Loyau T, Bedrani L, Berri C, Praud C, Coustham V, Duclos MJ, et al. Cyclic variations in incubation conditions induce adaptive responses to later heat exposure in chickens: a review. Animal. 2015;9:76–85. doi:https://doi.org/10.1017/S1751731114001931.
Article
CAS
PubMed
Google Scholar
Loyau T, Collin A, Yenisey C, Crochet S, Siegel PB, Aksit M, et al. Exposure of embryos to cyclically cold incubation temperatures durably affects energy metabolism and antioxidant pathways in broiler chickens. Poult Sci. 2014;93:2078–86.
Article
CAS
Google Scholar
Loyau T, Hennequet-Antier C, Coustham V, Berri C, Leduc M, Crochet S, et al. Thermal manipulation of the chicken embryo triggers differential gene expression in response to a later heat challenge. BMC Genomics. 2016;17:329.
Article
Google Scholar
Loyau T, Berri C, Bedrani L, Métayer-Coustard S, Praud C, Duclos MJ, et al. Thermal manipulation of the embryo modifies the physiology and body composition of broiler chickens reared in floor pens without affecting breast meat processing quality. J Anim Sci. 2013;91:3674–85.
Article
CAS
Google Scholar
Collin A, Berri C, Tesseraud S, Rodon FE, Skiba-Cassy S, Crochet S, et al. Effects of thermal manipulation during early and late embryogenesis on thermotolerance and breast muscle characteristics in broiler chickens. Poult Sci. 2007;86:795–800.
Article
CAS
Google Scholar
Collin A, Picard M, Yahav S. The effect of duration of thermal manipulation during broiler chick embryogenesis on body weight and body temperature of post-hatched chicks. Anim Res. 2005;54:105–11.
Article
Google Scholar
Piestun Y, Harel M, Barak M, Yahav S, Halevy O. Thermal manipulations in late-term chick embryos have immediate and longer term effects on myoblast proliferation and skeletal muscle hypertrophy. J Appl Physiol. 2009;106:233–40.
Article
Google Scholar
Yahav S, Collin A, Shinder D, Picard M. Thermal manipulations during broiler chick embryogenesis: effects of timing and temperature. Poult Sci. 2004;83:1959–1963.
Article
CAS
Google Scholar
Moraes VMB, Malheiros RD, Bruggeman V, Collin A, Tona K, Van As P, et al. Effect of thermal conditioning during embryonic development on aspects of physiological responses of broilers to heat stress. J Therm Biol. 2003;28:133–40.
Article
Google Scholar
Piestun Y, Shinder D, Ruzal M, Halevy O, Brake J, Yahav S. Thermal manipulations during broiler embryogenesis: effect on the acquisition of thermotolerance. Poult Sci. 2008;87:1516–25.
Article
CAS
Google Scholar
Piestun Y, Zimmerman I, Yahav S. Thermal manipulations of Turkey embryos: The effect on thermoregulation and development during embryogenesis. Poult Sci. 2015.
Maltby V, Somaiya A, French NA, Stickland NC. In ovo temperature manipulation influences post-hatch muscle growth in the turkey. Br Poult Sci. 2004;45:491–8.
Article
CAS
Google Scholar
Wang G, Liu J, Xiang S, Yan X, Li Q, Cui C, et al. Influence of in ovo thermal manipulation on lipid metabolism in embryonic duck liver. J Therm Biol. 2014.
Liu H, Liu J, Yan X, Li Q, Zhao Y, Wang Y, et al. Impact of thermal stress during incubation on gene expression in embryonic muscle of Peking ducks (Anasplatyrhynchos domestica). J Therm Biol. 2015;53:80–9. doi:https://doi.org/10.1016/j.jtherbio.2015.08.013.
Article
PubMed
Google Scholar
Li X, Qiu J, Liu H, Wang Y, Hu J, Gan X, et al. Long-term thermal manipulation in the late incubation period can inhibit breast muscle development by activating endoplasmic reticulum stress in duck (Anasplatyrhynchos domestica). Journal of Thermal Biology. 2017.
Massimino W, Davail S, Bernadet MD, Pioche T, Tavernier A, Ricaud K, et al. Positive Impact of Thermal Manipulation During Embryogenesis on Foie Gras Production in Mule Ducks. Front Physiol. 2019.
El-Daly EF, El-Wardany I, El-Gawad AHA, Hemid AEA, El-Azeem NAA. Physiological, Biochemical and Metabolic Responses of Japanese Quail (Coturnix coturnix japonica) as Affected by Early Heat Stress and Dietary Treatment. Iran J Appl Anim Sci. 2013;3:207–16.
CAS
Google Scholar
Abd El-Gawad AH, Hemid A, El-Wardany I, El-Daly E., Abd El-Azeem N. Alleviating the Effect of Some Environmental Stress Factors on Productive Performance in Japanese Quail 1. Growth Performance. World J Agric Sci. 2008;4:605–11.
Alkan S, Karsli T, Karabag K, Galic A, Balcioglu MS. The effects of thermal manipulation during early and late embryogenesis on hatchability, hatching weight and body weight in Japanese quails (Coturnix coturnix japonica). Arch Tierzucht. 2013;56:789–96.
Google Scholar
David S-A, Vitorino Carvalho A, Gimonnet C, Brionne A, Hennequet-Antier C, Piégu B, et al. Thermal Manipulation During Embryogenesis Impacts H3K4me3 and H3K27me3 Histone Marks in Chicken Hypothalamus. Front Genet. 2019;10.
Huss D, Poynter G, Lansford R. Japanese quail (Coturnix japonica) as a laboratory animal model. Lab Animal. 2008;37:513–9.
Article
Google Scholar
Kayang BB, Fillon V, Inoue-Murayama M, Miwa M, Leroux S, Fève K, et al. Integrated maps in quail (Coturnix japonica) confirm the high degree of synteny conservation with chicken (Gallus gallus) despite 35 million years of divergence. BMC Genomics. 2006;7.
Kawahara-Miki R, Sano S, Nunome M, Shimmura T, Kuwayama T, Takahashi S, et al. Next-generation sequencing reveals genomic features in the Japanese quail. Genomics. 2013;101:345–53. doi:https://doi.org/10.1016/j.ygeno.2013.03.006.
Article
CAS
PubMed
Google Scholar
Morris KM, Hindle MM, Boitard S, Burt DW, Danner AF, Eory L, et al. The quail genome: Insights into social behaviour, seasonal biology and infectious disease response. BMC Biol. 2020;18:10–3.
Article
Google Scholar
Carvalho AV, Hennequet-Antier C, Crochet S, Bordeau T, Couroussé N, Cailleau-Audouin E, et al. Embryonic thermal manipulation has short and long-term effects on the development and the physiology of the Japanese quail. PLoS One. 2020.
Katz A, Meiri N. Brain-derived neurotrophic factor is critically involved in thermal-experience-dependent developmental plasticity. J Neurosci. 2006;26:3899–907.
Article
CAS
Google Scholar
Brionne A, Juanchich A, Hennequet-Antier C. ViSEAGO: a Bioconductor package for clustering biological functions using Gene Ontology and semantic similarity. BioData Min. 2019.
Schurch NJ, Schofield PP, Gierliński M, Cole C, Sherstnev A, Singh V, et al. How many biological replicates are needed in an RNA-seq experiment and which differential expression tool should you use? RNA. 2016;22:839–51. doi:https://doi.org/10.1261/rna.053959.115.
Hughes TR. “Validation” in genome-scale research. Journal of Biology. 2009.
Warters RL, Henle KJ. DNA Degradation in Chinese Hamster Ovary Cells after Exposure to Hyperthermia. Cancer Res. 1982.
Davidson JF, Schiestl RH. Cytotoxic and genotoxic consequences of heat stress are dependent on the presence of oxygen in Saccharomyces cerevisiae. J Bacteriol. 2001.
Sun H, Jiang R, Xu S, Zhang Z, Xu G, Zheng J, et al. Transcriptome responses to heat stress in hypothalamus of a meat-type chicken. J Anim Sci Biotechnol. 2015;6:6.
Article
Google Scholar
Minvielle F. The future of Japanese quail for research and production. In: World’s Poultry Science Journal. 2004.
Tanner RL, Dowd WW. Inter-individual physiological variation in responses to environmental variation and environmental change: Integrating across traits and time. Comp Biochem Physiol -Part A Mol Integr Physiol. 2019.
Lin H, Decuypere E, Buyse J. Acute heat stress induces oxidative stress in broiler chickens. Comp Biochem Physiol - A Mol Integr Physiol. 2006.
Blair EJ, Bonnot T, Hummel M, Hay E, Marzolino JM, Quijada IA, et al. Contribution of time of day and the circadian clock to the heat stress responsive transcriptome in Arabidopsis. Sci Rep. 2019.
Vigh L, Török Z, Crul T, Maresca B, Schütz GJ, Viana F, et al. Plasma membranes as heat stress sensors: From lipid-controlled molecular switches to therapeutic applications. Biochimica et Biophysica Acta - Biomembranes. 2014.
Garriga C, Hunter RR, Amat C, Planas JM, Mitchell MA, Moretó M. Heat stress increases apical glucose transport in the chicken jejunum. Am J Physiol - Regul Integr Comp Physiol. 2006.
Jung HJ, Park SJ, Kang H. Regulation of RNA metabolism in plant development and stress responses. Journal of Plant Biology. 2013.
Somero GN. RNA thermosensors: How might animals exploit their regulatory potential? Journal of Experimental Biology. 2018.
Marco A, Kisliouk T, Tabachnik T, Weller A, Meiri N. DNA CpG methylation (5-methylcytosine) and its derivative (5-hydroxymethylcytosine) alter histone posttranslational modifications at the Pomc promoter, affecting the impact of perinatal diet on leanness and obesity of the offspring. Diabetes. 2016.
Kisliouk T, Yosefi S, Meiri N. MiR-138 inhibits EZH2 methyltransferase expression and methylation of histone H3 at lysine 27, and affects thermotolerance acquisition. Eur J Neurosci. 2011;33:224–35.
Article
Google Scholar
Yossifoff M, Kisliouk T, Meiri N. Dynamic changes in DNA methylation during thermal control establishment affect CREB binding to the brain-derived neurotrophic factor promoter. Eur J Neurosci. 2008;28:2267–77.
Article
Google Scholar
Recoquillay J, Pitel F, Arnould C, Leroux S, Dehais P, Moreno C, et al. A medium density genetic map and QTL for behavioral and production traits in Japanese quail. BMC Genomics. 2015;16:10.
Article
Google Scholar
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics. 2013.
Liao Y, Smyth GK, Shi W. FeatureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014.
Carvalho AV, Couroussé N, Crochet S, Coustham V. Identification of reference genes for quantitative gene expression studies in three tissues of japanese quail. Genes (Basel). 2019.
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2017.
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2009.
McCarthy DJ, Chen Y, Smyth GK. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 2012.
Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J R Stat Soc Ser B. 1995.
Bardou P, Mariette J, Escudié F, Djemiel C, Klopp C. Jvenn: An interactive Venn diagram viewer. BMC Bioinformatics. 2014.
Maglott D, Ostell J, Pruitt KD, Tatusova T. Entrez Gene: Gene-centered information at NCBI. Nucleic Acids Res. 2005.