Zhang Z, Du H, Yang C, Li Q, Qiu M, Song X, Yu C, Jiang X, Liu L, Hu C, et al. Comparative transcriptome analysis reveals regulators mediating breast muscle growth and development in three chicken breeds. ANIM BIOTECHNOL. 2019;30(3):233–41.
Article
Google Scholar
Li C, Li X, Liu Z, Ni W, Zhang X, Hazi W, Ma Q, Zhang Y, Cao Y, Qi J, et al. Identification and characterization of long non-coding RNA in prenatal and postnatal skeletal muscle of sheep. GENOMICS. 2019;111(2):133–41.
Article
CAS
Google Scholar
Buckingham M: Gene regulatory networks and cell lineages that underlie the formation of skeletal muscle. Proceedings of the National Academy of Sciences 2017, 114(23):5830–5837.
Jin C, Ye J, Yang J, Gao C, Yan H, Li H, Wang X. mTORC1 Mediates Lysine-Induced Satellite Cell Activation to Promote Skeletal Muscle Growth. CELLS-BASEL. 2019;8(12):1549.
Article
CAS
Google Scholar
Bismuth K, Relaix F. Genetic regulation of skeletal muscle development. EXP CELL RES. 2010;316(18):3081–6.
Article
CAS
Google Scholar
Zammit PS. Function of the myogenic regulatory factors Myf5, MyoD, Myogenin and MRF4 in skeletal muscle, satellite cells and regenerative myogenesis. SEMIN CELL DEV BIOL. 2017;72:19–32.
Article
CAS
Google Scholar
Borensztein M, Monnier P, Court F, Louault Y, Ripoche M, Tiret L, Yao Z, Tapscott SJ, Forne T, Montarras D, et al. Myod and H19-Igf2 locus interactions are required for diaphragm formation in the mouse. DEVELOPMENT. 2013;140(6):1231–9.
Article
CAS
Google Scholar
Hernandez-Hernandez M, Garcia-Gonzalez EG, Brun CE, Rudnicki MA. The myogenic regulatory factors, determinants of muscle development, cell identity and regeneration. SEMIN CELL DEV BIOL. 2017;72:10–8.
Article
CAS
Google Scholar
Yamamoto M, Legendre NP, Biswas AA, Lawton A, Yamamoto S, Tajbakhsh S, Kardon G, Goldhamer DJ. Loss of MyoD and Myf5 in Skeletal Muscle Stem Cells Results in Altered Myogenic Programming and Failed Regeneration. STEM CELL REP. 2018;10(3):956–69.
Article
CAS
Google Scholar
Xu E, Zhang L, Yang H, Shen L, Feng Y, Ren M, Xiao Y. Transcriptome profiling of the liver among the prenatal and postnatal stages in chickens. POULTRY SCI. 2019;98(12):7030–40.
Article
CAS
Google Scholar
Wu P, Dai G, Chen F, Chen L, Zhang T, Xie K, Wang J, Zhang G. Transcriptome profile analysis of leg muscle tissues between slow- and fast-growing chickens. PLOS ONE. 2018;13(11):e206131.
Google Scholar
Wu P, Zhang X, Zhang G, Chen F, He M, Zhang T, Wang J, Xie K, Dai G. Transcriptome for the breast muscle of Jinghai yellow chicken at early growth stages. PEERJ. 2020;8:e8950.
Article
Google Scholar
Hu Z, Cao J, Zhang J, Ge L, Zhang H, Liu X. Skeletal Muscle Transcriptome Analysis of Hanzhong Ma Duck at Different Growth Stages Using RNA-SEq. BIOMOLECULES 2021, 11(3152).
Zhao X, Mo D, Li A, Gong W, Xiao S, Zhang Y, Qin L, Niu Y, Guo Y, Liu X, et al. Comparative analyses by sequencing of transcriptomes during skeletal muscle development between pig breeds differing in muscle growth rate and fatness. PLOS ONE. 2011;6(5):e19774.
Article
CAS
Google Scholar
Liu A, AO X, MA X, WANG W, WANG X, LV X, QIAO B, LI S, Xiang B. Effects of feeding mode on growth and some meat quality indexes of Chengkou Mountain Chicken. Journal of Southwest University. 2018;40(08):1–7.
Google Scholar
Zou X. Morphological comparative study on the development of leg muscle and pectoralis muscle of different breeds of chickens in embryonic stage. South China Agricultural University; 2016.
Liu J, Lei Q, Li F, Zhou Y, Gao J, Liu W, Han H, Cao D. Dynamic Transcriptomic Analysis of Breast Muscle Development From the Embryonic to Post-hatching Periods in Chickens. FRONT GENET 2020, 10.
Li T, Wang S, Wu R, Zhou X, Zhu D, Zhang Y. Identification of long non-protein coding RNAs in chicken skeletal muscle using next generation sequencing. GENOMICS. 2012;99(5):292–8.
Article
CAS
Google Scholar
He M, Wu P, Chen F, Zhang B, Chen L, Zhang T, Zhang L, Li P, Wang J, Zhang G. Transcriptome analysis of leg muscles in fast and slow growth Bian chickens. ANIM BIOTECHNOL. 2020;31(4):295–305.
Article
CAS
Google Scholar
Zhang G, Wu P, Zhou K, He M, Zhang X, Qiu C, Li T, Zhang T, Xie K, Dai G, et al. Study on the transcriptome for breast muscle of chickens and the function of key gene RAC2 on fibroblasts proliferation. BMC GENOMICS. 2021;22(1):157.
Article
CAS
Google Scholar
Li Z, Xu Y, Lin Y. Transcriptome analyses reveal genes of alternative splicing associated with muscle development in chickens. GENE. 2018;676:146–55.
Article
CAS
Google Scholar
Theocharis AD, Manou D, Karamanos NK. The extracellular matrix as a multitasking player in disease. FEBS J. 2019;286(15):2830–69.
Article
CAS
Google Scholar
Thorsteinsdottir S, Deries M, Cachaco AS, Bajanca F. The extracellular matrix dimension of skeletal muscle development. DEV BIOL. 2011;354(2):191–207.
Article
CAS
Google Scholar
Wang S, Huang H, Xiang H, Gu B, Li W, Chen L, Zhang M. Wnt Signaling Modulates Routes of Retinoic Acid-Induced Differentiation of Embryonic Stem Cells. STEM CELLS DEV. 2019;28(19):1334–45.
Article
CAS
Google Scholar
Zhang D, Yin H, Li J, Wang Y, Yang C, Jiang X, DU H, Liu Y. KLF5 regulates chicken skeletal muscle atrophyvia the canonical Wnt/beta-catenin signaling pathway. EXP ANIM TOKYO 2020.
Han S, Cui C, He H, Shen X, Chen Y, Wang Y, Li D, Zhu Q, Yin H. Myoferlin Regulates Wnt/beta-Catenin Signaling-Mediated Skeletal Muscle Development by Stabilizing Dishevelled-2 Against Autophagy. INT J MOL SCI 2019, 20(513020).
Mascarello F, Toniolo L, Cancellara P, Reggiani C, Maccatrozzo L. Expression and identification of 10 sarcomeric MyHC isoforms in human skeletal muscles of different embryological origin. Diversity and similarity in mammalian species. ANN ANAT. 2016;207(SI):9–20.
Article
Google Scholar
Zhang M, Li B, Wang J, Zhang S, Li H, Ma L, Guo W, Lei C, Chen H, Lan X. lnc9141-a and -b Play a Different Role in Bovine Myoblast Proliferation, Apoptosis, and Differentiation. MOL THER-NUCL ACIDS. 2019;18:554–66.
Article
CAS
Google Scholar
Yu S, Wang G, Liao J, Tang M. Transcriptome profile analysis identifies candidate genes for the melanin pigmentation of breast muscle in Muchuan black-boned chicken. Poult Sci. 2018;97(10):3446–55.
Article
CAS
Google Scholar
Babenko VN, Smagin DA, Galyamina AG, Kovalenko IL, Kudryavtseva NN. Altered Slc25 family gene expression as markers of mitochondrial dysfunction in brain regions under experimental mixed anxiety/depression-like disorder. BMC NEUROSCI 2018, 19(79).
Lu Y, Wu R, Meng L, Lv H, Liu J, Zuo Y, Zhang W, Yuan Y, Wang Z. HADHB mutations cause infantile-onset axonal Charcot-Marie-Tooth disease: A report of two cases. CLIN NEUROPATHOL. 2018;37(5):232–8.
Article
Google Scholar
Suyama T, Shimura M, Fushimi T, Kuranobu N, Ichimoto K, Matsunaga A, Takayanagi M, Murayama K. Efficacy of bezafibrate in two patients with mitochondrial trifunctional protein deficiency. Molecular genetics metabolism reports. 2020;24:100610.
Article
CAS
Google Scholar
Zhang J, Fu J, Pan Y, Zhang X, Shen L: Silencing of miR-1247 by DNA methylation promoted non-small-cell lung cancer cell invasion and migration by effects of STMN1. ONCOTARGETS THER 2016, 9:7297–7307.
Balogh A, Mege RM, Sobel A. Growth and cell density-dependent expression of stathmin in C2 myoblasts in culture. EXP CELL RES. 1996;224(1):8–15.
Article
CAS
Google Scholar
Bi C, Cui H, Fan H, Li L: LncRNA LINC01116 Promotes the Development of Colorectal Cancer by Targeting miR-9-5p/STMN1. ONCOTARGETS THER 2020, 13:10547–10558.
Passaia BDS, Lima K, Kremer JL, Da Conceicao BB, de Paula Mariani BM, Lipreri Da Silva JC, Nogueira Zerbini MC, Barisson Villares Fragoso MC, Machado-Neto JA, Pacicco Lotfi CF: Stathmin 1 is highly expressed and associated with survival outcome in malignant adrenocortical tumours. INVEST NEW DRUG 2020, 38(3):899–908.
Cao S, Zhang W, Shen P, Xu R: Low STMN1 is associated with better prognosis in Asian patients with esophageal cancers: A meta-analysis. J GASTROEN HEPATOL 2020.
Hu X, Zhang H, Zheng X, Lin Z, Feng G, Chen Y, Pan Q, Ni F. STMN1 and MKI67 Are Upregulated in Uterine Leiomyosarcoma and Are Potential Biomarkers for its Diagnosis. MED SCI MONITOR. 2020;26:e923749.
CAS
Google Scholar
Tu M, Lu C, Lv N, Wei J, Lu Z, Xi C, Chen J, Guo F, Jiang K, Li Q, et al: Vasohibin 2 promotes human luminal breast cancer angiogenesis in a non-paracrine manner via transcriptional activation of fibroblast growth factor 2 (vol 383, pg 272, 2016). CANCER LETT 2019, 444:189–190.
Kobayashi M, Wakabayashi I, Suzuki Y, Fujiwara K, Nakayama M, Watabe T, Sato Y: Tubulin carboxypeptidase activity of vasohibin-1 inhibits angiogenesis by interfering with endocytosis and trafficking of pro-angiogenic factor receptors. ANGIOGENESIS 2020.
Yamamoto M, Ozawa S, Ninomiya Y, Koyanagi K, Oguma J, Kazuno A, Hara H, Yatabe K, Kajiwara H, Nakamura N, et al. Plasma vasohibin-1 and vasohibin-2 are useful biomarkers in patients with esophageal squamous cell carcinoma. ESOPHAGUS-TOKYO. 2020;17(3):289–97.
Article
Google Scholar
Sun J, Cui K, Li ZP, Gao B, Huang B, Liu Q, Shi D. Improved early development potence of in vitro fertilization embryos by treatment with tubacin increasing acetylated tubulin of matured porcine oocytes. MECH DEVELOP 2020:103631.
Rogowski K, Hached K, Crozet C, van der Laan S. Tubulin modifying enzymes as target for the treatment oftau-related diseases. PHARMACOL THERAPEUT 2020:107681.
Liu L, Xiao Q, Gilbert ER, Cui Z, Zhao X, Wang Y, Yin H, Li D, Zhang H, Zhu Q. Whole-transcriptome analysis of atrophic ovaries in broody chickens reveals regulatory pathways associated with proliferation and apoptosis. SCI REP-UK. 2018;8(1):7214–31.
Article
Google Scholar