Cullere M, Dalle Zotte A. Rabbit meat production and consumption: State of knowledge and future perspectives. Meat Sci, 2018;143:137–146.
Article
Google Scholar
Dalle Zotte A, Szendro Z. The role of rabbit meat as functional food. Meat science, 2011;88:319–331.
Article
CAS
Google Scholar
Kuang L, Lei M, Li C, Zhang X, Ren Y, Zheng J, Guo Z, Zhang C, Yang C, Mei X, et al. Identification of long non-coding rnas related to skeletal muscle development in two rabbit breeds with different growth rate. Int J Mol Sci, 2018;19.
Luo H, Lv W, Tong Q, Jin J, Xu Z, Zuo B. Functional Non-coding RNA During Embryonic Myogenesis and Postnatal Muscle Development and Disease. Front Cell Dev Biol. 2021; 9:628339.
Article
Google Scholar
Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N, Kadener S. circRNA biogenesis competes with pre-mRNA splicing. Mol Cell. 2014;56:55–66.
Article
CAS
Google Scholar
Wu P, Mo Y, Peng M, Tang T, Zhong Y, Deng X, Xiong F, Guo C, Wu X, Li Y, et al. Emerging role of tumor-related functional peptides encoded by lncrna and circrna. Mol Cancer, 2020;19:22.
Article
CAS
Google Scholar
Martone J, Mariani D, Desideri F, Ballarino M. Non-coding rnas shaping muscle. Front Cell Dev Biol, 2019;7:394.
Article
Google Scholar
Pandey PR, Yang J-H, Tsitsipatis D, Panda AC, Noh JH, Kim KM, Munk R, Nicholson T, Hanniford D, Argibay D, et al. Circsamd4 represses myogenic transcriptional activity of pur proteins. Nucleic Acid Res, 2020;48:3789–3805.
Article
CAS
Google Scholar
Legnini I, Di Timoteo G, Rossi F, Morlando M, Briganti F, Sthandier O, Fatica A, Santini T, Andronache A, Wade M, et al. Circ-znf609 is a circular rna that can be translated and functions in myogenesis. Mol cell, 2017;66.
Zhang J, Li Y, Qi J, Yu X, Ren H, Zhao X, Xin W, He S, Zheng X, Ma C, et al. Circ- serves as an sponge to regulate myo10 (myosin 10) and promote pulmonary artery smooth muscle proliferation. Hypertension, 2020;75:668–679.
Article
CAS
Google Scholar
Zammit PS. Function of the myogenic regulatory factors myf5, myod, myogenin and mrf4 in skeletal muscle, satellite cells and regenerative myogenesis. Semin Cell Dev Biol, 2017;72:19–32.
Article
CAS
Google Scholar
Fröhlich T, Kemter E, Flenkenthaler F, Klymiuk N, Otte KA, Blutke A, Krause S, Walter MC, Wanke R, Wolf E, et al. Progressive muscle proteome changes in a clinically relevant pig model of duchenne muscular dystrophy. Sci Rep, 2016;6:33362.
Article
Google Scholar
Cho I-C, Park H-B, Ahn JS, Han S-H, Lee J-B, Lim H-T, Yoo C-K, Jung E-J, Kim D-H, Sun W-S, et al. A functional regulatory variant of myh3 influences muscle fiber-type composition and intramuscular fat content in pigs. PLoS Genet, 2019;15:e1008279.
Article
CAS
Google Scholar
Gesek M, Murawska D, Otrocka-Domagala I, Michalska K, Zawacka M. Effects of caponization and age on the histology, lipid localization, and fiber diameter in muscles from leghorn cockerels. Poult Sci, 2019;98:1354–1362.
Article
CAS
Google Scholar
Siqin Q, Nishiumi T, Yamada T, Wang S, Liu W, Wu R, Borjigin G. Relationships among muscle fiber type composition, fiber diameter and mrf gene expression in different skeletal muscles of naturally grazing wuzhumuqin sheep during postnatal development. Anim Sci J, 2017;88:2033–2043.
Article
CAS
Google Scholar
Saito K, Morita T, Takasu H, Kuroki K, Fujiwara T, Hiraba K, Goto S. Histochemical study of rabbit medial pterygoid muscle during postnatal development. Odontology, 2017;105:141–149.
Article
CAS
Google Scholar
Ganassi M, Badodi S, Ortuste Quiroga HP, Zammit PS, Hinits Y, Hughes SM. Myogenin promotes myocyte fusion to balance fibre number and size. Nat Commun, 2018;9:4232.
Article
Google Scholar
Murach KA, Fry CS, Kirby TJ, Jackson JR, Lee JD, White SH, Dupont-Versteegden EE, McCarthy JJ, Peterson CA. Starring or supporting role? Satellite cells and skeletal muscle fiber size regulation. Physiology, 2018;33:26–38.
Article
CAS
Google Scholar
Picard B, Gagaoua M. Muscle fiber properties in cattle and their relationships with meat qualities: An overview. J Agr Food Chem, 2020;68:6021–6039.
Article
CAS
Google Scholar
Li R, Jiang J, Shi H, Qian H, Zhang X, Xu W. Circrna: A rising star in gastric cancer. Cell Mol Life Sci, 2020;77:1661–1680.
Article
CAS
Google Scholar
Magarin M, Pohl T, Lill A, Schulz H, Blaschke F, Heuser A, Thierfelder L, Donath S, Drenckhahn J-D. Embryonic cardiomyocytes can orchestrate various cell protective mechanisms to survive mitochondrial stress. J Mol Cell Cardiol. 2016;97:1–14.
Filomena MC, Yamamoto DL, Caremani M, Kadarla VK, Mastrototaro G, Serio S, Vydyanath A, Mutarelli M, Garofalo A, Pertici I, et al. Myopalladin promotes muscle growth through modulation of the serum response factor pathway. J Cachexia Sarcopenia Muscle. 2020; 11(1):169–194.
Article
Google Scholar
Woodhouse S, Pugazhendhi D, Brien P, Pell JM. Ezh2 maintains a key phase of muscle satellite cell expansion but does not regulate terminal differentiation. J Cell Sci. 2013;126(Pt 2):565–79.
CAS
Google Scholar
Olivé M, Goldfarb LG, Shatunov A, Fischer D, Ferrer I. Myotilinopathy: refining the clinical and myopathological phenotype. Brain. 2005;128(Pt 10):2315–2326
Article
Google Scholar
Tang W, Xue R, Weng S, Wu J, Fang Y, Wang Y, Ji L, Hu T, Liu T, Huang X,et al. BIRC6 promotes hepatocellular carcinogenesis: interaction of BIRC6 with p53 facilitating p53 degradation. Int J Cancer. 2015;136(6): 475–487.
Article
Google Scholar
Yi M, Ban Y, Tan Y, Xiong W, Li G, Xiang B. 6-Phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 and 4: A pair of valves for fine-tuning of glucose metabolism in human cancer. Mol Metab. 2019;20:1–13.
Article
Google Scholar
Musacchio A. Spindle assembly checkpoint: the third decade. Philos Trans R Soc Lond B Biol Sci. 2011;366(1584):3595–604
Article
CAS
Google Scholar
Hayward D, Alfonso-Pérez T, Gruneberg U. Orchestration of the spindle assembly checkpoint by CDK1-cyclin B1. FEBS Lett. 2019;593(20):2889–2907.
Article
CAS
Google Scholar
Gu T, Lin X, Cullen SM, Luo M, Jeong M, Estecio M, Shen J, Hardikar S, Sun D, Su J, et al. DNMT3A and TET1 cooperate to regulate promoter epigenetic landscapes in mouse embryonic stem cells. Genome Biol. 2018;19(1):88.
Article
Google Scholar
Sandri M. Protein breakdown in muscle wasting: role of autophagy-lysosome and ubiquitin-proteasome. Int J Biochem Cell Biol. 2013 Oct;45(10):2121–2129.
Zhang X, Wang S, Wang H, Cao J, Huang X, Chen Z, Xu P, Sun G, Xu J, Lv J, et al. Circular rna circnrip1 acts as a microrna-149-5p sponge to promote gastric cancer progression via the akt1/mtor pathway. Mol Cancer, 2019;18:20.
Article
Google Scholar
Hamblett KJ, Jacob AP, Gurgel JL, Tometsko ME, Rock BM, Patel SK, Milburn RR, Siu S, Ragan SP, Rock DA, et al. Slc46a3 is required to transport catabolites of noncleavable antibody maytansine conjugates from the lysosome to the cytoplasm. Cancer Res, 2015;75:5329–5340.
Article
CAS
Google Scholar
Xu Z, Han Y, Liu J, Jiang F, Hu H, Wang Y, Liu Q, Gong Y, Li X. Mir-135b-5p and mir-499a-3p promote cell proliferation and migration in atherosclerosis by directly targeting mef2c. Sci Rep, 2015;5:12276.
Article
CAS
Google Scholar
Kim D, Langmead B, Salzberg SL. Hisat: A fast spliced aligner with low memory requirements. Nat Methods, 2015;12:357–360.
Article
CAS
Google Scholar
Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, et al. Circular rnas are a large class of animal rnas with regulatory potency. Nature, 2013;495:333–338.
Article
CAS
Google Scholar
Gao Y, Zhang J, Zhao F. Circular rna identification based on multiple seed matching. Brief Bioinform, 2018;19:803–810.
Article
CAS
Google Scholar
Young MD, Wakefield MJ, Smyth GK, Oshlack A. Gene ontology analysis for rna-seq: Accounting for selection bias. Genome Biol, 2010;11:R14.
Article
Google Scholar
Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J. The biogenesis, biology and characterization of circular rnas. Nat Rev Genet, 2019;20:675–691.
Article
CAS
Google Scholar
Kong L, Zhang Y, Ye ZQ, Liu XQ, Zhao SQ, Wei L, Gao G. Cpc: Assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res, 2007;35:W345-349.
Google Scholar
Sun L, Luo H, Bu D, Zhao G, Yu K, Zhang C, Liu Y, Chen R, Zhao Y. Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts. Nucleic Acids Res, 2013;41:e166.
Article
CAS
Google Scholar
Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A, et al. The pfam protein families database: Towards a more sustainable future. Nucleic Acids Res, 2016;44:D279-285.
Article
Google Scholar
Li L, Chen Y, Nie L, Ding X, Zhang X, Zhao W, Xu X, Kyei B, Dai D, Zhan S, et al. Myod-induced circular rna cdr1as promotes myogenic differentiation of skeletal muscle satellite cells. Biochim Biophys Acta Gene Regul Mech, 2019;1862:807–821.
Article
CAS
Google Scholar
Spss statistics. [cited 2018 May 6th]. Available from: https://www.ibm.com/products/spss-statistics.