von Arnold S, Clapham D, Abrahamsson M. Embryology in conifers. Mol Physiol Biotechnol Trees. 2019;89:157–84. https://doi.org/10.1016/bs.abr.2018.11.005.
Article
CAS
Google Scholar
Egertsdotter U, Ahmad I, Clapham D. Automation and scale up of somatic embryogenesis for commercial plant production, with emphasis on conifers. Front Plant Sci. 2019;10. https://doi.org/10.3389/fpls.2019.00109.
Rosvall O. Using Norway spruce clones in Swedish forestry: general overview and concepts. Scand J For Res. 2019;34(5):336–41. https://doi.org/10.1080/02827581.2019.1614659.
Article
Google Scholar
Hakman I, Fowke LC. Somatic embryogenesis in Picea glauca (white spruce) and Picea mariana (black spruce). Can J Botany. 1987;65(4):656–9.
Article
Google Scholar
Chalupa V. Somatic embryogenesis and plantlet regeneration from cultured immature and mature embryos of Picea abies (L.) karst. Commun Institut Forest Czechosloveniae. 1985;14:57–63.
Google Scholar
Salaj T, Matusova R, Salaj J. Conifer somatic embryogenesis - an efficient plant regeneration system for theoretical studies and mass propagation. Dendrobiology. 2015;74:69–76. https://doi.org/10.12657/denbio.074.007.
Article
CAS
Google Scholar
Alvarez JM, Bueno N, Canas RA, Avila C, Canovas FM, Ordas RJ. Analysis of the WUSCHEL-RELATED HOMEOBOX gene family in Pinus pinaster: new insights into the gene family evolution. Plant Physiol Biochem. 2018;123:304–18. https://doi.org/10.1016/j.plaphy.2017.12.031.
Article
CAS
PubMed
Google Scholar
Palovaara J, Hakman I. Conifer WOX-related homeodomain transcription factors, developmental consideration and expression dynamic of WOX2 during Picea abies somatic embryogenesis. Plant Mol Biol. 2008;66(5):533–49. https://doi.org/10.1007/s11103-008-9289-5.
Article
CAS
PubMed
Google Scholar
Trontin JF, Klimaszewska K, Morel A, Hargreaves C, Lelu-Walter MA. Molecular aspects of conifer zygotic and somatic embryo development: a review of genome-wide approaches and recent insights. Methods Mol Biol. 2016;1359:167–207. https://doi.org/10.1007/978-1-4939-3061-6_8.
Article
CAS
PubMed
Google Scholar
von Arnold S, Egertsdotter U, Ekberg I, Gupta P, Mo H, Nörgaard J. Somatic Embryogenesis in Norway Spruce (Picea abies). In: Jain SM, Gupta PK, Newton RJ, editors. Somatic Embryogenesis in Woody Plants Forestry Sciences. Dordrecht: Springer; 1995. p. 44–6.
Google Scholar
Varis S, Klimaszewska K, Aronen T. Somatic embryogenesis and plant regeneration from primordial shoot explants of Picea abies (L.) H. Karst. Somatic Trees. Front Plant Sci. 2018;9:1551.
Article
PubMed
PubMed Central
Google Scholar
Klimaszewska K, Overton C, Stewart D, Rutledge RG. Initiation of somatic embryos and regeneration of plants from primordial shoots of 10-year-old somatic white spruce and expression profiles of 11 genes followed during the tissue culture process. Planta. 2011;233(3):635–47. https://doi.org/10.1007/s00425-010-1325-4.
Article
CAS
PubMed
Google Scholar
Ikeuchi M, Favero DS, Sakamoto Y, Iwase A, Coleman D, Rymen B, et al. Molecular mechanisms of plant regeneration. Ann Rev Plant Biol. 2019;70:377–406.
Article
CAS
Google Scholar
Diaz-Sala C. Molecular dissection of the regenerative capacity of forest tree species: special focus on conifers. Front Plant Sci. 2019;9. https://doi.org/10.3389/fpls.2018.01943.
Wojcik AM, Wojcikowska B, Gaj MD. Current perspectives on the auxin-mediated genetic network that controls the induction of somatic embryogenesis in plants. Int J Mol Sci. 2020;21(4):1333.
Article
CAS
PubMed Central
Google Scholar
Horstman A, Willemsen V, Boutilier K, Heidstra R. AINTEGUMENTA-LIKE proteins: hubs in a plethora of networks. Trends Plant Sci. 2014;19(3):146–57. https://doi.org/10.1016/j.tplants.2013.10.010.
Article
CAS
PubMed
Google Scholar
Han JD, Li X, Jiang CK, Wong GKS, Rothfels CJ, Rao GY. Evolutionary analysis of the LAFL genes involved in the land plant seed maturation program. Front Plant Sci. 2017;8. https://doi.org/10.3389/fpls.2017.00439.
Kumar V, Jha P, Van Staden J. LEAFY COTYLEDONs (LECs): master regulators in plant embryo development. Plant Cell Tiss Org. 2020;140(3):475–87. https://doi.org/10.1007/s11240-019-01752-x.
Article
Google Scholar
Braybrook SA, Harada JJ. LECs go crazy in embryo development. Trends Plant Sci. 2008;13(12):624–30. https://doi.org/10.1016/j.tplants.2008.09.008.
Article
CAS
PubMed
Google Scholar
Chiappetta A, Fambrini M, Petrarulo M, Rapparini F, Michelotti V, Bruno L, et al. Ectopic expression of LEAFY COTYLEDON1-LIKE gene and localized auxin accumulation mark embryogenic competence in epiphyllous plants of Helianthus annuus x H-tuberosus. Ann Bot. 2009;103(5):735–47. https://doi.org/10.1093/aob/mcn266.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lotan T, Ohto M, Yee KM, West MAL, Lo R, Kwong RW, et al. Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell. 1998;93(7):1195–205. https://doi.org/10.1016/S0092-8674(00)81463-4.
Article
CAS
PubMed
Google Scholar
Stone SL, Kwong LW, Yee KM, Pelletier J, Lepiniec L, Fischer RL, et al. LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development. P Natl Acad Sci USA. 2001;98(20):11806–11. https://doi.org/10.1073/pnas.201413498.
Article
CAS
Google Scholar
Park SY, Klimaszewska K, Park JY, Mansfield SD. Lodgepole pine: the first evidence of seed-based somatic embryogenesis and the expression of embryogenesis marker genes in shoot bud cultures of adult trees. Tree Physiol. 2010;30(11):1469–78. https://doi.org/10.1093/treephys/tpq081.
Article
CAS
PubMed
Google Scholar
Uddenberg D, Abrahamsson M, von Arnold S. Overexpression of PaHAP3A stimulates differentiation of ectopic embryos from maturing somatic embryos of Norway spruce. Tree Genet Genomes. 2016;12(2):18.
Article
Google Scholar
Uddenberg D, Valladares S, Abrahamsson M, Sundstrom JF, Sundas-Larsson A, von Arnold S. Embryogenic potential and expression of embryogenesis-related genes in conifers are affected by treatment with a histone deacetylase inhibitor. Planta. 2011;234(3):527–39. https://doi.org/10.1007/s00425-011-1418-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arrillaga I, Morcillo M, Zanon I, Lario F, Segura J, Sales E. New approaches to optimize somatic embryogenesis in maritime pine. Front Plant Sci. 2019;10. https://doi.org/10.3389/fpls.2019.00138.
Schlogl PS, dos Santos ALW, Vieira LDN, Floh EIS, Guerra MP. Gene expression during early somatic embryogenesis in Brazilian pine (Araucaria angustifolia (Bert) O. Ktze). Plant Cell Tiss Org. 2012;108(1):173–80. https://doi.org/10.1007/s11240-011-0023-7.
Article
CAS
Google Scholar
Harada JJ. Role of Arabidopsis LEAFY COTYLEDON genes in seed development. J Plant Physiol. 2001;158(4):405–9. https://doi.org/10.1078/0176-1617-00351.
Article
CAS
Google Scholar
Suzuki M, Ketterling MG, Li QB, McCarty DR. Viviparous1 alters global gene expression patterns through regulation of abscisic acid signaling. Plant Physiol. 2003;132(3):1664–77. https://doi.org/10.1104/pp.103.022475.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gazzarrini S, Tsuchiya Y, Lumba S, Okamoto M, McCourt P. The transcription factor FUSCA3 controls developmental timing in Arabidopsis through the hormones gibberellin and abscisic acid. Dev Cell. 2004;7(3):373–85. https://doi.org/10.1016/j.devcel.2004.06.017.
Article
CAS
PubMed
Google Scholar
Parcy F, Valon C, Raynal M, Gaubiercomella P, Delseny M, Giraudat J. Regulation of gene-expression programs during Arabidopsis seed development - roles of the ABI3 locus and of endogenous abscisic-acid. Plant Cell. 1994;6(11):1567–82. https://doi.org/10.1105/tpc.6.11.1567.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stasolla C, van Zyl L, Egertsdotter U, Craig D, Liu WB, Sederoff RR. The effects of polyethylene glycol on gene expression of developing white spruce somatic embryos. Plant Physiol. 2003;131(1):49–60. https://doi.org/10.1104/pp.015214.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fischerova L, Fischer L, Vondrakova Z, Vagner M. Expression of the gene encoding transcription factor PaVP1 differs in Picea abies embryogenic lines depending on their ability to develop somatic embryos. Plant Cell Rep. 2008;27(3):435–41. https://doi.org/10.1007/s00299-007-0469-6.
Article
CAS
PubMed
Google Scholar
Merino I, Abrahamsson M, Sterck L, Craven-Bartle B, Canovas F, von Arnold S. Transcript profiling for early stages during embryo development in scots pine. BMC Plant Biol. 2016;16(1):255. https://doi.org/10.1186/s12870-016-0939-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Footitt S, Ingouff M, Clapham D, von Arnold S. Expression of the viviparous 1 (Pavp1) and p34(cdc2) protein kinase (cdc2Pa) genes during somatic embryogenesis in Norway spruce (Picea abies [L.] karst). J Exp Bot. 2003;54(388):1711–9. https://doi.org/10.1093/jxb/erg178.
Article
CAS
PubMed
Google Scholar
Horstman A, Bemer M, Boutilier K. A transcriptional view on somatic embryogenesis. Regeneration. 2017;4(4):201–16. https://doi.org/10.1002/reg2.91.
Article
PubMed
PubMed Central
Google Scholar
Jha P, Kumar V. BABY BOOM (BBM): a candidate transcription factor gene in plant biotechnology. Biotechnol Lett. 2018;40(11–12):1467–75. https://doi.org/10.1007/s10529-018-2613-5.
Article
CAS
PubMed
Google Scholar
Horstman A, Li MF, Heidmann I, Weemen M, Chen BJ, Muino JM, et al. The BABY BOOM transcription factor activates the LEC1-ABI3-FUS3-LEC2 network to induce somatic embryogenesis. Plant Physiol. 2017;175(2):848–57. https://doi.org/10.1104/pp.17.00232.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, Zhang LM, et al. Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell. 2002;14(8):1737–49. https://doi.org/10.1105/tpc.001941.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rupps A, Raschke J, Rummler M, Linke B, Zoglauer K. Identification of putative homologs of Larix decidua to BABYBOOM (BBM), LEAFY COTYLEDON1 (LEC1), WUSCHEL-related HOMEOBOX2 (WOX2) and SOMATIC EMBRYOGENESIS RECEPTOR-like KINASE (SERK) during somatic embryogenesis. Planta. 2016;243(2):473–88. https://doi.org/10.1007/s00425-015-2409-y.
Article
CAS
PubMed
Google Scholar
Li KP, Sun XM, Han H, Zhang SG. Isolation, characterization and expression analysis of the BABY BOOM (BBM) gene from Larix kaempferi x L. olgensis during adventitious rooting. Gene. 2014;551(2):111–8. https://doi.org/10.1016/j.gene.2014.08.023.
Article
CAS
PubMed
Google Scholar
Wang HM, Li KP, Sun XM, Xie YH, Han XM, Zhang SG. Isolation and characterization of larch BABY BOOM2 and its regulation of adventitious root development. Gene. 2019;690:90–8. https://doi.org/10.1016/j.gene.2018.12.049.
Article
CAS
PubMed
Google Scholar
Tsuwamoto R, Yokoi S, Takahata Y. Arabidopsis EMBRYOMAKER encoding an AP2 domain transcription factor plays a key role in developmental change from vegetative to embryonic phase. Plant Mol Biol. 2010;73(4–5):481–92. https://doi.org/10.1007/s11103-010-9634-3.
Article
CAS
PubMed
Google Scholar
Buchholz J. Embryo development and polyembryony in relation to the phylogeny of conifers. Am J Bot. 1920;7(4):125–45. https://doi.org/10.1002/j.1537-2197.1920.tb05570.x.
Article
Google Scholar
Filonova LH, von Arnold S, Daniel G, Bozhkov PV. Programmed cell death eliminates all but one embryo in a polyembryonic plant seed. Cell Death Differ. 2002;9(10):1057–62. https://doi.org/10.1038/sj.cdd.4401068.
Article
CAS
PubMed
Google Scholar
Zuo JR, Niu QW, Frugis G, Chua NH. The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J. 2002;30(3):349–59. https://doi.org/10.1046/j.1365-313X.2002.01289.x.
Article
CAS
PubMed
Google Scholar
Klimaszewska K, Pelletier G, Overton C, Stewart D, Rutledge RG. Hormonally regulated overexpression of Arabidopsis WUS and conifer LEC1 (CHAP3A) in transgenic white spruce: implications for somatic embryo development and somatic seedling growth. Plant Cell Rep. 2010;29(7):723–34. https://doi.org/10.1007/s00299-010-0859-z.
Article
CAS
PubMed
Google Scholar
Haecker A, Gross-Hardt R, Geiges B, Sarkar A, Breuninger H, Herrmann M, et al. Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana. Development. 2004;131(3):657–68. https://doi.org/10.1242/dev.00963.
Article
CAS
PubMed
Google Scholar
Zhu T, Moschou PN, Alvarez JM, Sohlberg JJ, von Arnold S. WUSCHEL-RELATED HOMEOBOX 2 is important for protoderm and suspensor development in the gymnosperm Norway spruce. BMC Plant Biol. 2016;16(1):19. https://doi.org/10.1186/s12870-016-0706-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Palovaara J, Hallberg H, Stasolla C, Hakman I. Comparative expression pattern analysis of WUSCHEL-related homeobox 2 (WOX2) and WOX8/9 in developing seeds and somatic embryos of the gymnosperm Picea abies. New Phytol. 2010;188(1):122–35. https://doi.org/10.1111/j.1469-8137.2010.03336.x.
Article
CAS
PubMed
Google Scholar
Hedman H, Zhu TQ, von Arnold S, Sohlberg JJ. Analysis of the WUSCHEL-RELATED HOMEOBOX gene family in the conifer Picea abies reveals extensive conservation as well as dynamic patterns. BMC Plant Biol. 2013;13(1):89. https://doi.org/10.1186/1471-2229-13-89.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou X, Zheng R, Liu G, Xu Y, Zhou Y, Laux T, et al. Desiccation treatment and endogenous IAA levels are key factors influencing high frequency somatic embryogenesis in Cunninghamia lanceolata (Lamb.) Hook. Front Plant Sci. 2017;8:2054. https://doi.org/10.3389/fpls.2017.02054.
Article
PubMed
PubMed Central
Google Scholar
Kumar V, Van Staden J. Multi-tasking of SERK-like kinases in plant embryogenesis, growth, and development: current advances and biotechnological applications. Acta Physiol Plant. 2019;41(3):1–6.
Article
Google Scholar
Hecht V, Vielle-Calzada JP, Hartog MV, Schmidt EDL, Boutilier K, Grossniklaus U, et al. The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol. 2001;127(3):803–16. https://doi.org/10.1104/pp.010324.
Article
CAS
PubMed
PubMed Central
Google Scholar
Steiner N, Santa-Catarina C, Guerra M, Cutri L, Dornelas M, Floh E. A gymnosperm homolog of SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE-1 (SERK1) is expressed during somatic embryogenesis. Plant Cell Tissue Organ Cult. 2012;109(1):41–50. https://doi.org/10.1007/s11240-011-0071-z.
Article
CAS
Google Scholar
Clapier CR, Iwasa J, Cairns BR, Peterson CL. Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes. Nat Rev Mol Cell Biol. 2017;18(7):407–22. https://doi.org/10.1038/nrm.2017.26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Henderson JT, Li HC, Rider SD, Mordhorst AP, Romero-Severson J, Cheng JC, et al. PICKLE acts throughout the plant to repress expression of embryonic traits and may play a role in gibberellin-dependent responses. Plant Physiol. 2004;134(3):995–1005. https://doi.org/10.1104/pp.103.030148.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ogas J, Kaufmann S, Henderson J, Somerville C. PICKLE is a CHD3 chromatin-remodeling factor that regulates the transition from embryonic to vegetative development in Arabidopsis. P Natl Acad Sci USA. 1999;96(24):13839–44. https://doi.org/10.1073/pnas.96.24.13839.
Article
CAS
Google Scholar
Jia H, Suzuki M, McCarty DR. Regulation of the seed to seedling developmental phase transition by the LAFL and VAL transcription factor networks. Wiley Interdiscip Rev Dev Biol. 2014;3(1):135–45. https://doi.org/10.1002/wdev.126.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tsukagoshi H, Saijo T, Shibata D, Morikami A, Nakamura K. Analysis of a sugar response mutant of Arabidopsis identified a novel B3 domain protein that functions as an active transcriptional repressor. Plant Physiol. 2005;138(2):675–85. https://doi.org/10.1104/pp.104.057752.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sasnauskas G, Kauneckaite K, Siksnys V. Structural basis of DNA target recognition by the B3 domain of Arabidopsis epigenome reader VAL1. Nucleic Acids Res. 2018;46(8):4316–24. https://doi.org/10.1093/nar/gky256.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kagale S, Rozwadowski K. EAR motif-mediated transcriptional repression in plants: an underlying mechanism for epigenetic regulation of gene expression. Epigenetics. 2011;6(2):141–6. https://doi.org/10.4161/epi.6.2.13627.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guan Y, Li SG, Fan XF, Su ZH. Application of somatic embryogenesis in woody plants. Front Plant Sci. 2016;7. https://doi.org/10.3389/fpls.2016.00938.
Jia H, McCarty DR, Suzuki M. Distinct roles of LAFL network genes in promoting the embryonic seedling fate in the absence of VAL repression. Plant Physiol. 2013;163(3):1293–305. https://doi.org/10.1104/pp.113.220988.
Article
CAS
PubMed
PubMed Central
Google Scholar
Suzuki M, Wang HHY, McCarty DR. Repression of the LEAFY COTYLEDON 1/B3 regulatory network in plant embryo development by VP1/ABSCISIC ACID INSENSITIVE 3-LIKE B3 genes. Plant Physiol. 2007;143(2):902–11. https://doi.org/10.1104/pp.106.092320.
Article
CAS
PubMed
PubMed Central
Google Scholar
Howe GT, Bucciaglia PA, Hackett WP, Furnier GR, Cordonnier-Pratt MM, Gardner G. Evidence that the phytochrome gene family in black cottonwood has one PHYA locus and two PHYB loci but lacks members of the PHYC/F and PHYE subfamilies. Mol Biol Evol. 1998;15(2):160–75. https://doi.org/10.1093/oxfordjournals.molbev.a025912.
Article
CAS
PubMed
Google Scholar
Merino I, Abrahamsson M, Larsson E, von Arnold S. Identification of molecular processes that differ among Scots pine somatic embryogenic cell lines leading to the development of normal or abnormal cotyledonary embryos. Tree Genet Genomes. 2018;14(2):1–7.
Article
Google Scholar
Dobrowolska I, Businge E, Abreu IN, Moritz T, Egertsdotter U. Metabolome and transcriptome profiling reveal new insights into somatic embryo germination in Norway spruce (Picea abies). Tree Physiol. 2017;37(12):1752–66. https://doi.org/10.1093/treephys/tpx078.
Article
CAS
PubMed
Google Scholar
Elbl P, Campos RA, Lira BS, Andrade SCS, Jo L, dos Santos ALW, et al. Comparative transcriptome analysis of early somatic embryo formation and seed development in Brazilian pine, Araucaria angustifolia (Bertol.) Kuntze. Plant Cell Tiss Org. 2015;120(3):917. https://doi.org/10.1007/s11240-015-0730-6.
Article
Google Scholar
Hofmann F, Schon MA, Nodine MD. The embryonic transcriptome of Arabidopsis thaliana. Plant Reprod. 2019;32(1):77–91. https://doi.org/10.1007/s00497-018-00357-2.
Article
CAS
PubMed
Google Scholar
Wickramasuriya AM, Dunwell JM. Global scale transcriptome analysis of Arabidopsis embryogenesis in vitro. BMC Genomics. 2015;16(1):301. https://doi.org/10.1186/s12864-015-1504-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Y, Jin K, Zhu Z, Yang J. Stepwise origin and functional diversification of the AFL subfamily B3 genes during land plant evolution. J Bioinf Comput Biol. 2010;8(supp01):33–45. https://doi.org/10.1142/S0219720010005129.
Article
CAS
Google Scholar
Eckardt NA. Genomic hopscotch: gene transfer from plastid to nucleus. Plant Cell. 2006;18(11):2865–7. https://doi.org/10.1105/tpc.106.049031.
Article
CAS
PubMed Central
Google Scholar
Braukmann TWA, Kuzmina M, Stefanovic S. Loss of all plastid ndh genes in Gnetales and conifers: extent and evolutionary significance for the seed plant phylogeny. Curr Genet. 2009;55(3):323–37. https://doi.org/10.1007/s00294-009-0249-7.
Article
CAS
PubMed
Google Scholar
Ranade SS, García-Gil MR, Rossello JA. Non-functional plastid ndh gene fragments are present in the nuclear genome of Norway spruce (Picea abies L. Karsch): insights from in silico analysis of nuclear and organellar genomes. Mol Gen Genomics. 2016;291(2):935–41. https://doi.org/10.1007/s00438-015-1159-7.
Article
CAS
Google Scholar
Neale DB, McGuire PE, Wheeler NC, Stevens KA, Crepeau MW, Cardeno C, et al. The Douglas-fir genome sequence reveals specialization of the photosynthetic apparatus in Pinaceae. G3. 2017;7(9):3157–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee HS, Fischer RL, Goldberg RB, Harada JJ. Arabidopsis LEAFY COTYLEDON1 represents a functionally specialized subunit of the CCAAT binding transcription factor. P Natl Acad Sci USA. 2003;100(4):2152–6. https://doi.org/10.1073/pnas.0437909100.
Article
CAS
Google Scholar
Alemanno L, Devic M, Niemenak N, Sanier C, Guilleminot J, Rio M, et al. Characterization of leafy cotyledon1-like during embryogenesis in Theobroma cacao L. Planta. 2008;227(4):853–66. https://doi.org/10.1007/s00425-007-0662-4.
Article
CAS
PubMed
Google Scholar
Kwong RW, Bui AQ, Lee H, Kwong LW, Fischer RL, Goldberg RB, et al. LEAFY COTYLEDON1-LIKE defines a class of regulators essential for embryo development. Plant Cell. 2003;15(1):5–18. https://doi.org/10.1105/tpc.006973.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xie ZY, Li X, Glover BJ, Bai SN, Rao GY, Luo JC, et al. Duplication and functional diversification of HAP3 genes leading to the origin of the seed-developmental regulatory gene, LEAFY COTYLEDON1 (LEC1), in nonseed plant genomes. Mol Biol Evol. 2008;25(8):1581–92. https://doi.org/10.1093/molbev/msn105.
Article
CAS
PubMed
Google Scholar
Luerssen K, Kirik V, Herrmann P, Misera S. FUSCA3 encodes a protein with a conserved VP1/ABI3-like B3 domain which is of functional importance for the regulation of seed maturation in Arabidopsis thaliana. Plant J. 1998;15(6):755–64. https://doi.org/10.1046/j.1365-313X.1998.00259.x.
Article
CAS
PubMed
Google Scholar
Sun FS, Liu XY, Wei QH, Liu JN, Yang TX, Jia LY, et al. Functional characterization of TaFUSCA3, a B3-superfamily transcription factor gene in the wheat. Front Plant Sci. 2017;8. https://doi.org/10.3389/fpls.2017.01133.
Bilichak A, Luu J, Jiang F, Eudes F. Identification of BABY BOOM homolog in bread wheat. Agri Gene. 2018;7:43–51. https://doi.org/10.1016/j.aggene.2017.11.002.
Article
Google Scholar
El Ouakfaoui S, Schnell J, Abdeen A, Colville A, Labbe H, Han SY, et al. Control of somatic embryogenesis and embryo development by AP2 transcription factors. Plant Mol Biol. 2010;74(4–5):313–26. https://doi.org/10.1007/s11103-010-9674-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rahman MH, Toda E, Kobayashi M, Kudo T, Koshimizu S, Takahara M, et al. Expression of genes from paternal alleles in rice zygotes and involvement of OsASGR-BBML1 in initiation of zygotic development. Plant Cell Physiol. 2019;60(4):725–37. https://doi.org/10.1093/pcp/pcz030.
Article
CAS
PubMed
Google Scholar
Bui LT, Pandzic D, Youngstrom CE, Wallace S, Irish EE, Szovenyi P, et al. A fern AINTEGUMENTA gene mirrors BABY BOOM in promoting apogamy in Ceratopteris richardii. Plant J. 2017;90(1):122–32. https://doi.org/10.1111/tpj.13479.
Article
CAS
PubMed
Google Scholar
Liu CX, Zhang TZ. Expansion and stress responses of the AP2/EREBP superfamily in cotton. BMC Genomics. 2017;18:1–6.
Article
Google Scholar
Albrecht C, Russinova E, Hecht V, Baaijens E, de Vries S. The Arabidopsis thaliana SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASES1 and 2 control male sporogenesis. Plant Cell. 2005;17(12):3337–49. https://doi.org/10.1105/tpc.105.036814.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li ZY, Wang Y, Huang J, Ahsan N, Biener G, Paprocki J, et al. Two SERK receptor-like kinases interact with EMS1 to control anther cell fate determination. Plant Physiol. 2017;173(1):326–37. https://doi.org/10.1104/pp.16.01219.
Article
CAS
PubMed
Google Scholar
Nolan KE, Kurdyukov S, Rose RJ. Characterisation of the legume SERK-NIK gene superfamily including splice variants: implications for development and defence. BMC Plant Biol. 2011;11(1):44. https://doi.org/10.1186/1471-2229-11-44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sharma SK, Millam S, Hein I, Bryan GJ. Cloning and molecular characterisation of a potato SERK gene transcriptionally induced during initiation of somatic embryogenesis. Planta. 2008;228(2):319–30. https://doi.org/10.1007/s00425-008-0739-8.
Article
CAS
PubMed
Google Scholar
Jing YJ, Lin RC. PICKLE is a repressor in seedling de-etiolation pathway. Plant Signal Behav. 2013;8(8):e25026. https://doi.org/10.4161/psb.25026.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jing YJ, Zhang D, Wang X, Tang WJ, Wang WQ, Huai JL, et al. Arabidopsis chromatin remodeling factor PICKLE interacts with transcription factor HY5 to regulate hypocotyl cell elongation. Plant Cell. 2013;25(1):242–56. https://doi.org/10.1105/tpc.112.105742.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jha P, Ochatt SJ, Kumar V. WUSCHEL: a master regulator in plant growth signaling. Plant Cell Rep. 2020;39(4):431–44. https://doi.org/10.1007/s00299-020-02511-5.
Article
CAS
PubMed
Google Scholar
Su YH, Tang LP, Zhao XY, Zhang XS. Plant cell totipotency: insights into cellular reprogramming. J Integr Plant Biol. 2020;63:228–43.
Article
PubMed
Google Scholar
Nowak K, Wojcikowska B, Gaj MD. ERF022 impacts the induction of somatic embryogenesis in Arabidopsis through the ethylene-related pathway. Planta. 2015;241(4):967–85. https://doi.org/10.1007/s00425-014-2225-9.
Article
CAS
PubMed
Google Scholar
To A, Valon C, Savino G, Guilleminot J, Devic M, Giraudat J, et al. A network of local and redundant gene regulation governs Arabidopsis seed maturation. Plant Cell. 2006;18(7):1642–51. https://doi.org/10.1105/tpc.105.039925.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kagaya Y, Toyoshima R, Okuda R, Usui H, Yamamoto A, Hattori T. LEAFY COTYLEDON1 controls seed storage protein genes through its regulation of FUSCA3 and ABSCISIC ACID INSENSITIVE3. Plant Cell Physiol. 2005;46(3):399–406. https://doi.org/10.1093/pcp/pci048.
Article
CAS
PubMed
Google Scholar
Kroj T, Savino G, Valon C, Giraudat J, Parcy F. Regulation of storage protein gene expression in Arabidopsis. Development. 2003;130(24):6065–73. https://doi.org/10.1242/dev.00814.
Article
CAS
PubMed
Google Scholar
Junker A, Monke G, Rutten T, Keilwagen J, Seifert M, Thi TM, et al. Elongation-related functions of LEAFY COTYLEDON1 during the development of Arabidopsis thaliana. Plant J. 2012;71(3):427–42.
CAS
PubMed
Google Scholar
Casson SA, Lindsey K. The turnip mutant of Arabidopsis reveals that LEAFY COTYLEDON1 expression mediates the effects of auxin and sugars to promote embryonic cell identity. Plant Physiol. 2006;142(2):526–41. https://doi.org/10.1104/pp.106.080895.
Article
CAS
PubMed
PubMed Central
Google Scholar
Passarinho P, Ketelaar T, Xing M, van Arkel J, Maliepaard C, Hendriks MW, et al. BABY BOOM target genes provide diverse entry points into cell proliferation and cell growth pathways. Plant Mol Biol. 2008;68(3):225–37. https://doi.org/10.1007/s11103-008-9364-y.
Article
CAS
PubMed
Google Scholar
Ranade SS, Delhomme N, García-Gil MR. Global gene expression analysis in etiolated and de-etiolated seedlings in conifers. PLoS One. 2019;14(7):e0219272.
Article
CAS
PubMed
PubMed Central
Google Scholar
Proost S, Van Bel M, Vaneechoutte D, Van de Peer Y, Inze D, Mueller-Roeber B, et al. PLAZA 3.0: an access point for plant comparative genomics. Nucleic Acids Res. 2015;43(D1):D974–81. https://doi.org/10.1093/nar/gku986.
Article
CAS
PubMed
Google Scholar
Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin YC, Scofield DG, et al. The Norway spruce genome sequence and conifer genome evolution. Nature. 2013;497(7451):579–84. https://doi.org/10.1038/nature12211.
Article
CAS
PubMed
Google Scholar
Sundell D, Mannapperuma C, Netotea S, Delhomme N, Lin YC, Sjodin A, et al. The plant genome integrative explorer resource: PlantGenIE.org. New Phytol. 2015;208(4):1149–56. https://doi.org/10.1111/nph.13557.
Article
CAS
PubMed
Google Scholar
Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, et al. GenBank. Nucleic Acids Res. 2013;41(D1):D36–42.
Article
CAS
PubMed
Google Scholar
Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu SN, Chitsaz F, Geer LY, et al. CDD: NCBI's conserved domain database. Nucleic Acids Res. 2015;43(D1):D222–6. https://doi.org/10.1093/nar/gku1221.
Article
CAS
PubMed
Google Scholar
Yang HF, Kou YP, Gao B, Soliman TMA, Xu KD, Ma N, et al. Identification and functional analysis of BABY BOOM genes from Rosa canina. Biol Plant. 2014;58(3):427–35. https://doi.org/10.1007/s10535-014-0420-y.
Article
CAS
Google Scholar
Brand A, Quimbaya M, Tohme J, Chavarriaga-Aguirre P. Arabidopsis LEC1 and LEC2 orthologous genes are key regulators of somatic embryogenesis in Cassava. Front Plant Sci. 2019;10. https://doi.org/10.3389/fpls.2019.00673.
Lazarova G, Zeng Y, Kermode AR. Cloning and expression of an ABSCISIC ACID-INSENSITIVE 3 (ABI3) gene homologue of yellow-cedar (Chamaecyparis nootkatensis). J Exp Bot. 2002;53(371):1219–21. https://doi.org/10.1093/jexbot/53.371.1219.
Article
CAS
PubMed
Google Scholar
Barreto HG, Sagio SA, Chalfun A, Fevereiro P, Benedito VA. Transcriptional profiling of the AFL subfamily of B3-type transcription factors during the in vitro induction of somatic embryogenesis in the model legume Medicago truncatula. Plant Cell Tiss Org. 2019;139(2):327–37. https://doi.org/10.1007/s11240-019-01687-3.
Article
CAS
Google Scholar
Li YB, Li QW, Guo GM, He T, Gao RH, Faheem M, et al. Transient overexpression of HvSERK2 improves barley resistance to powdery mildew. Int J Mol Sci. 2018;19(4):1226.
Article
PubMed Central
Google Scholar
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792–7. https://doi.org/10.1093/nar/gkh340.
Article
CAS
PubMed
PubMed Central
Google Scholar
Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan N, et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 2019;47(W1):W636–41. https://doi.org/10.1093/nar/gkz268.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, et al. Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 2008;36(Web Server):W465–9. https://doi.org/10.1093/nar/gkn180.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59(3):307–21. https://doi.org/10.1093/sysbio/syq010.
Article
CAS
PubMed
Google Scholar
Chevenet F, Brun C, Banuls AL, Jacq B, Christen R. TreeDyn: towards dynamic graphics and annotations for analyses of trees. BMC Bioinformatics. 2006;7(1). https://doi.org/10.1186/1471-2105-7-439.
Neale DB, Wegrzyn JL, Stevens KA, Zimin AV, Puiu D, Crepeau MW, et al. Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies. Genome Biol. 2014;15(3):R59. https://doi.org/10.1186/gb-2014-15-3-r59.
Article
CAS
PubMed
PubMed Central
Google Scholar