H.J. Conn, I. Dimmick, Soil bacteria similar in morphology to Mycobacterium and Corynebacterium, J. Bacteriol. 1947; 54: 291–303. https://doi.org/10.1128/JB.54.3.291-303.1947.
Article
CAS
PubMed
PubMed Central
Google Scholar
C. Koch, P. Schumann, E. Stackebrandt, Reclassification of Micrococcus agilis Ali-Cohen 1889; to the genus Arthrobacter as Arthrobacter agilis comb. nov. and emendation of the genus Arthrobacter, Int. J. Syst. Bacteriol. 1995; 45: 837–839. https://doi.org/10.1099/00207713-45-4-837.
Article
CAS
PubMed
Google Scholar
M. Unell, K. Nordin, C. Jernberg, J. Stenstrom, J.K. Jansson, Degradation of mixtures of phenolic compounds by Arthrobacter chlorophenolicus A6, Biodegradation 2008; 19: 495–505. https://doi.org/10.1007/s10532-007-9154-2.
S.G. Dastager, Q. Liu, S.K. Tang, S. Krishnamurthi, J.C. Lee, W.J. Li, Arthrobacter enclensis sp. nov., isolated from sediment sample, Arch. Microbiol. 2014; 196: 775–782. https://doi.org/10.1007/s00203-014-1016-9.
Article
CAS
PubMed
Google Scholar
Y. Huang, N. Zhao, L. He, L. Wang, Z. Liu, M. You, F. Guan, Arthrobacter scleromae sp. nov., isolated from human clinical specimens, J. Clin. Microbiol. 2005; 43: 1451–1455. https://doi.org/10.1128/JCM.43.3.1451-1455.2005.
Article
PubMed
PubMed Central
Google Scholar
H.W. Chang, J.W. Bae, Y.D. Nam, H.Y. Kwon, J.R. Park, K.S. Shin, K.H. Kim, Z.X. Quan, S.K. Rhee, K.G. An, Y.H. Park, Arthrobacter subterraneus sp. nov., isolated from deep subsurface water of the South Coast of Korea, J. Microbiol. Biotechnol. 2007; 17: 1875–1879.
CAS
PubMed
Google Scholar
R. Margesin, P. Schumann, D.C. Zhang, M. Redzic, Y.G. Zhou, H.C. Liu, F. Schinner, Arthrobacter cryoconiti sp. nov., a psychrophilic bacterium isolated from alpine glacier cryoconite, Int. J. Syst. Evol. Microbiol. 2012; 62: 397–402. https://doi.org/10.1099/ijs.0.031138-0.
Article
CAS
PubMed
Google Scholar
K.K. Kim, K.C. Lee, H.M. Oh, M.J. Kim, M.K. Eom, J.S. Lee, Arthrobacter defluvii sp. nov., 4-chlorophenol-degrading bacteria isolated from sewage, Int. J. Syst. Evol. Microbiol. 2008; 58: 1916–1921. https://doi.org/10.1099/ijs.0.65550-0.
Q. Liu, Y.H. Xin, X.L. Chen, H.C. Liu, Y.G. Zhou, W.X. Chen, Arthrobacter ruber sp. nov., isolated from glacier ice, Int. J. Syst. Evol. Microbiol. 2018; 68: 1616–1621. https://doi.org/10.1099/ijsem.0.002719.
Article
CAS
PubMed
Google Scholar
R. Cavicchioli, Cold-adapted archaea, Nat. Rev. Microbiol. 2006; 4: 331–343.https://doi.org/10.1038/nrmicro1390.
Article
CAS
PubMed
Google Scholar
R.Y. Morita, Psychrophilic bacteria, Bacteriol. Rev. 1975; 39: 144–167.
Article
CAS
PubMed
PubMed Central
Google Scholar
S. D’Amico, T. Collins, J.C. Marx, G. Feller, C. Gerday, Psychrophilic microorganisms: challenges for life, EMBO Rep. 2006; 7: 385–389. https://doi.org/10.1038/sj.embor.7400662.
Article
CAS
PubMed
PubMed Central
Google Scholar
L.M. Prescott, J.P. Harley, D.A. Klein, Microbiology (3rd ed.). Wm. C. Brown Publishers. 1996; pp. 130–131. ISBN 0-697-29390-4.
M. Berney, C. Greening, R. Conrad, W.R Jacobs, G.M Cook, An obligately aerobic soil bacterium activates fermentative hydrogen production to survive reductive stress during hypoxia, Proc. Natl. Acad. Sci. USA 2014; 111: 11479–11484. https://doi.org/10.1073/pnas.1407034111.
A. Levasseur, E. Drula, V. Lombard, P.M. Coutinho, B. Henrissat, Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes, Biotechnol. Biofuels 2013; 6: 41. https://doi.org/10.1186/1754-6834-6-41.
Article
CAS
PubMed
PubMed Central
Google Scholar
J. Rytioja, K. Hildén, J. Yuzon, A. Hatakka, R.P. de Vries, M.R. Mäkelä, Plant-polysaccharide-degrading enzymes from Basidiomycetes, Microbiol. Mol. Biol. Rev. 2014; 78: 614–649. https://doi.org/10.1128/MMBR.00035-14.
Article
PubMed
PubMed Central
Google Scholar
A.K. Sista Kameshwar, W. Qin, Comparative study of genome-wide plant biomass-degrading CAZymes in white rot, brown rot and soft rot fungi, Mycology 2017; 9: 93–105. https://doi.org/10.1080/21501203.2017.1419296.
Article
CAS
PubMed
PubMed Central
Google Scholar
A. Klotz, J. Georg, L. Bucinská, S. Watanabe, V. Reimann, W. Januszewski, R. Sobotka, D. Jendrossek, W.R. Hess, K. Forchhammer, Awakening of a dormant cyanobacterium from nitrogen chlorosis reveals a genetically determined program, Curr. Biol. 2016; 26: 2862–2872. https://doi.org/10.1016/j.cub.2016.08.054.
Article
CAS
PubMed
Google Scholar
A. Klotz, K. Forchhammer, Glycogen, a major player for bacterial survival and awakening from dormancy, Future Microbiol. 2017; 12: 101–104. https://doi.org/10.2217/fmb-2016-0218.
Article
CAS
PubMed
Google Scholar
W.R. de Souza, Microbial Degradation of Lignocellulosic Biomass, In: Chandel DA (ed), InTech. 2013; pp. 207–247.
V. Valk, W. Eeuwema, F.D. Sarian, R.M. van der Kaaij, L. Dijkhuizen, Degradation of granular starch by the bacterium Microbacterium aurum strain B8. A involves a modular α-amylase enzyme system with FNIII and CBM25 domains, Appl. Environ. Microbiol. 2015; 81: 6610–6620. https://doi.org/10.1128/AEM.01029-15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Y.J. Goh, T.R. Klaenhammer, Insights into glycogen metabolism in Lactobacillus acidophilus: impact on carbohydrate metabolism, stress tolerance and gut retention, Microb. Cell Fact. 2014; 13: 94. https://doi.org/10.1186/s12934-014-0094-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
D.L. Nelson, M.M. Cox, A.L. Lehninger, Lehninger principles of biochemistry 6th (ed), W. H. Freeman & Co., New York 2013.
L.M. Sanders, Carbohydrate: Digestion, absorption and metabolism. Encyclopedia of food and health, 2016; pp. 643–650.
H.J. Busse, P. Schumann, Reclassification of Arthrobacter enclensis as Pseudarthrobacter enclensis comb. nov., and emended descriptions of the genus Pseudarthrobacter, and the species Pseudarthrobacter phenanthrenivorans and Pseudarthrobacter scleromae, Int. J. Syst. Evol. Microbiol. 2019; 69: 3508–3511. https://doi.org/10.1099/ijsem.0.003652.
Article
CAS
PubMed
Google Scholar
H.J. Busse, Review of the taxonomy of the genus Arthrobacter, emendation of the genus Arthrobacter sensu lato, proposal to reclassify selected species of the genus Arthrobacter in the novel genera Glutamicibacter gen. nov., Paeniglutamicibacter gen. nov., Pseudoglutamicibacter gen. nov., Paenarthrobacter gen. nov. and Pseudarthrobacter gen. nov., and emended description of Arthrobacter roseus, Int. J. Syst. Evol. Microbiol. 2016; 66: 9–37. https://doi.org/10.1099/ijsem.0.000702.
J. Goris, K.T. Konstantinidis, J.A. Klappenbach, T. Coenye, P. Vandamme, J.M. Tiedje, DNA-DNA hybridization values and their relationship to whole-genome sequence similarities, Int. J. Syst. Evol. Microbiol. 2007; 57: 81–91. https://doi.org/10.1099/ijs.0.64483-0.
C. Jain, L.M. Rodriguez-R, A.M. Phillippy, K.T. Konstantinidis, S. Aluru, High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries, Nat. Commun. 2018; 9: 5114. https://doi.org/10.1038/s41467-018-07641-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
M. Yeo, K. Chater, The interplay of glycogen metabolism and differentiation provides an insight into the developmental biology of Streptomyces coelicolor, Microbiology 2005; 151: 855–861. https://doi.org/10.1099/mic.0.27428-0.
Article
CAS
PubMed
Google Scholar
D. Schneider, C.J. Bruton, K.F. Chater, Duplicated gene clusters suggest an interplay of glycogen and trehalose metabolism during sequential stages of aerial mycelium development in Streptomyces coelicolor A32, Mol. Gen. Genet. 2000; 263: 543–553. https://doi.org/10.1007/s004380051200.
Article
CAS
PubMed
Google Scholar
S.R. Han, D.W. Kim, B. Kim, Y.M. Chi, S. Kang, H. Park, S.H. Jung, J.H. Lee, T.J. Oh, Complete genome sequencing of Shigella sp. PAMC28760: Identification of CAZyme genes and analysis of their potential role in glycogen metabolism for cold survival adaptation, Microb. Pathog. 2019; 137: 103759. https://doi.org/10.1016/j.micpath.2019.103759.
Article
CAS
PubMed
Google Scholar
L. Shen, X. Zang, K. Sun, H. Chen, X. Che, Y. Sun, G. Wang, S. Zhang, G. Chen, Complete genome sequencing of Bacillus sp. TK-2, analysis of its cold evolution adaptability, Sci. Rep. 2021; 11: 4836. https://doi.org/10.1038/s41598-021-84286-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
D.H.D. Nguyen, S.H. Park, P.L. Tran, J.W. Kim, Q.T. Le, W. Boos, J.T. Park, Characterization of the transglycosylation reaction of 4-α-glucanotransferase MalQ; and its role in glycogen breakdown in Escherichia coli, J. Microbiol. Biotechnol. 2019; 29: 357–366. https://doi.org/10.4014/jmb.1811.11051.
Article
CAS
PubMed
Google Scholar
H. Niewerth, J. Schuldes, K. Parschat, P. Kiefer, J.A. Vorholt, R. Daniel, S. Fetzner, Complete genome sequence and metabolic potential of the quinaldine-degrading bacterium Arthrobacter sp. Rue61a, BMC Genomics 2012; 13: 534. https://doi.org/10.1186/1471-2164-13-534.
Article
CAS
PubMed
PubMed Central
Google Scholar
C.H. Nakatsu, R. Barabote, S. Thompson, D. Bruce, C. Detter, T. Brettin, C. Han, F. Beasley, W. Chen, A. Konopka, G. Xie, Complete genome sequence of Arthrobacter sp. strain FB24, Stand. Genomic Sci. 2013; 9: 106–116. https://doi.org/10.4056/sigs.4438185.
Article
CAS
Google Scholar
R. Kumar, D. Singh, M.K. Swarnkar, A.K. Singh, S. Kumar, Complete genome sequence of Arthrobacter sp. ERGS1: 01, a putative novel bacterium with prospective cold active industrial enzymes, isolated from East Rathong glacier in India, J. Biotechnol. 2015; 214: 139–140. https://doi.org/10.1016/j.jbiotec.2015.09.025.
Article
CAS
PubMed
Google Scholar
L. Ren, Y. Jia, N. Ruth, B. Zhao, Y. Yan, Complete genome sequence of an aromatic compound degrader Arthrobacter sp. YC-RL1, J. Biotechnol. 2016; 219: 34–35. https://doi.org/10.1016/j.jbiotec.2015.12.008.
Article
CAS
PubMed
Google Scholar
S. Hiraoka, A. Machiyama, M. Ijichi, K. Inoue, K. Oshima, M. Hattori, S. Yoshizawa, K. Kogure, W. Iwasaki, Genomic and metagenomic analysis of microbes in a soil environment affected by the 2011 Great East Japan Earthquake tsunami, BMC Genomics 2016; 17: 53. https://doi.org/10.1186/s12864-016-2380-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
D.A. Russell, G.F. Hatfull, Complete genome sequence of Arthrobacter sp. ATCC 21022, a host for bacteriophage discovery, Genome Announc. 2016; 4: e00168-16. https://doi.org/10.1128/genomeA.00168-16.
Article
PubMed
PubMed Central
Google Scholar
R. Kumar, D. Singh, M.K. Swarnkar, A.K. Singh, S. Kumar, Complete genome sequence of Arthrobacter alpinus ERGS4: 06, a yellow pigmented bacterium tolerant to cold and radiations isolated from Sikkim Himalaya, J. Biotechnol. 2016; 220: 86–87. https://doi.org/10.1016/j.jbiotec.2016.01.016.
Article
CAS
PubMed
Google Scholar
A. Kallimanis, K.M. LaButti, A. Lapidus, A. Clum, A. Lykidis, K. Mavromatis, I. Pagani, K. Liolios, N. Ivanova, L. Goodwin, S. Pitluck, A. Chen, K. Palaniappan, V. Markowitz, J. Bristow, A.D. Velentzas, A. Perisynakis, C.C. Ouzounis, N.C. Kyrpides, A.I. Koukkou, C. Drainas, Complete genome sequence of Arthrobacter phenanthrenivorans type strain Sphe3, Stand. Genomic Sci. 2011; 4: 123–130. https://doi.org/10.4056/sigs.1393494.
Article
CAS
Google Scholar
J.A. Miranda-Ríos, J.A. Ramirez-Trujillo, B. Nova-Franco, L.F. Lozano-Aguirre Beltrán, G. Iturriaga, R. Suárez-Rodriguez, Draft genome sequence of Arthrobacter chlorophenolicus strain Mor30.16, isolated from the bean rhizosphere, Genome Announc. 2015; 3: e00360-15. https://doi.org/10.1128/genomeA.00360-15.
Article
PubMed
PubMed Central
Google Scholar
S. Ball, C. Colleoni, U. Cenci, J.N. Raj, C. Tirtiaux, The evolution of glycogen and starch metabolism in eukaryotes gives molecular clues to understand the establishment of plastid endosymbiosis, J. Exp. Bot. 2011; 62: 1775–1801. https://doi.org/10.1093/jxb/erq411.
Article
CAS
PubMed
Google Scholar
L. Wang, M.J. Wise, Glycogen with short average chain length enhances bacterial durability, Naturwissenschaften 2011; 98: 719–729. https://doi.org/10.1007/s00114-011-0832-x.
Article
CAS
PubMed
Google Scholar
L. Wang, Q. Liu, X. Tan, T. Yang, D. Tang, W. Wang, M.J. Wise, Bacterial glycogen as a durable energy reserve contributing to persistence: an updated bibliography and mathematical model, bioRxiv 2019. https://doi.org/10.1101/536110.
R. Dippel, W. Boos, The maltodextrin system of Escherichia coli: metabolism and transport, J. Bacteriol. 2005; 187: 8322–8331. https://doi.org/10.1128/JB.187.24.8322-8331.2005.
Article
CAS
PubMed
PubMed Central
Google Scholar
K.H. Park, Roles of enzymes in glycogen metabolism and degradation in Escherichia coli, J. Appl. Glycosci. 2015; 62: 37–45. https://doi.org/10.5458/jag.jag.JAG-2015_005.
S. Bornemann, α-Glucan biosynthesis and the GlgE pathway in Mycobacterium tuberculosis, Biochem. Soc. Trans. 2016; 44: 68–73. https://doi.org/10.1042/BST20150181.
Article
CAS
PubMed
Google Scholar
J.T. Park, J.H. Shim, P.L. Tran, I.H. Hong, H.U. Yong, E.F. Oktavina, H.D. Nguyen, J.W. Kim, T.S. Lee, S.H. Park, W. Boos, K.H. Park, Role of maltose enzymes in glycogen synthesis by Escherichia coli, J. Bacteriol. 2011; 193: 2517–2526. https://doi.org/10.1128/JB.01238-10.
Article
CAS
PubMed
PubMed Central
Google Scholar
M. Dalmasso, J. Aubert, S. Even, H. Falentin, M.-B. Maillard, S. Parayre, V. Loux, J. Tanskanen, A. Thierry, Accumulation of intracellular glycogen and trehalose by Propionibacterium freudenreichii under conditions mimicking cheese ripening in the cold, Appl. Environ. Microbiol. 2012; 78: 6357–6364. https://doi.org/10.1128/AEM.00561-12.
Article
CAS
PubMed
PubMed Central
Google Scholar
M. Reina-Bueno, M. Argandoña, J.J. Nieto, A. Hidalgo-Garcia, F. Iglesias-Guerra, M.J. Delgado, C. Vargas, Role of trehalose in heat and desiccation tolerance in the soil bacterium Rhizobium etli, BMC Microbiol. 2012; 12: 207. https://doi.org/10.1186/1471-2180-12-207.
Article
CAS
PubMed
PubMed Central
Google Scholar
K.A.L. De Smet, A. Weston, I.N. Brown, D.B. Young, B.D. Robertson, Three pathways for trehalose biosynthesis in Mycobacteria, Microbiology 2000; 146: 199–208. https://doi.org/10.1099/00221287-146-1-199.
Article
CAS
PubMed
Google Scholar
A. Wolf, R. Kramer, S. Morbach, Three pathways for trehalose metabolism in Corynebacterium glutamicum ATCC13032 and their significance in response to osmotic stress, Mol. Microbiol. 2003; 49: 1119–1134. https://doi.org/10.1046/j.1365-2958.2003.03625.x.
Article
CAS
PubMed
Google Scholar
J. Carpinelli, R. Kramer, E. Agosin, Metabolic engineering of Corynebacterium glutamicum for trehalose overproduction: role of the TreYZ trehalose biosynthetic pathway, Appl. Environ. Microbiol. 2006; 72: 1949–1955. https://doi.org/10.1128/AEM.72.3.1949-1955.2006.
Article
CAS
PubMed
PubMed Central
Google Scholar
L. Padilla, S. Morbach, R. Kramer, E. Agosin, Impact of heterologous expression of E. coli UDP-glucose pyrophosphorylase on trehalose and glycogen synthesis in Corynebacterium gluticum, Appl. Environ. Microbiol. 2004; 70: 3845–3854. https://doi.org/10.1128/AEM.70.7.3845-3854.2004.
Article
CAS
PubMed
PubMed Central
Google Scholar
C.S. Chin, D.H. Alexander, P. Marks, A.A. Klammer, J. Drake, C. Heiner, A. Clum, A. Copeland, J. Huddleston, E.E. Eichler, S.W. Turner, J. Korlach, Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data, Nat. Methods 2013; 10: 563–569. https://doi.org/10.1038/nmeth.2474.
Article
CAS
PubMed
Google Scholar
R.K. Aziz, D. Bartels, A.A. Best, M. DeJongh, T. Disz, R.A. Edwards, K. Formsma, S. Gerdes, E.M. Glass, M. Kubal, F. Meyer, G.J. Olsen, R. Olson, A.L. Osterman, R.A. Overbeek, L.K. McNeil, D. Paarmann, T. Paczian, B. Parrello, G.D. Pusch, C. Reich, R. Stevens, O. Vassieva, V. Vonstein, A. Wilke, O. Zagnitko, The RAST Server: rapid annotations using subsystems technology, BMC Genomics 2008; 9: 75. https://doi.org/10.1186/1471-2164-9-75.
Article
CAS
PubMed
PubMed Central
Google Scholar
J. Huerta-Cepas, D. Szklarczyk, K. Forslund, H. Cook, D. Heller, M.C. Walter, T. Rattei, D.R. Mende, S. Sunagawa, M. Kuhn, L.J. Jensen, C. von Mering, P. Bork, eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences, Nucleic Acids Res. 2016; 44: D286–D293. https://doi.org/10.1093/nar/gkv1248.
Article
CAS
PubMed
Google Scholar
M. Kanehisa, S. Goto, KEGG: Kyoto encyclopaedia of genes and genomes, Nucleic Acids Res. 2000; 28: 27–30. https://doi.org/10.1093/nar/28.1.27.
J.R. Grant, A.S. Arantes, P. Stothard, Comparing thousands of circular genomes using the CGView Comparison Tool, BMC Genomics 2012; 13: 202. https://doi.org/10.1186/1471-2164-13-202.
Article
CAS
PubMed
PubMed Central
Google Scholar
H. Zhang, T. Yohe, L. Huang, S. Entwistle, P. Wu, Z. Yang, P.K. Busk, Y. Xu, Y. Yin, dbCAN2: a meta server for automated carbohydrate-active enzyme annotation, Nucleic Acids Res. 2018; 46: W95–W101. https://doi.org/10.1093/nar/gky418.
Article
CAS
PubMed
PubMed Central
Google Scholar
T.N. Petersen, S. Brunak, G. von Heijne, H. Nielsen, SignalP 4.0: discriminating signal peptides from transmembrane regions, Nat. Methods 2011; 8: 785–786. https://doi.org/10.1038/nmeth.1701.
Article
CAS
PubMed
Google Scholar
B. Buchfink, C. Xie, D.H. Huson, Fast and sensitive protein alignment using DIAMOND, Nat. Methods 2015; 12: 59–60. https://doi.org/10.1038/nmeth.3176.
Article
CAS
PubMed
Google Scholar
P.K. Busk, B. Pilgaard, M.J. Lezyk, A.S. Meyer, L. Lange, Homology to peptide pattern for annotation of carbohydrate-active enzymes and prediction of function, BMC Bioinformatics 2017; 18: 214. https://doi.org/10.1186/s12859-017-1625-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
R.C. Edgar, MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Res. 2004; 32: 1792–1797. https://doi.org/10.1093/nar/gkh340.
Article
CAS
PubMed
PubMed Central
Google Scholar
R.C. Edgar, MUSCLE: a multiple sequence alignment method with reduced time and space complexity, BMC Bioinformatics 2004; 5: 113. https://doi.org/10.1186/1471-2105-5-113.
Article
CAS
PubMed
PubMed Central
Google Scholar
S. Kumar, G. Stecher, M. Li, C. Knyaz, K. Tamura, MEGA X: Molecular evolutionary genetics analysis across computing platforms, Mol. Biol. Evol. 2018; 35: 1547–1549. https://doi.org/10.1093/molbev/msy096.
I. Lee, Y.O. Kim, S.C. Park, J. Chun, OrthoANI: an improved algorithm and software for calculating average nucleotide identity, Int. J. Syst. Evol. Microbiol. 2016; 66: 1100–1103. https://doi.org/10.1099/ijsem.0.000760.
Article
CAS
PubMed
Google Scholar