Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun. 2002;290(3):998–1009. https://doi.org/10.1006/bbrc.2001.6299.
Article
CAS
PubMed
Google Scholar
Hasan Khan Z, Kumar B, Dhatterwal P, Mehrotra S, Mehrotra R. Transcriptional regulatory network of cis-regulatory elements (Cres) and transcription factors (TFs) in plants during abiotic stress. Int J Plant Biol Res. 2017;5(2):1064.
Yamaguchi-Shinozaki K, Shinozaki K. Organization of cis-acting regulatory elements in osmotic-and cold-stress-responsive promoters. Trends Plant Sci. 2005;10(2):88–94. https://doi.org/10.1016/j.tplants.2004.12.012.
Article
CAS
PubMed
Google Scholar
Yamaguchi-Shinozaki K, Shinozaki K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol. 2006;57(1):781–803. https://doi.org/10.1146/annurev.arplant.57.032905.105444.
Article
CAS
PubMed
Google Scholar
Yamaguchi-Shinozaki K, Shinozaki K. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell. 1994;6(2):251–64. https://doi.org/10.1105/tpc.6.2.251.
Article
CAS
PubMed
PubMed Central
Google Scholar
Riechmann JL, Meyerowitz EM. The AP2/EREBP family of plant transcription factors. Biol Chem. 1998;379(6):633–46. https://doi.org/10.1515/bchm.1998.379.6.633.
Article
CAS
PubMed
Google Scholar
Riechmann JL, Heard J, Martin G, Reuber L, Jiang CZ, Keddie J, et al. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science (New York, NY). 2000;290(5499):2105–10.
Article
CAS
Google Scholar
Allen MD, Yamasaki K, Ohme-Takagi M, Tateno M, Suzuki M. A novel mode of DNA recognition by a β-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA. EMBO J. 1998;17(18):5484–96. https://doi.org/10.1093/emboj/17.18.5484.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu S, Wang X, Wang H, Xin H, Yang X, Yan J, et al. Genome-wide analysis of ZmDREB genes and their association with natural variation in drought tolerance at seedling stage of Zea mays L. PLoS Genet. 2013;9(9):e1003790. https://doi.org/10.1371/journal.pgen.1003790.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, et al. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell. 1998;10(8):1391–406. https://doi.org/10.1105/tpc.10.8.1391.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakashima K, Shinwari ZK, Sakuma Y, Seki M, Miura S, Shinozaki K, et al. Organization and expression of two Arabidopsis DREB2 genes encoding DRE-binding proteins involved in dehydration-and high-salinity-responsive gene expression. Plant Mol Biol. 2000;42(4):657–65. https://doi.org/10.1023/A:1006321900483.
Article
CAS
PubMed
Google Scholar
Wei T, Deng K, Liu D, Gao Y, Liu Y, Yang M, et al. Ectopic expression of DREB transcription factor, AtDREB1A, confers tolerance to drought in transgenic Salvia miltiorrhiza. Plant Cell Physiol. 2016;57(8):1593–609. https://doi.org/10.1093/pcp/pcw084.
Article
CAS
PubMed
Google Scholar
Wu H, Li L, Cheng Z, Ge W, Gao J, Li X. Cloning and stress response analysis of the PeDREB2A and PeDREB1A genes in moso bamboo (Phyllostachys edulis). Genet Mol Res. 2015;14(3):10206–23. https://doi.org/10.4238/2015.August.28.4.
Article
CAS
PubMed
Google Scholar
Qin F, Sakuma Y, Li J, Liu Q, Li YQ, Shinozaki K, et al. Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L. Plant Cell Physiol. 2004;45(8):1042–52. https://doi.org/10.1093/pcp/pch118.
Article
CAS
PubMed
Google Scholar
Moon S-J, Min MK, Kim J, Kim DY, Yoon IS, Kwon TR, et al. Ectopic expression of OsDREB1G, a member of the OsDREB1 subfamily, confers cold stress tolerance in rice. Front Plant Sci. 2019;10:297. https://doi.org/10.3389/fpls.2019.00297.
Article
PubMed
PubMed Central
Google Scholar
Wen W, Xie Z, Yu G, Zhao C, Zhang J, Huang L, et al. Switchgrass PvDREB1C plays opposite roles in plant cold and salt tolerance in transgenic tobacco. Hereditas. 2018;155(1):15. https://doi.org/10.1186/s41065-017-0050-4.
Article
PubMed
Google Scholar
Challam C, Ghosh T, Rai M, Tyagi W. Allele mining across DREB1A and DREB1B in diverse rice genotypes suggest a highly conserved pathway inducible by low temperature. J Genet. 2015;94(2):231–8. https://doi.org/10.1007/s12041-015-0507-z.
Article
CAS
PubMed
Google Scholar
Sakuma Y, Maruyama K, Qin F, Osakabe Y, Shinozaki K, Yamaguchi-Shinozaki K. Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proc Natl Acad Sci. 2006;103(49):18822–7. https://doi.org/10.1073/pnas.0605639103.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qin F, Kakimoto M, Sakuma Y, Maruyama K, Osakabe Y, Tran LS, et al. Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. Plant J. 2007;50(1):54–69. https://doi.org/10.1111/j.1365-313X.2007.03034.x.
Article
CAS
PubMed
Google Scholar
Gupta K, Agarwal PK, Reddy M, Jha B. SbDREB2A, an a-2 type DREB transcription factor from extreme halophyte Salicornia brachiata confers abiotic stress tolerance in Escherichia coli. Plant Cell Rep. 2010;29(10):1131–7. https://doi.org/10.1007/s00299-010-0896-7.
Article
CAS
PubMed
Google Scholar
Gumi AM, Guha PK, Mazumder A, Jayaswal P, Mondal TK. Characterization of OglDREB2A gene from African rice (Oryza glaberrima), comparative analysis and its transcriptional regulation under salinity stress. 3 Biotech. 2018;8(2):91.
Article
PubMed
PubMed Central
Google Scholar
Chen H, Liu L, Wang L, Wang S, Cheng X. VrDREB2A, a DREB-binding transcription factor from Vigna radiata, increased drought and high-salt tolerance in transgenic Arabidopsis thaliana. J Plant Res. 2016;129(2):263–73. https://doi.org/10.1007/s10265-015-0773-0.
Article
CAS
PubMed
Google Scholar
Cong L, Zheng HC, Zhang YX, Chai TY. Arabidopsis DREB1A confers high salinity tolerance and regulates the expression of GA dioxygenases in tobacco. Plant Sci. 2008;174(2):156–64. https://doi.org/10.1016/j.plantsci.2007.11.002.
Article
CAS
Google Scholar
Zhang XX, Tang YJ, Ma QB, Yang CY, Mu YH, Suo HC, et al. OsDREB2A, a rice transcription factor, significantly affects salt tolerance in transgenic soybean. PLoS One. 2013;8(12):e83011. https://doi.org/10.1371/journal.pone.0083011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wei T, Deng K, Gao Y, Liu Y, Yang M, Zhang L, et al. Arabidopsis DREB1B in transgenic Salvia miltiorrhiza increased tolerance to drought stress without stunting growth. Plant Physiol Biochem. 2016;104:17–28. https://doi.org/10.1016/j.plaphy.2016.03.003.
Article
CAS
PubMed
Google Scholar
El-Esawi MA, Alayafi AA. Overexpression of StDREB2 transcription factor enhances drought stress tolerance in cotton (Gossypium barbadense L.). Genes. 2019;10(2):142.
Roach B. Nobilisation of sugarcane. Proc Int Soc Sugar Cane Technol. 1972;1972:206–16.
Google Scholar
Reis RR, da Cunha BA, Martins PK, Martins MT, Alekcevetch JC, Chalfun A Jr, et al. Induced over-expression of AtDREB2A CA improves drought tolerance in sugarcane. Plant Sci. 2014;221-222:59–68. https://doi.org/10.1016/j.plantsci.2014.02.003.
Article
CAS
PubMed
Google Scholar
Augustine SM, Ashwin Narayan J, Syamaladevi DP, Appunu C, Chakravarthi M, Ravichandran V, et al. Overexpression of EaDREB2 and pyramiding of EaDREB2 with the pea DNA helicase gene (PDH45) enhance drought and salinity tolerance in sugarcane (Saccharum spp. hybrid). Plant Cell Rep. 2015;34(2):247–63. https://doi.org/10.1007/s00299-014-1704-6.
Article
CAS
PubMed
Google Scholar
Huang X, Song X, Chen R, Zhang B, Li C, Liang Y, et al. Genome-wide analysis of the DREB subfamily in Saccharum spontaneum reveals their functional divergence during cold and drought stresses. Front Genet. 2019;10:1326.
Article
CAS
PubMed
Google Scholar
Solovyev V, Kosarev P, Seledsov I, Vorobyev D. Automatic annotation of eukaryotic genes, pseudogenes and promoters. Genome Biol. 2006;7(Suppl 1):S10.11–2.
Article
Google Scholar
Holub EB. The arms race is ancient history in Arabidopsis, the wildflower. Nat Rev Genet. 2001;2(7):516–27. https://doi.org/10.1038/35080508.
Article
CAS
PubMed
Google Scholar
Zhang J, Zhang Q, Li L, Tang H, Zhang Q, Chen Y, et al. Recent polyploidization events in three Saccharum founding species. Plant Biotechnol J. 2019;17(1):264–74. https://doi.org/10.1111/pbi.12962.
Article
CAS
PubMed
Google Scholar
Li P, Ponnala L, Gandotra N, Wang L, Si Y, Tausta SL, et al. The developmental dynamics of the maize leaf transcriptome. Nat Genet. 2010;42(12):1060–7. https://doi.org/10.1038/ng.703.
Article
CAS
PubMed
Google Scholar
Yang H, Wang T, Yu X, Yang Y, Wang C, Yang Q, et al. Enhanced sugar accumulation and regulated plant hormone signalling genes contribute to cold tolerance in hypoploid Saccharum spontaneum. BMC Genomics. 2020;21(1):507. https://doi.org/10.1186/s12864-020-06917-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee SC, Lim MH, Yu JG, Park BS, Yang TJ. Genome-wide characterization of the CBF/DREB1 gene family in Brassica rapa. Plant Physiol Biochem. 2012;61:142–52. https://doi.org/10.1016/j.plaphy.2012.09.016.
Article
CAS
PubMed
Google Scholar
Matsukura S, Mizoi J, Yoshida T, Todaka D, Ito Y, Maruyama K, et al. Comprehensive analysis of rice DREB2-type genes that encode transcription factors involved in the expression of abiotic stress-responsive genes. Mol Gen Genomics. 2010;283(2):185–96. https://doi.org/10.1007/s00438-009-0506-y.
Article
CAS
Google Scholar
Mao D, Chen C. Colinearity and similar expression pattern of rice DREB1s reveal their functional conservation in the cold-responsive pathway. PLoS One. 2012;7(10):e47275. https://doi.org/10.1371/journal.pone.0047275.
Article
CAS
PubMed
PubMed Central
Google Scholar
Skinner JS, von Zitzewitz J, Szucs P, Marquez-Cedillo L, Filichkin T, Amundsen K, et al. Structural, functional, and phylogenetic characterization of a large CBF gene family in barley. Plant Mol Biol. 2005;59(4):533–51. https://doi.org/10.1007/s11103-005-2498-2.
Article
CAS
PubMed
Google Scholar
Akbudak MA, Filiz E, Kontbay K. DREB2 (dehydration-responsive element-binding protein 2) type transcription factor in sorghum (Sorghum bicolor): genome-wide identification, characterization and expression profiles under cadmium and salt stresses. 3 Biotech. 2018;8(10):426.
Article
PubMed
PubMed Central
Google Scholar
Agarwal PK, Agarwal P, Reddy MK, Sopory SK. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep. 2006;25(12):1263–74. https://doi.org/10.1007/s00299-006-0204-8.
Lakhssassi N, Liu S, Bekal S, Zhou Z, Colantonio V, Lambert K, et al. Characterization of the soluble NSF attachment protein gene family identifies two members involved in additive resistance to a plant pathogen. Sci Rep. 2017;7(1):45226. https://doi.org/10.1038/srep45226.
Article
CAS
PubMed
PubMed Central
Google Scholar
Perez-Perez JM, Esteve-Bruna D, Gonzalez-Bayon R, Kangasjarvi S, Caldana C, Hannah MA, et al. Functional redundancy and divergence within the Arabidopsis RETICULATA-RELATED gene family. Plant Physiol. 2013;162(2):589–603. https://doi.org/10.1104/pp.113.217323.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lakhssassi N, Doblas VG, Rosado A, del Valle AE, Pose D, Jimenez AJ, et al. The Arabidopsis tetratricopeptide thioredoxin-like gene family is required for osmotic stress tolerance and male sporogenesis. Plant Physiol. 2012;158(3):1252–66. https://doi.org/10.1104/pp.111.188920.
Article
CAS
PubMed
PubMed Central
Google Scholar
Akhtar M, Jaiswal A, Taj G, Jaiswal J, Qureshi M, Singh N. DREB1/CBF transcription factors: their structure, function and role in abiotic stress tolerance in plants. J Genet. 2012;91(3):385–95. https://doi.org/10.1007/s12041-012-0201-3.
Article
CAS
PubMed
Google Scholar
Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, et al. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt-and cold-responsive gene expression. Plant J. 2003;33(4):751–63. https://doi.org/10.1046/j.1365-313X.2003.01661.x.
Article
CAS
PubMed
Google Scholar
Jaglo KR, Kleff S, Amundsen KL, Zhang X, Haake V, Zhang JZ, et al. Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved inbrassica napus and other plant species. Plant Physiol. 2001;127(3):910–7. https://doi.org/10.1104/pp.010548.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou ML, Ma JT, Pang JF, Zhang ZL, Tang YX, Wu YM. Regulation of plant stress response by dehydration responsive element binding (DREB) transcription factors. Afr J Biotechnol. 2010;9(54):9255–69.
CAS
Google Scholar
Herath V. Small family, big impact: in silico analysis of DREB2 transcription factor family in rice. Comput Biol Chem. 2016;65:128–39. https://doi.org/10.1016/j.compbiolchem.2016.10.012.
Article
CAS
PubMed
Google Scholar
Söderman EM, Brocard IM, Lynch TJ, Finkelstein RR. Regulation and function of the Arabidopsis ABA-insensitive4 gene in seed and abscisic acid response signaling networks. Plant Physiol. 2000;124(4):1752–65. https://doi.org/10.1104/pp.124.4.1752.
Article
PubMed
PubMed Central
Google Scholar
Shkolnik-Inbar D, Bar-Zvi D. ABI4 mediates abscisic acid and cytokinin inhibition of lateral root formation by reducing polar auxin transport in Arabidopsis. Plant Cell. 2010;22(11):3560–73. https://doi.org/10.1105/tpc.110.074641.
Article
CAS
PubMed
PubMed Central
Google Scholar
Niehrs C, Pollet N. Synexpression groups in eukaryotes. Nature. 1999;402(6761):483–7. https://doi.org/10.1038/990025.
Article
CAS
PubMed
Google Scholar
Ni Z, Kim E-D, Ha M, Lackey E, Liu J, Zhang Y, et al. Altered circadian rhythms regulate growth vigour in hybrids and allopolyploids. Nature. 2009;457(7227):327–31. https://doi.org/10.1038/nature07523.
Article
CAS
PubMed
Google Scholar
Green RM, Tingay S, Wang Z-Y, Tobin EM. Circadian rhythms confer a higher level of fitness to Arabidopsis plants. Plant Physiol. 2002;129(2):576–84. https://doi.org/10.1104/pp.004374.
Article
CAS
PubMed
PubMed Central
Google Scholar
Michael TP, Salome PA, Hannah JY, Spencer TR, Sharp EL, McPeek MA, et al. Enhanced fitness conferred by naturally occurring variation in the circadian clock. Science. 2003;302(5647):1049–53. https://doi.org/10.1126/science.1082971.
Article
CAS
PubMed
Google Scholar
Dodd AN, Salathia N, Hall A, Kévei E, Tóth R, Nagy F, et al. Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science. 2005;309(5734):630–3. https://doi.org/10.1126/science.1115581.
Article
CAS
PubMed
Google Scholar
Giuliano G, Hoffman N, Ko K, Scolnik P, Cashmore A. A light-entrained circadian clock controls transcription of several plant genes. EMBO J. 1988;7(12):3635–42. https://doi.org/10.1002/j.1460-2075.1988.tb03244.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu Z, Ma J, Qu C, Hu Y, Hao B, Sun Y, et al. Identification and expression analyses of the alanine aminotransferase (AlaAT) gene family in poplar seedlings. Sci Rep. 2017;7(1):1–13.
Article
Google Scholar
Bihani P, Char B, Bhargava S. Transgenic expression of sorghum DREB2 in rice improves tolerance and yield under water limitation. J Agric Sci. 2011;149(1):95–101. https://doi.org/10.1017/S0021859610000742.
Article
CAS
Google Scholar
Zhang J, Arro J, Chen Y, Ming R. Haplotype analysis of sucrose synthase gene family in three Saccharum species. BMC Genomics. 2013;14(1):314. https://doi.org/10.1186/1471-2164-14-314.
Article
CAS
PubMed
PubMed Central
Google Scholar
Irvine J. Saccharum species as horticultural classes. Theor Appl Genet. 1999;98(2):186–94. https://doi.org/10.1007/s001220051057.
Article
Google Scholar
Li Z, Hua X, Zhong W, Yuan Y, Wang Y, Wang Z, et al. Genome-wide identification and expression profile analysis of WRKY family genes in the autopolyploid Saccharum spontaneum. Plant Cell Physiol. 2020;61(3):616–30. https://doi.org/10.1093/pcp/pcz227.
Article
CAS
PubMed
Google Scholar
Zhang Q, Hu W, Zhu F, Wang L, Yu Q, Ming R, et al. Structure, phylogeny, allelic haplotypes and expression of sucrose transporter gene families in Saccharum. BMC Genomics. 2016;17(1):88. https://doi.org/10.1186/s12864-016-2419-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu W, Hua X, Zhang Q, Wang J, Shen Q, Zhang X, et al. New insights into the evolution and functional divergence of the SWEET family in Saccharum based on comparative genomics. BMC Plant Biol. 2018;18(1):270. https://doi.org/10.1186/s12870-018-1495-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ming R, VanBuren R, Wai CM, Tang H, Schatz MC, Bowers JE, et al. The pineapple genome and the evolution of CAM photosynthesis. Nat Genet. 2015;47(12):1435–42. https://doi.org/10.1038/ng.3435.
Article
CAS
PubMed
PubMed Central
Google Scholar
El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, et al. The Pfam protein families database in 2019. Nucleic Acids Res. 2018;47(D1):D427–32.
Article
PubMed Central
Google Scholar
Nakano T, Suzuki K, Fujimura T, Shinshi H. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol. 2006;140(2):411–32. https://doi.org/10.1104/pp.105.073783.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu B, Jin J, Guo AY, Zhang H, Luo J, Gao G. GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics. 2014;31(8):1296–7. https://doi.org/10.1093/bioinformatics/btu817.
Article
PubMed
PubMed Central
Google Scholar
Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, Xia R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol Plant. 2020;13(8):1194–202.
Easy_KaKs. https://github.com/tangerzhang/FAFU-cgb/tree/master/easy_KaKs. Accessed 1 Oct 2018.
Lynch M, Conery JS. The evolutionary fate and consequences of duplicate genes. Science. 2000;290(5494):1151–5. https://doi.org/10.1126/science.290.5494.1151.
Article
CAS
PubMed
Google Scholar
Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870–4. https://doi.org/10.1093/molbev/msw054.
Article
CAS
PubMed
PubMed Central
Google Scholar
Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39(4):783–91. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x.
Article
PubMed
Google Scholar
Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4(4):406–25. https://doi.org/10.1093/oxfordjournals.molbev.a040454.
Article
CAS
PubMed
Google Scholar
Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;gkab301. https://doi.org/10.1093/nar/gkab301.
Wang Y, Tang H, DeBarry JD, Tan X, Li J, Wang X, et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012;40(7):e49. https://doi.org/10.1093/nar/gkr1293.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20. https://doi.org/10.1093/bioinformatics/btu170.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al. De novo transcript sequence reconstruction from RNA-seq using the trinity platform for reference generation and analysis. Nat Protoc. 2013;8(8):1494–512. https://doi.org/10.1038/nprot.2013.084.
Article
CAS
PubMed
Google Scholar
Ling H, Wu Q, Guo J, Xu L, Que Y. Comprehensive selection of reference genes for gene expression normalization in sugarcane by real time quantitative RT-PCR. PLoS One. 2014;9(5):e97469. https://doi.org/10.1371/journal.pone.0097469.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang J, Zhang X, Tang H, Zhang Q, Hua X, Ma X, et al. Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L. Nat Genet. 2018;50(11):1565–73. https://doi.org/10.1038/s41588-018-0237-2.
Article
CAS
PubMed
Google Scholar