Van Hoeck V, Leroy JL, Alvarez AM, Rizos D, Gutierrez-Adan A, Schnorbusch K, et al. Oocyte developmental failure in response to elevated nonesterified fatty acid concentrations: mechanistic insights. Reproduction. 2013;145(1):33–44.
Article
PubMed
CAS
Google Scholar
Jorritsma R, Wensing T, Kruip TA, Vos PL, Noordhuizen JP. Metabolic changes in early lactation and impaired reproductive performance in dairy cows. Vet Res. 2003;34(1):11–26.
Article
CAS
PubMed
Google Scholar
Leroy J, Vanholder T, Mateusen B, Christophe A, Opsomer G, de Kruif A, et al. Non-esterified fatty acids in follicular fluid of dairy cows and their effect on developmental capacity of bovine oocytes in vitro. Reproduction. 2005;130(4):485–95.
Article
CAS
PubMed
Google Scholar
Holte J, Bergh T, Berne C, Lithell H. Serum lipoprotein lipid profile in women with the polycystic ovary syndrome: relation to anthropometric, endocrine and metabolic variables. Clin Endocrinol. 1994;41(4):463–71.
Article
CAS
Google Scholar
Niu Z, Lin N, Gu R, Sun Y, Feng Y. Associations between insulin resistance, free fatty acids, and oocyte quality in polycystic ovary syndrome during in vitro fertilization. J Clin Endocrinol Metab. 2014;99(11):E2269–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Calonge RN, Kireev R, Guijarro A, Cortes S, Andres C, Caballero P. Lipid dysregulation in seminal and follicular fluids could be related with male and female infertility. Endocrinol Metab Int J. 2018;6:7.
Google Scholar
Rukkwamsuk T, Geelen MJ, Kruip TA, Wensing T. Interrelation of fatty acid composition in adipose tissue, serum, and liver of dairy cows during the development of fatty liver postpartum. J Dairy Sci. 2000;83(1):52–9.
Article
CAS
PubMed
Google Scholar
Esposito G, Irons PC, Webb EC, Chapwanya A. Interactions between negative energy balance, metabolic diseases, uterine health and immune response in transition dairy cows. Anim Reprod Sci. 2014;144(3–4):60–71.
Article
CAS
PubMed
Google Scholar
Moyes KM, Drackley JK, Salak-Johnson JL, Morin DE, Hope JC, Loor JJ. Dietary-induced negative energy balance has minimal effects on innate immunity during a streptococcus uberis mastitis challenge in dairy cows during midlactation. J Dairy Sci. 2009;92(9):4301–16.
Article
CAS
PubMed
Google Scholar
Staples CR, Thatcher WW, Clark JH. Relationship between ovarian activity and energy status during the early postpartum period of high producing dairy cows. J Dairy Sci. 1990;73(4):938–47.
Article
CAS
PubMed
Google Scholar
Aardema H, Lolicato F, van de Lest CH, Brouwers JF, Vaandrager AB, van Tol HT, et al. Bovine cumulus cells protect maturing oocytes from increased fatty acid levels by massive intracellular lipid storage. Biol Reprod. 2013;88(6):164.
Article
PubMed
Google Scholar
Duplus E, Forest C. Is there a single mechanism for fatty acid regulation of gene transcription? Biochem Pharmacol. 2002;64(5–6):893–901.
Article
CAS
PubMed
Google Scholar
Nakamura MT, Cheon Y, Li Y, Nara TY. Mechanisms of regulation of gene expression by fatty acids. Lipids. 2004;39(11):1077–83.
Article
CAS
PubMed
Google Scholar
Georgiadi A, Kersten S. Mechanisms of gene regulation by fatty acids. Adv Nutr. 2012;3(2):127–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mu YM, Yanase T, Nishi Y, Tanaka A, Saito M, Jin CH, et al. Saturated FFAs, palmitic acid and stearic acid, induce apoptosis in human granulosa cells. Endocrinology. 2001;142(8):3590–7.
Article
CAS
PubMed
Google Scholar
Vanholder T, Leroy JL, Soom AV, Opsomer G, Maes D. Coryn M, de KA: effect of non-esterified fatty acids on bovine granulosa cell steroidogenesis and proliferation in vitro. Anim Reprod Sci. 2005;87(1–2):33–44.
Article
CAS
PubMed
Google Scholar
Yenuganti VR, Viergutz T, Vanselow J. Oleic acid induces specific alterations in the morphology, gene expression and steroid hormone production of cultured bovine granulosa cells. Gen Comp Endocrinol. 2016;232:134–44.
Article
CAS
PubMed
Google Scholar
Sharma A, Baddela VS, Becker F, Dannenberger D, Viergutz T, Vanselow J. Elevated free fatty acids affect bovine granulosa cell function: a molecular cue for compromised reproduction during negative energy balance. Endocr Connect. 2019;8(5):493–505.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yenuganti VR, Vanselow J. Oleic acid induces down-regulation of the granulosa cell identity marker FOXL2, and up-regulation of the Sertoli cell marker SOX9 in bovine granulosa cells. Reprod Biol Endocrinol. 2017;15(1):57.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pelusi C, Ikeda Y, Zubair M, Parker KL. Impaired follicle development and infertility in female mice lacking steroidogenic factor 1 in ovarian granulosa cells. Biol Reprod. 2008;79(6):1074–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jeyasuria P, Ikeda Y, Jamin SP, Zhao LP, De Rooij DG, Themmen APN, et al. Cell-specific knockout of steroidogenic factor 1 reveals its essential roles in gonadal function. Mol Endocrinol. 2004;18(7):1610–9.
Article
CAS
PubMed
Google Scholar
Casarini L, Crépieux P. Molecular mechanisms of action of FSH. Front Endocrinol (Lausanne). 2019;10:305.
Article
Google Scholar
Ilha GF, Rovani MT, Gasperin BG, Antoniazzi AQ, Gonçalves PB, Bordignon V, et al. Lack of FSH support enhances LIF-STAT3 signaling in granulosa cells of atretic follicles in cattle. Reproduction. 2015;150(4):395–403.
Article
CAS
PubMed
Google Scholar
Raviv S, Hantisteanu S, Sharon SM, Atzmon Y, Michaeli M, Shalom-Paz E. Lipid droplets in granulosa cells are correlated with reduced pregnancy rates. J Ovarian Res. 2020;13(1):4.
Article
PubMed
PubMed Central
Google Scholar
Ferst JG, Missio D, Bertolin K, Gasperin BG, Leivas FG, Bordignon V, et al. Intrafollicular injection of nonesterified fatty acids impaired dominant follicle growth in cattle. Anim Reprod Sci. 2020;219:11.
Article
CAS
Google Scholar
Aardema H, Vos PL, Lolicato F, Roelen BA, Knijn HM, Vaandrager AB, et al. Oleic acid prevents detrimental effects of saturated fatty acids on bovine oocyte developmental competence. Biol Reprod. 2011;85(1):62–9.
Article
CAS
PubMed
Google Scholar
Fayezi S, Leroy J, Novin MG, Darabi M. Oleic acid in the modulation of oocyte and preimplantation embryo development. Zygote. 2018;26(1):1–13.
Article
CAS
PubMed
Google Scholar
Nimz M, Spitschak M, Schneider F, Fürbass R, Vanselow J. Down-regulation of genes encoding steroidogenic enzymes and hormone receptors in late preovulatory follicles of the cow coincides with an accumulation of intrafollicular steroids. Domest Anim Endocrinol. 2009;37:45–54.
Article
CAS
PubMed
Google Scholar
Gilbert I, Robert C, Dieleman S, Blondin P, Sirard MA. Transcriptional effect of the LH surge in bovine granulosa cells during the peri-ovulation period. Reproduction. 2011;141(2):193–205.
Article
CAS
PubMed
Google Scholar
Christenson LK, Gunewardena S, Hong X, Spitschak M, Baufeld A, Vanselow J. Research resource: preovulatory LH surge effects on follicular theca and granulosa transcriptomes. Mol Endocrinol. 2013;27(7):1153–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Berisha B, Steffl M, Amselgruber W, Schams D. Changes in fibroblast growth factor 2 and its receptors in bovine follicles before and after GnRH application and after ovulation. Reproduction. 2006;131(2):319–29.
Article
CAS
PubMed
Google Scholar
Bilyk O, Coatham M, Jewer M, Postovit LM. Epithelial-to-mesenchymal transition in the female reproductive tract: from Normal functioning to disease pathology. Front Oncol. 2017;7:145.
Article
PubMed
PubMed Central
Google Scholar
Childs AJ, McNeilly AS. Epithelial-to-mesenchymal transition in granulosa cells: a key to activation of follicle growth? Biol Reprod. 2012;86(5):152 151-152.
Article
PubMed
CAS
Google Scholar
Rosanò L, Spinella F, Bagnato A. Endothelin 1 in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer. 2013;13(9):637–51.
Article
PubMed
CAS
Google Scholar
Wu MH, Huang CY, Lin JA, Wang SW, Peng CY, Cheng HC, et al. Endothelin-1 promotes vascular endothelial growth factor-dependent angiogenesis in human chondrosarcoma cells. Oncogene. 2014;33(13):1725–35.
Article
CAS
PubMed
Google Scholar
Bagnato A, Spinella F. Emerging role of endothelin-1 in tumor angiogenesis. Trends Endocrinol Metab. 2003;14(1):44–50.
Article
CAS
PubMed
Google Scholar
Schams D, Berisha B. Angiogenic factors (VEGF, FGF and IGF) in the bovine corpus luteum. J Reprod Dev. 2002;48(3):233–42.
Article
CAS
Google Scholar
Zheng J, Redmer DA, Reynolds LP. Vascular development and heparin-binding growth-factors in the bovine corpus-luteum at several stages of the estrous-cycle. Biol Reprod. 1993;49(6):1177–89.
Article
CAS
PubMed
Google Scholar
Bridges PJ, Cho J, Ko C. Endothelins in regulating ovarian and oviductal function. Front Biosci (Schol Ed). 2011;3:145–55.
Google Scholar
Talbott HA, Plewes MR, Krause C, Hou X, Zhang P, Rizzo WB, et al. Formation and characterization of lipid droplets of the bovine corpus luteum. Sci Rep. 2020;10(1):11287.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pérez-Martínez C, Durán-Navarrete AJ, García-Fernández RA, Espinosa-Alvarez J, Escudero Diez A, García-Iglesias MJ. Biological characterization of ovarian granulosa cell tumours of slaughtered cattle: assessment of cell proliferation and oestrogen receptors. J Comp Pathol. 2004;130(2–3):117–23.
Article
PubMed
CAS
Google Scholar
Zemjanis R, Larson LL, Bhalla RP. Clinical incidence of genital abnormalities in the cow. J Am Vet Med Assoc. 1961;139:1015–8.
CAS
PubMed
Google Scholar
Baufeld A, Vanselow J. A tissue culture model of estrogen-producing primary bovine granulosa cells. J Vis Exp. 2018;139:1.
Google Scholar
Yenuganti VR, Vanselow J. Cultured bovine granulosa cells rapidly lose important features of their identity and functionality, but partially recover under long term culture conditions. Cell Tissue Res. 2017;368(2):397.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baddela VS, Baufeld A, Yenuganti VR, Vanselow J, Singh D. Suitable housekeeping genes for normalization of transcript abundance analysis by real-time RT-PCR in cultured bovine granulosa cells during hypoxia and differential cell plating density. Reprod Biol Endocrinol. 2014;12(1):118.
Article
PubMed
PubMed Central
CAS
Google Scholar
Schneider F, Brüssow KP. Effects of a preovulatory administered depot gonadotrophin-releasing hormone agonist on reproductive hormone levels and pregnancy outcome in gilts. Reprod Fertil Dev. 2006;18(8):857–66.
Article
CAS
PubMed
Google Scholar