van Treuren R, Coquin P, Lohwasser U. Genetic resources collections of leafy vegetables (lettuce, spinach, chicory, artichoke, asparagus, lamb’s lettuce, rhubarb and rocket salad): composition and gaps. Genetic Resources and Crop Evolution. 2012;59.
Koh E, Charoenprasert S, Mitchell AE. Effect of Organic and Conventional Cropping Systems on Ascorbic Acid, Vitamin C, Flavonoids, Nitrate, and Oxalate in 27 Varieties of Spinach (Spinacia oleracea L.). Journal of Agricultural and Food Chemistry. 2012;60.
El-Sayed SM. Use of spinach powder as functional ingredient in the manufacture of UF-Soft cheese. Heliyon. 2020;6.
Chitwood J, Shi A, Mou B, Evans M, Clark J, Motes D, et al. Population Structure and Association Analysis of Bolting, Plant Height, and Leaf Erectness in Spinach. HortScience. 2016;51.
Ma J, Shi A, Mou B, Evans M, Clark JR, Motes D, et al. Association mapping of leaf traits in spinach (Spinacia oleracea L.). Plant Breeding. 2016;135.
Arif M, Jatoi S, Ghafoor A, Rafique T. GENETIC DIVERGENCE IN INDIGENOUS SPINACH GENETIC RESOURCES FOR AGRONOMIC PERFORMANCE AND IMPLICATION OF MULTIVARIATE ANALYSES FOR FUTURE SELECTION CRITERIA. science technology and development. 2013.
Cho L-H, Yoon J, An G. The control of flowering time by environmental factors. The Plant Journal. 2017;90.
Chen C, Huang W, Hou K, Wu W. Bolting, an Important Process in Plant Development, Two Types in Plants. Journal of Plant Biology. 2019;62.
Lee Y-S, An G. Regulation of flowering time in rice. Journal of Plant Biology. 2015;58.
Avila de Dios E, Delaye L, Simpson J. Transcriptome analysis of bolting in A. tequilana reveals roles for florigen, MADS, fructans and gibberellins. BMC Genomics. 2019;20.
Nie S, Li C, Xu L, Wang Y, Huang D, Muleke EM, et al. De novo transcriptome analysis in radish (Raphanus sativus L.) and identification of critical genes involved in bolting and flowering. BMC Genomics. 2016;17.
Ou C-G, Mao J-H, Liu L-J, Li C-J, Ren H-F, Zhao Z-W, et al. Characterising genes associated with flowering time in carrot (Daucus carota L.) using transcriptome analysis. Plant Biology. 2017;19.
Abolghasemi R, Haghighi M, Etemadi N, Wang S, Soorni A. Transcriptome architecture reveals genetic networks of bolting regulation in spinach. BMC Plant Biology. 2021.
Yang Z, Yang C, Wang Z, Yang Z, Chen D, Wu Y. LncRNA expression profile and ceRNA analysis in tomato during flowering. PLOS ONE. 2019;14.
Vieira NG, Ferrari IF, Rezende JC de, Mayer JLS, Mondego JMC. Homeologous regulation of Frigida-like genes provides insights on reproductive development and somatic embryogenesis in the allotetraploid Coffea arabica. Scientific Reports. 2019;9.
Amin N, McGrath A, Chen Y-PP. Evaluation of deep learning in non-coding RNA classification. Nature Machine Intelligence. 2019;1:246–56.
Article
Google Scholar
Qin T, Li J, Zhang K-Q. Structure, Regulation, and Function of Linear and Circular Long Non-Coding RNAs. Frontiers in Genetics. 2020;11.
Lucero L, Ferrero L, Fonouni-Farde C, Ariel F. Functional classification of plant long noncoding RNAs: a transcript is known by the company it keeps. New Phytologist. 2021;229.
Paschoal AR, Maracaja-Coutinho V, Setubal JC, Simões ZLP, Verjovski-Almeida S, Durham AM. Non-coding transcription characterization and annotation. null. 2012;9:274–82.
CAS
Google Scholar
Maracaja-Coutinho V, Paschoal AR, Caris-Maldonado JC, Borges PV, Ferreira AJ, Durham AM. Noncoding RNAs Databases: Current Status and Trends. Methods Mol Biol. 2019;1912:251–85.
Article
CAS
PubMed
Google Scholar
Liu X, Hao L, Li D, Zhu L, Hu S. Long Non-coding RNAs and Their Biological Roles in Plants. Genomics, Proteomics & Bioinformatics. 2015;13.
Quinn JJ, Chang HY. Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet. 2016;17:47–62.
Article
CAS
PubMed
Google Scholar
Paschoal AR, Lozada-Chávez I, Domingues DS, Stadler PF. ceRNAs in plants: computational approaches and associated challenges for target mimic research. Brief Bioinform. 2018;19:1273–89.
CAS
PubMed
Google Scholar
Yuan C, Meng X, Li X, Illing N, Ingle RA, Wang J, et al. PceRBase: a database of plant competing endogenous RNA. Nucleic Acids Research. 2017;45:D1009–14.
Article
CAS
PubMed
Google Scholar
Wang P, Li X, Gao Y, Guo Q, Wang Y, Fang Y, et al. LncACTdb 2.0: an updated database of experimentally supported ceRNA interactions curated from low- and high-throughput experiments. Nucleic Acids Research. 2019;47:D121–7.
Article
CAS
PubMed
Google Scholar
Heo JB, Sung S. Vernalization-Mediated Epigenetic Silencing by a Long Intronic Noncoding RNA. Science. 2011;331.
Wang Y, Fan X, Lin F, He G, Terzaghi W, Zhu D, et al. Arabidopsis noncoding RNA mediates control of photomorphogenesis by red light. Proceedings of the National Academy of Sciences. 2014;111.
Zhang Y-C, Liao J-Y, Li Z-Y, Yu Y, Zhang J-P, Li Q-F, et al. Genome-wide screening and functional analysis identify a large number of long noncoding RNAs involved in the sexual reproduction of rice. Genome Biology. 2014;15.
Severing E, Faino L, Jamge S, Busscher M, Kuijer-Zhang Y, Bellinazzo F, et al. Arabidopsis thaliana ambient temperature responsive lncRNAs. BMC Plant Biology. 2018;18.
Ding J, Lu Q, Ouyang Y, Mao H, Zhang P, Yao J, et al. A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice. Proceedings of the National Academy of Sciences. 2012;109:2654–9.
Zhang Y-C, Chen Y-Q. Long noncoding RNAs: new regulators in plant development. Biochem Biophys Res Commun. 2013;436:111–4.
Article
CAS
PubMed
Google Scholar
Kang C, Liu Z. Global identification and analysis of long non-coding RNAs in diploid strawberry Fragaria vesca during flower and fruit development. BMC Genomics. 2015;16.
Yang Z, Yang Z, Yang C, Wang Z, Chen D, Xie Y, et al. Identification and genetic analysis of alternative splicing of long non-coding RNAs in tomato initial flowering stage. Genomics. 2020;112.
Shea DJ, Nishida N, Takada S, Itabashi E, Takahashi S, Akter A, et al. Long noncoding RNAs in Brassica rapa L. following vernalization. Scientific Reports. 2019;9.
Lemos SMC, Fonçatti LFC, Guyot R, Paschoal AR, Domingues DS. Genome-Wide Screening and Characterization of Non-Coding RNAs in Coffea canephora. Non-Coding RNA. 2020;6.
Wu X, Shi T, Iqbal S, Zhang Y, Liu L, Gao Z. Genome-wide discovery and characterization of flower development related long non-coding RNAs in Prunus mume. BMC Plant Biology. 2019;19:64.
Article
PubMed
PubMed Central
Google Scholar
Baruah PM, Kashyap P, Krishnatreya DB, Bordoloi KS, Gill SS, Agarwala N. Identification and functional analysis of drought responsive lncRNAs in tea plant. Plant Gene. 2021;27:100311.
Article
CAS
Google Scholar
Varshney D, Rawal HC, Dubey H, Bandyopadhyay T, Bera B, Kumar PM, et al. Tissue specific long non-coding RNAs are involved in aroma formation of black tea. Industrial Crops and Products. 2019;133:79–89.
Article
CAS
Google Scholar
Baruah PM, Krishnatreya DB, Bordoloi KS, Gill SS, Agarwala N. Genome wide identification and characterization of abiotic stress responsive lncRNAs in Capsicum annuum. Plant Physiology and Biochemistry. 2021;162:221–36.
Article
CAS
PubMed
Google Scholar
Moh NMM, Zhang P, Chen Y, Chen M. Computational Identification of miRNAs and Temperature-Responsive lncRNAs From Mango (Mangifera indica L.). Frontiers in Genetics. 2021;12:814.
Article
CAS
Google Scholar
Zhao X, Gan L, Yan C, Li C, Sun Q, Wang J, et al. Genome-Wide Identification and Characterization of Long Non-Coding RNAs in Peanut. Genes. 2019;10.
Boerner S, McGinnis KM. Computational Identification and Functional Predictions of Long Noncoding RNA in Zea mays. PLOS ONE. 2012;7:e43047.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jin J, Lu P, Xu Y, Li Z, Yu S, Liu J, et al. PLncDB V2.0: a comprehensive encyclopedia of plant long noncoding RNAs. Nucleic Acids Research. 2021;49:D1489–95.
Article
PubMed
Google Scholar
Paytuví Gallart A, Hermoso Pulido A, Anzar Martínez de Lagrán I, Sanseverino W, Aiese Cigliano R. GREENC: a Wiki-based database of plant lncRNAs. Nucleic Acids Res. 2016;44:D1161–6.
Article
PubMed
CAS
Google Scholar
Szcześniak MW, Bryzghalov O, Ciomborowska-Basheer J, Makałowska I. CANTATAdb 2.0: Expanding the Collection of Plant Long Noncoding RNAs. Methods Mol Biol. 2019;1933:415–29.
Article
PubMed
CAS
Google Scholar
Abolghasemi R, Haghighi M, Etemadi N, Soorni A, Jafari P. Screening of some native and foreign accessions of spinach for spring culture in Isfahan. Iran Agricultural Research. 2019;38:87–99.
Google Scholar
Simopoulos CMA, Weretilnyk EA, Golding GB. Prediction of plant lncRNA by ensemble machine learning classifiers. BMC Genomics. 2018;19.
Collins K, Zhao K, Jiao C, Xu C, Cai X, Wang X, et al. SpinachBase: a central portal for spinach genomics. Database. 2019;2019. doi:https://doi.org/10.1093/database/baz072.
Hirose T, Mishima Y, Tomari Y. Elements and machinery of non-coding RNAs: toward their taxonomy. EMBO Rep. 2014;15:489–507.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang T, Zhang X, Han K, Zhang G, Wang J, Xie K, et al. Analysis of long noncoding RNA and mRNA using RNA sequencing during the differentiation of intramuscular preadipocytes in chicken. PLOS ONE. 2017;12.
Huang P, Li F, Li L, You Y, Luo S, Dong Z, et al. lncRNA profile study reveals the mRNAs and lncRNAs associated with docetaxel resistance in breast cancer cells. Scientific Reports. 2018;8.
Sun H, Long R, Zhang F, Zhang T, Kang J, Wang Z, et al. Proteomic Analysis of Shoot Tips from Two Alfalfa Cultivars with Different Florescence. Plant Molecular Biology Reporter. 2019;37:265–76.
Article
Google Scholar
Ma D, Liu B, Ge L, Weng Y, Cao X, Liu F, et al. Identification and characterization of regulatory pathways involved in early flowering in the new leaves of alfalfa (Medicago sativa L.) by transcriptome analysis. BMC Plant Biology. 2021;21:8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fan W, Ge G, Liu Y, Wang W, Liu L, Jia Y. Proteomics integrated with metabolomics: analysis of the internal causes of nutrient changes in alfalfa at different growth stages. BMC Plant Biol. 2018;18:78.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gu J, Zeng Z, Wang Y, Lyu Y. Transcriptome Analysis of Carbohydrate Metabolism Genes and Molecular Regulation of Sucrose Transport Gene LoSUT on the Flowering Process of Developing Oriental Hybrid Lily ‘Sorbonne’ Bulb. International Journal of Molecular Sciences. 2020;21.
Andrés F, Kinoshita A, Kalluri N, Fernández V, Falavigna VS, Cruz TMD, et al. The sugar transporter SWEET10 acts downstream of FLOWERING LOCUS T during floral transition of Arabidopsis thaliana. BMC Plant Biology. 2020;20.
Li N, Meng Z, Tao M, Wang Y, Zhang Y, Li S, et al. Comparative transcriptome analysis of male and female flowers in Spinacia oleracea L. BMC Genomics. 2020;21:850.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liang Y-H, Cai B, Chen F, Wang G, Wang M, Zhong Y, et al. Construction and validation of a gene co-expression network in grapevine (Vitis vinifera. L.). Horticulture Research. 2014;1.
Di C, Yuan J, Wu Y, Li J, Lin H, Hu L, et al. Characterization of stress-responsive lncRNAs in Arabidopsis thaliana by integrating expression, epigenetic and structural features. The Plant Journal. 2014;80.
Zhu B, Yang Y, Li R, Fu D, Wen L, Luo Y, et al. RNA sequencing and functional analysis implicate the regulatory role of long non-coding RNAs in tomato fruit ripening. Journal of Experimental Botany. 2015;66.
Wang C-Y, Liu S-R, Zhang X-Y, Ma Y-J, Hu C-G, Zhang J-Z. Genome-wide screening and characterization of long non-coding RNAs involved in flowering development of trifoliate orange (Poncirus trifoliata L. Raf.). Scientific Reports. 2017;7.
Xie C, Yuan J, Li H, Li M, Zhao G, Bu D, et al. NONCODEv4: exploring the world of long non-coding RNA genes. Nucleic Acids Research. 2014;42.
Csorba T, Questa JI, Sun Q, Dean C. Antisense COOLAIR mediates the coordinated switching of chromatin states at FLC during vernalization. Proceedings of the National Academy of Sciences. 2014;111.
Hawkes EJ, Hennelly SP, Novikova IV, Irwin JA, Dean C, Sanbonmatsu KY. COOLAIR Antisense RNAs Form Evolutionarily Conserved Elaborate Secondary Structures. Cell Reports. 2016;16.
Chen M, Penfield S. Feedback regulation of COOLAIR expression controls seed dormancy and flowering time. Science. 2018;360.
Kim D-H, Sung S. Vernalization-Triggered Intragenic Chromatin Loop Formation by Long Noncoding RNAs. Developmental Cell. 2017;40.
Henriques R, Wang H, Liu J, Boix M, Huang L-F, Chua N-H. The antiphasic regulatory module comprising CDF5 and its antisense RNA FLORE links the circadian clock to photoperiodic flowering. New Phytologist. 2017;216.
Sawicki M, Jacquens L, Baillieul F, Clément C, Vaillant-Gaveau N, Jacquard C. Distinct regulation in inflorescence carbohydrate metabolism according to grapevine cultivars during floral development. Physiologia Plantarum. 2015;154.
Kumar SV, Lucyshyn D, Jaeger KE, Alós E, Alvey E, Harberd NP, et al. Transcription factor PIF4 controls the thermosensory activation of flowering. Nature. 2012;484:242–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Adeyemo OS, Chavarriaga P, Tohme J, Fregene M, Davis SJ, Setter TL. Overexpression of Arabidopsis FLOWERING LOCUS T (FT) gene improves floral development in cassava (Manihot esculenta, Crantz). PLoS One. 2017;12:e0181460.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lee HY, Lee K, Back K. Knockout of Arabidopsis Serotonin N-Acetyltransferase-2 Reduces Melatonin Levels and Delays Flowering. Biomolecules. 2019;9:712.
Article
CAS
PubMed Central
Google Scholar
Jack T. New members of the floral organ identity AGAMOUS pathway. Trends in Plant Science. 2002;7:286–7.
Article
CAS
PubMed
Google Scholar
Rodríguez-Cazorla E, Ripoll JJ, Andújar A, Bailey LJ, Martínez-Laborda A, Yanofsky MF, et al. K-homology nuclear ribonucleoproteins regulate floral organ identity and determinacy in arabidopsis. PLoS Genet. 2015;11:e1004983.
Article
PubMed
PubMed Central
CAS
Google Scholar
Noh B, Lee S-H, Kim H-J, Yi G, Shin E-A, Lee M, et al. Divergent roles of a pair of homologous jumonji/zinc-finger-class transcription factor proteins in the regulation of Arabidopsis flowering time. Plant Cell. 2004;16:2601–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jeong J-H, Song H-R, Ko J-H, Jeong Y-M, Kwon YE, Seol JH, et al. Repression of FLOWERING LOCUS T chromatin by functionally redundant histone H3 lysine 4 demethylases in Arabidopsis. PLoS One. 2009;4:e8033–e8033.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fu X, Li C, Liang Q, Zhou Y, He H, Fan L-M. CHD3 chromatin-remodeling factor PICKLE regulates floral transition partially via modulating LEAFY expression at the chromatin level in Arabidopsis. Sci China Life Sci. 2016;59:516–28.
Article
CAS
PubMed
Google Scholar
Kraft E, Bostick M, Jacobsen SE, Callis J. ORTH/VIM proteins that regulate DNA methylation are functional ubiquitin E3 ligases. Plant J. 2008;56:704–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mulekar JJ, Huq E. Does CK2 affect flowering time by modulating the autonomous pathway in Arabidopsis? Plant Signal Behav. 2012;7:292–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Endo M, Tanigawa Y, Murakami T, Araki T, Nagatani A. Phytochrome-dependent late-flowering accelerates flowering through physical interactions with phytochrome B and CONSTANS. Proceedings of the National Academy of Sciences of the United States of America. 2013;110.
Rubinovich L, Ruthstein S, Weiss D. The Arabidopsis cysteine-rich GASA5 is a redox-active metalloprotein that suppresses gibberellin responses. Mol Plant. 2014;7:244–7.
Article
CAS
PubMed
Google Scholar
Zhang S, Yang C, Peng J, Sun S, Wang X. GASA5, a regulator of flowering time and stem growth in Arabidopsis thaliana. Plant Mol Biol. 2009;69:745–59.
Article
CAS
PubMed
Google Scholar
Yoon J-H, Abdelmohsen K, Gorospe M. Functional interactions among microRNAs and long noncoding RNAs. Semin Cell Dev Biol. 2014;34:9–14.
Article
CAS
PubMed
Google Scholar
Wang J, Yu W, Yang Y, Li X, Chen T, Liu T, et al. Genome-wide analysis of tomato long non-coding RNAs and identification as endogenous target mimic for microRNA in response to TYLCV infection. Sci Rep. 2015;5:16946.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gao C, Sun J, Dong Y, Wang C, Xiao S, Mo L, et al. Comparative transcriptome analysis uncovers regulatory roles of long non-coding RNAs involved in resistance to powdery mildew in melon. BMC Genomics. 2020;21:125.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhu Q-H, Helliwell CA. Regulation of flowering time and floral patterning by miR172. J Exp Bot. 2011;62:487–95.
Article
CAS
PubMed
Google Scholar
Wu G, Park MY, Conway SR, Wang J-W, Weigel D, Poethig RS. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell. 2009;138:750–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aukerman MJ, Sakai H. Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. Plant Cell. 2003;15:2730–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiang W, Zhang X, Song X, Yang J, Pang Y. Genome-Wide Identification and Characterization of APETALA2/Ethylene-Responsive Element Binding Factor Superfamily Genes in Soybean Seed Development. Front Plant Sci. 2020;11:566647.
Article
PubMed
PubMed Central
Google Scholar
Yu J-W, Rubio V, Lee N-Y, Bai S, Lee S-Y, Kim S-S, et al. COP1 and ELF3 Control Circadian Function and Photoperiodic Flowering by Regulating GI Stability. Molecular Cell. 2008;32.
Ito S, Song YH, Josephson-Day AR, Miller RJ, Breton G, Olmstead RG, et al. FLOWERING BHLH transcriptional activators control expression of the photoperiodic flowering regulator CONSTANS in Arabidopsis. Proceedings of the National Academy of Sciences. 2012;109.
Wang B, Jin S-H, Hu H-Q, Sun Y-G, Wang Y-W, Han P, et al. UGT87A2, an Arabidopsis glycosyltransferase, regulates flowering time via FLOWERING LOCUS C. New Phytologist. 2012;194.
Gachomo EW, Jimenez-Lopez JC, Baptiste L, Kotchoni SO. GIGANTUS1 (GTS1), a member of Transducin/WD40 protein superfamily, controls seed germination, growth and biomass accumulation through ribosome-biogenesis protein interactions in Arabidopsis thaliana. BMC Plant Biology. 2014;14.
Wu Q, Liu X, Yin D, Yuan H, Xie Q, Zhao X, et al. Constitutive expression of OsDof4, encoding a C2-C2 zinc finger transcription factor, confesses its distinct flowering effects under long- and short-day photoperiods in rice (Oryza sativa L.). BMC Plant Biology. 2017;17.
El-Kereamy A, Bi Y-M, Mahmood K, Ranathunge K, Yaish MW, Nambara E, et al. Overexpression of the CC-type glutaredoxin, OsGRX6 affects hormone and nitrogen status in rice plants. Frontiers in Plant Science. 2015;6.
Emami H, Kempken F. PRECOCIOUS 1 (POCO 1), a mitochondrial pentatricopeptide repeat protein affects flowering time in Arabidopsis thaliana. The Plant Journal. 2019;100.
Chen I-C, Huang I-C, Liu M-J, Wang Z-G, Chung S-S, Hsieh H-L. Glutathione S -Transferase Interacting with Far-Red Insensitive 219 Is Involved in Phytochrome A-Mediated Signaling in Arabidopsis. Plant Physiology. 2007;143.
Sawa M, Nusinow DA, Kay SA, Imaizumi T. FKF1 and GIGANTEA Complex Formation Is Required for Day-Length Measurement in Arabidopsis. Science. 2007;318.
Wang S, Cao L, Wang H. Arabidopsis ubiquitin-conjugating enzyme UBC22 is required for female gametophyte development and likely involved in Lys11-linked ubiquitination. Journal of Experimental Botany. 2016;67.
Han Y, Chen Z, Lv S, Ning K, Ji X, Liu X, et al. MADS-Box Genes and Gibberellins Regulate Bolting in Lettuce (Lactuca sativa L.). Frontiers in Plant Science. 2016;7.
Ning Y-Q, Ma Z-Y, Huang H-W, Mo H, Zhao T, Li L, et al. Two novel NAC transcription factors regulate gene expression and flowering time by associating with the histone demethylase JMJ14. Nucleic Acids Research. 2015;43.
Kim J, Kim D-S, Park S, Lee H-E, Ahn Y-K, Kim JH, et al. Development of a high-throughput SNP marker set by transcriptome sequencing to accelerate genetic background selection in Brassica rapa. Horticulture, Environment, and Biotechnology. 2016;57.
Google Scholar
Richter R, Bastakis E, Schwechheimer C. Cross-Repressive Interactions between SOC1 and the GATAs GNC and GNL/CGA1 in the Control of Greening, Cold Tolerance, and Flowering Time in Arabidopsis. Plant Physiology. 2013;162.
Cheng Y, Zhou Y, Yang Y, Chi Y-J, Zhou J, Chen J-Y, et al. Structural and Functional Analysis of VQ Motif-Containing Proteins in Arabidopsis as Interacting Proteins of WRKY Transcription Factors. Plant Physiology. 2012;159.
Shu K, Yang W. E3 Ubiquitin Ligases: Ubiquitous Actors in Plant Development and Abiotic Stress Responses. Plant and Cell Physiology. 2017;58.
Liu W, Tang X, Qi X, Fu X, Ghimire S, Ma R, et al. The Ubiquitin Conjugating Enzyme: An Important Ubiquitin Transfer Platform in Ubiquitin-Proteasome System. International Journal of Molecular Sciences. 2020;21.
Yang J, Ding C, Xu B, Chen C, Narsai R, Whelan J, et al. A Casparian strip domain-like gene, CASPL, negatively alters growth and cold tolerance. Scientific Reports. 2015;5.
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu C, Jiao C, Sun H, Cai X, Wang X, Ge C, et al. Draft genome of spinach and transcriptome diversity of 120 Spinacia accessions. Nat Commun. 2017;8:15275.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.
Article
CAS
PubMed
Google Scholar
Pertea M, Pertea GM, Antonescu CM, Chang T-C, Mendell JT, Salzberg SL. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 2015;33:290–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wucher V, Legeai F, Hédan B, Rizk G, Lagoutte L, Leeb T, et al. FEELnc: a tool for long non-coding RNA annotation and its application to the dog transcriptome. Nucleic Acids Res. 2017;45:e57.
CAS
PubMed
PubMed Central
Google Scholar
Kang Y-J, Yang D-C, Kong L, Hou M, Meng Y-Q, Wei L, et al. CPC2: a fast and accurate coding potential calculator based on sequence intrinsic features. Nucleic Acids Res. 2017;45:W12–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lowe TM, Chan PP. tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res. 2016;44:W54-57.
Article
CAS
Google Scholar
Negri T da C, Alves WAL, Bugatti PH, Saito PTM, Domingues DS, Paschoal AR. Pattern recognition analysis on long noncoding RNAs: a tool for prediction in plants. Brief Bioinform. 2019;20:682–9.
Quek XC, Thomson DW, Maag JLV, Bartonicek N, Signal B, Clark MB, et al. lncRNAdb v2.0: expanding the reference database for functional long noncoding RNAs. Nucleic Acids Res. 2015;43 Database issue:D168–173.
Jiménez-Jacinto V, Sanchez-Flores A, Vega-Alvarado L. Integrative Differential Expression Analysis for Multiple EXperiments (IDEAMEX): A Web Server Tool for Integrated RNA-Seq Data Analysis. Front Genet. 2019;10:279.
Article
PubMed
PubMed Central
CAS
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li J, Ma W, Zeng P, Wang J, Geng B, Yang J, et al. LncTar: a tool for predicting the RNA targets of long noncoding RNAs. Brief Bioinform. 2015;16:806–12.
Article
CAS
PubMed
Google Scholar
Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic acids research. 2000;28:27–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu H-J, Wang Z-M, Wang M, Wang X-J. Widespread long noncoding RNAs as endogenous target mimics for microRNAs in plants. Plant Physiol. 2013;161:1875–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: from microRNA sequences to function. Nucleic Acids Res. 2019;47:D155–62.
Article
CAS
PubMed
Google Scholar
Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012;28:3150–2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu H-J, Ma Y-K, Chen T, Wang M, Wang X-J. PsRobot: a web-based plant small RNA meta-analysis toolbox. Nucleic Acids Res. 2012;40 Web Server issue:W22–28.
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang B, Horvath S. A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol. 2005;4:Article17.
Article
PubMed
Google Scholar
Chin C-H, Chen S-H, Wu H-H, Ho C-W, Ko M-T, Lin C-Y. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Systems Biology. 2014;8:S11.
Article
PubMed
PubMed Central
Google Scholar
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.
Article
CAS
PubMed
PubMed Central
Google Scholar