Liang Y, Dong Y, Yang X, Qiu D. Verticillium dahliae PevD1, an Alt a 1-like protein, targets cotton PR5-like protein and promotes fungal infection. J Exp Bot. 2019;70(2):613–26. https://doi.org/10.1093/jxb/ery351.
Article
CAS
PubMed
Google Scholar
Olombrada M, Peña C, Rodríguez-Galán O, Klingauf-Nerurkar P, Portugal-Calisto D, Oborská-Oplová M, et al. The ribotoxin α-sarcin can cleave the sarcin/ricin loop on late 60S pre-ribosomes. Nucleic Acids Res. 2020;48(11):6210–22. https://doi.org/10.1093/nar/gkaa315.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baccelli I. Cerato-platanin family proteins: one function for multiple biological roles? Front Plant Sci. 2015;5:769.
Article
PubMed
PubMed Central
Google Scholar
Antuch W, Güntert P, Wüthrich K. Ancestral βγ-crystallin precursor structure in a yeast killer toxin. Nat Struct Biol. 1996;3(8):662–5. https://doi.org/10.1038/nsb0896-662.
Article
CAS
PubMed
Google Scholar
Figueiredo J, Sousa Silva M, Figueiredo A. Subtilisin-like proteases in plant defence: the past, the present and beyond. Mol Plant Pathol. 2018;19(4):1017–28. https://doi.org/10.1111/mpp.12567.
Article
CAS
PubMed
Google Scholar
Singh K, Winter M, Zouhar M, Ryšánek P. Cyclophilins: less studied proteins with critical roles in pathogenesis. Phytopathology. 2017;108(1):6–14. https://doi.org/10.1094/PHYTO-05-17-0167-RVW.
Article
PubMed
Google Scholar
Viaud MC, Balhadère PV, Talbot NJ. A Magnaporthe grisea cyclophilin acts as a virulence determinant during plant infection. Plant Cell. 2002;14(4):917–30. https://doi.org/10.1105/tpc.010389.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao Z, Liu H, Wang C, Xu J-R. Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi. BMC Genomics. 2013;14(1):274. https://doi.org/10.1186/1471-2164-14-274.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grell MN, Mouritzen P, Giese H. A Blumeria graminis gene family encoding proteins with a C-terminal variable region with homologues in pathogenic fungi. Gene. 2003;311:181–92. https://doi.org/10.1016/S0378-1119(03)00610-3.
Article
CAS
PubMed
Google Scholar
Schäfer W. The role of cutinase in fungal pathogenicity. Trends Microbiol. 1993;1(2):69–71. https://doi.org/10.1016/0966-842X(93)90037-R.
Article
PubMed
Google Scholar
Zhang M, Xie S, Zhao Y, Meng X, Song L, Feng H, et al. Hce2 domain-containing effectors contribute to the full virulence of Valsa Mali in a redundant manner. Mol Plant Pathol. 2019;20(6):843–56. https://doi.org/10.1111/mpp.12796.
Article
CAS
PubMed
PubMed Central
Google Scholar
Temple B, Horgen PA, Bernier L, Hintz WE. Cerato-ulmin, a hydrophobin secreted by the causal agents of Dutch elm disease, is a parasitic fitness factor. Fungal Genet Biol. 1997;22(1):39–53. https://doi.org/10.1006/fgbi.1997.0991.
Article
CAS
PubMed
Google Scholar
Hane JK. Effector-like ROG Predictions. https://effectordb.com/lgt-effector-predictions-summary/? Accessed 20 Oct 2020.
Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One. 2014;9(11):e112963. https://doi.org/10.1371/journal.pone.0112963.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nat Methods. 2012;9(4):357–9. https://doi.org/10.1038/nmeth.1923.
Article
CAS
PubMed
PubMed Central
Google Scholar
Solomon PS, Thomas SW, Spanu P, Oliver RP. The utilisation of di/tripeptides by Stagonospora nodorum is dispensable for wheat infection. Physiol Mol Plant Pathol. 2003;63(4):191–9. https://doi.org/10.1016/j.pmpp.2003.12.003.
Article
CAS
Google Scholar
Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics. 2013;29(8):1072–5. https://doi.org/10.1093/bioinformatics/btt086.
Article
CAS
PubMed
PubMed Central
Google Scholar
Seppey M, Manni M, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness. Methods Mol Biol. 1962;2019:227–45.
Google Scholar
Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv preprint arXiv:13033997; 2013.
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–9. https://doi.org/10.1093/bioinformatics/btp352.
Article
CAS
PubMed
PubMed Central
Google Scholar
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26(6):841–2. https://doi.org/10.1093/bioinformatics/btq033.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, et al. Versatile and open software for comparing large genomes. Genome Biol. 2004;5(2):R12. https://doi.org/10.1186/gb-2004-5-2-r12.
Article
PubMed
PubMed Central
Google Scholar
Dot. https://github.com/dnanexus/dot. Accessed 20 Oct 2020.
RepeatMasker Open-4.0. http://www.repeatmasker.org. Accessed 20 Oct 2020.
Bao W, Kojima KK, Kohany O. Repbase update, a database of repetitive elements in eukaryotic genomes. Mob DNA. 2015;6(1):11. https://doi.org/10.1186/s13100-015-0041-9.
Article
PubMed
PubMed Central
Google Scholar
Gremme G, Steinbiss S, Kurtz S. GenomeTools: a comprehensive software library for efficient processing of structured genome annotations. IEEE/ACM Trans Comput Biol Bioinform. 2013;10(3):645–56. https://doi.org/10.1109/TCBB.2013.68.
Article
PubMed
Google Scholar
Flynn JM, Hubley R, Goubert C, Rosen J, Clark AG, Feschotte C, et al. RepeatModeler2 for automated genomic discovery of transposable element families. Proc Natl Acad Sci. 2020;117(17):9451–7. https://doi.org/10.1073/pnas.1921046117.
Article
CAS
PubMed
PubMed Central
Google Scholar
Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 1999;27(2):573–80. https://doi.org/10.1093/nar/27.2.573.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qi X, Li Y, Honda S, Hoffmann S, Marz M, Mosig A, et al. The common ancestral core of vertebrate and fungal telomerase RNAs. Nucleic Acids Res. 2013;41(1):450–62. https://doi.org/10.1093/nar/gks980.
Article
CAS
PubMed
Google Scholar
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17(1):3.
Article
Google Scholar
Brown CT, Howe A, Zhang Q, Pyrkosz AB, Brom TH. A reference-free algorithm for computational normalization of shotgun sequencing data. arXiv preprint arXiv:12034802; 2012.
Google Scholar
Crusoe MR, Alameldin HF, Awad S, Boucher E, Caldwell A, Cartwright R, et al. The khmer software package: enabling efficient nucleotide sequence analysis. F1000Res. 2015;4:900.
Article
PubMed
PubMed Central
Google Scholar
Bushnell B. BBMap: a fast, accurate, splice-aware aligner. Berkeley: Lawrence Berkeley National Lab.(LBNL); 2014.
Google Scholar
Clavijo BJ, Venturini L, Schudoma C, Accinelli GG, Kaithakottil G, Wright J, et al. An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations. Genome Res. 2017;27(5):885–96. https://doi.org/10.1101/gr.217117.116.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21. https://doi.org/10.1093/bioinformatics/bts635.
Article
CAS
PubMed
Google Scholar
Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al. De novo transcript sequence reconstruction from RNA-seq using the trinity platform for reference generation and analysis. Nat Protoc. 2013;8(8):1494–512. https://doi.org/10.1038/nprot.2013.084.
Article
CAS
PubMed
Google Scholar
Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14(4):R36. https://doi.org/10.1186/gb-2013-14-4-r36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and cufflinks. Nat Protoc. 2012;7(3):562–78. https://doi.org/10.1038/nprot.2012.016.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc. 2016;11(9):1650–67. https://doi.org/10.1038/nprot.2016.095.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haas BJ, Salzberg SL, Zhu W, Pertea M, Allen JE, Orvis J, et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments. Genome Biol. 2008;9(1):R7. https://doi.org/10.1186/gb-2008-9-1-r7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ter-Hovhannisyan V, Lomsadze A, Chernoff YO, Borodovsky M. Gene prediction in novel fungal genomes using an ab initio algorithm with unsupervised training. Genome Res. 2008;18(12):1979–90. https://doi.org/10.1101/gr.081612.108.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang X, Adams MD, Zhou H, Kerlavage AR. A tool for analyzing and annotating genomic sequences. Genomics. 1997;46(1):37–45. https://doi.org/10.1006/geno.1997.4984.
Article
CAS
PubMed
Google Scholar
Lee E, Helt GA, Reese JT, Munoz-Torres MC, Childers CP, Buels RM, et al. Web Apollo: a web-based genomic annotation editing platform. Genome Biol. 2013;14(8):R93. https://doi.org/10.1186/gb-2013-14-8-r93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jones P, Binns D, Chang H-Y, Fraser M, Li W, McAnulla C, et al. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30(9):1236–40. https://doi.org/10.1093/bioinformatics/btu031.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nielsen H. Predicting secretory proteins with SignalP. In: Protein Function Prediction: Springer; 2017. p. 59–73.
Chapter
Google Scholar
Sperschneider J, Catanzariti A-M, DeBoer K, Petre B, Gardiner DM, Singh KB, et al. LOCALIZER: subcellular localization prediction of both plant and effector proteins in the plant cell. Sci Rep. 2017;7(1):1–14.
Article
Google Scholar
Yin Y, Mao X, Yang J, Chen X, Mao F, Xu Y. dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2012;40(W1):W445–51. https://doi.org/10.1093/nar/gks479.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eberhardt RY, Haft DH, Punta M, Martin M, O'Donovan C, Bateman A. AntiFam: a tool to help identify spurious ORFs in protein annotation Database 2012; 2012.
Google Scholar
Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly. 2012;6(2):80–92. https://doi.org/10.4161/fly.19695.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, et al. Circos: an information aesthetic for comparative genomics. Genome Res. 2009;19(9):1639–45. https://doi.org/10.1101/gr.092759.109.
Article
CAS
PubMed
PubMed Central
Google Scholar