Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med. 2015;372(9):793–5. https://doi.org/10.1056/NEJMp1500523.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis. 2010;31(1):27–36. https://doi.org/10.1093/carcin/bgp220.
Article
CAS
PubMed
Google Scholar
Kim D, Joung J-G, Sohn K-A, Shin H, Park YR, Ritchie MD, et al. Knowledge boosting: a graph-based integration approach with multi-omics data and genomic knowledge for cancer clinical outcome prediction. J Am Med Inform Assoc. 2015;22(1):109–20. https://doi.org/10.1136/amiajnl-2013-002481.
Article
PubMed
Google Scholar
Kim D, Li R, Dudek SM, Frase AT, Pendergrass SA, Ritchie MD. Knowledge-driven genomic interactions: an application in ovarian cancer. BioData Min. 2014;7(1):20. https://doi.org/10.1186/1756-0381-7-20.
Article
PubMed
PubMed Central
Google Scholar
Kim D, Li R, Dudek SM, Ritchie MD. ATHENA: identifying interactions between different levels of genomic data associated with cancer clinical outcomes using grammatical evolution neural network. BioData Min. 2013;6(1):23. https://doi.org/10.1186/1756-0381-6-23.
Article
PubMed
PubMed Central
Google Scholar
Kim D, Li R, Dudek SM, Ritchie MD. Predicting censored survival data based on the interactions between meta-dimensional omics data in breast cancer. J Biomed Inform. 2015;56:220–8. https://doi.org/10.1016/j.jbi.2015.05.019.
Article
PubMed
PubMed Central
Google Scholar
Kim D, Li R, Dudek SM, Wallace JR, Ritchie MD. Binning somatic mutations based on biological knowledge for predicting survival: an application in renal cell carcinoma. Pac Symp Biocomput. 2015:96–107. https://doi.org/10.1142/9789814644730_0011.
Kim D, Li R, Lucas A, Verma SS, Dudek SM, Ritchie MD. Using knowledge-driven genomic interactions for multi-omics data analysis: metadimensional models for predicting clinical outcomes in ovarian carcinoma. J Am Med Inform Assoc. 2017;24(3):577–87. https://doi.org/10.1093/jamia/ocw165.
Article
PubMed
Google Scholar
Kim D, Shin H, Joung J-G, Lee S-Y, Kim JH. Intra-relation reconstruction from inter-relation: miRNA to gene expression. BMC Syst Biol. 2013;7(Suppl 3):S8. https://doi.org/10.1186/1752-0509-7-S3-S8.
Article
PubMed
PubMed Central
Google Scholar
Kim D, Shin H, Sohn K-A, Verma A, Ritchie MD, Kim JH. Incorporating inter-relationships between different levels of genomic data into cancer clinical outcome prediction. Methods. 2014;67(3):344–53. https://doi.org/10.1016/j.ymeth.2014.02.003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim D, Shin H, Song YS, Kim JH. Synergistic effect of different levels of genomic data for cancer clinical outcome prediction. J Biomed Inform. 2012;45(6):1191–8. https://doi.org/10.1016/j.jbi.2012.07.008.
Article
CAS
PubMed
Google Scholar
Sohn K-A, Kim D, Lim J, Kim JH. Relative impact of multi-layered genomic data on gene expression phenotypes in serous ovarian tumors. BMC Syst Biol. 2013;6(Suppl 6):S9. https://doi.org/10.1186/1752-0509-7-S6-S9.
Article
Google Scholar
Shivakumar M, Lee Y, Bang L, Garg T, Sohn K-A, Kim D. Identification of epigenetic interactions between miRNA and DNA methylation associated with gene expression as potential prognostic markers in bladder cancer. BMC Med Genet. 2017;10(1):30. https://doi.org/10.1186/s12920-017-0269-y.
Article
CAS
Google Scholar
Schmittgen TD. Regulation of microRNA processing in development, differentiation and cancer. J Cell Mol Med. 2008;12(5B):1811–9. https://doi.org/10.1111/j.1582-4934.2008.00483.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baylin SB. DNA methylation and gene silencing in cancer. Nat Clin Pract Oncol. 2005;2(S1):S4–S11. https://doi.org/10.1038/ncponc0354.
Article
CAS
PubMed
Google Scholar
Chen Y-C, Elnitski L. Aberrant DNA methylation defines isoform usage in cancer, with functional implications. PLoS Comput Biol. 2019;15(7):e1007095. https://doi.org/10.1371/journal.pcbi.1007095.
Article
CAS
PubMed
PubMed Central
Google Scholar
Han S, Kim D, Shivakumar M, Lee Y-J, Garg T, Miller JE, et al. The effects of alternative splicing on miRNA binding sites in bladder cancer. PLoS One. 2018;13(1):e0190708. https://doi.org/10.1371/journal.pone.0190708.
Article
CAS
PubMed
PubMed Central
Google Scholar
Padgett RA. New connections between splicing and human disease. Trends Genet. 2012;28(4):147–54. https://doi.org/10.1016/j.tig.2012.01.001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Singh RK, Cooper TA. Pre-mRNA splicing in disease and therapeutics. Trends Mol Med. 2012;18(8):472–82. https://doi.org/10.1016/j.molmed.2012.06.006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Teraoka SN, Telatar M, Becker-Catania S, Liang T, Onengut S, Tolun A, et al. Splicing defects in the ataxia-telangiectasia gene, ATM: underlying mutations and consequences. Am J Hum Genet. 1999;64(6):1617–31. https://doi.org/10.1086/302418.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet. 2008;40(12):1413–5. https://doi.org/10.1038/ng.259.
Article
CAS
PubMed
Google Scholar
Yan H, Tian S, Slager SL, Sun Z, Ordog T. Genome-wide epigenetic studies in human disease: a primer on -Omic technologies. Am J Epidemiol. 2016;183(2):96–109. https://doi.org/10.1093/aje/kwv187.
Article
PubMed
Google Scholar
Esteller M, Corn PG, Baylin SB, Herman JG. A gene hypermethylation profile of human cancer. Cancer Res. 2001;61(8):3225–9.
CAS
PubMed
Google Scholar
Jugloff DG, Jung BP, Purushotham D, Logan R, Eubanks JH. Increased dendritic complexity and axonal length in cultured mouse cortical neurons overexpressing methyl-CpG-binding protein MeCP2. Neurobiol Dis. 2005;19(1–2):18–27. https://doi.org/10.1016/j.nbd.2004.11.002.
Article
CAS
PubMed
Google Scholar
Maunakea AK, Chepelev I, Cui K, Zhao K. Intragenic DNA methylation modulates alternative splicing by recruiting MeCP2 to promote exon recognition. Cell Res. 2013;23(11):1256–69. https://doi.org/10.1038/cr.2013.110.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shukla S, Kavak E, Gregory M, Imashimizu M, Shutinoski B, Kashlev M, et al. CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature. 2011;479(7371):74–9. https://doi.org/10.1038/nature10442.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim D, Shivakumar M, Han S, Sinclair MS, Lee Y-J, Zheng Y, et al. Population-dependent intron retention and DNA methylation in breast cancer. Mol Cancer Res. 2018;16(3):461–9. https://doi.org/10.1158/1541-7786.MCR-17-0227.
Article
CAS
PubMed
PubMed Central
Google Scholar
Candido S, Parasiliti Palumbo GA, Pennisi M, Russo G, Sgroi G, Di Salvatore V, et al. EpiMethEx: a tool for large-scale integrated analysis in methylation hotspots linked to genetic regulation. BMC Bioinformatics. 2019;19(Suppl 13):385. https://doi.org/10.1186/s12859-018-2397-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moore MJ. From birth to death: the complex lives of eukaryotic mRNAs. Science. 2005;309(5740):1514–8. https://doi.org/10.1126/science.1111443.
Article
CAS
PubMed
Google Scholar
Amuran GG, Eyuboglu IP, Tinay I, Akkiprik M. New insights in bladder cancer diagnosis: urinary miRNAs and proteins. Med Sci (Basel). 2018;6(4):113.
CAS
Google Scholar
Raja SA, Shah STA, Tariq A, Bibi N, Sughra K, Yousuf A, Khawaja A, Nawaz M, Mehmood A, Khan MJet al.: Caveolin-1 and dynamin-2 overexpression is associated with the progression of bladder cancer. Oncol Lett 2019, 18(1):219–226, DOI: https://doi.org/10.3892/ol.2019.10310.
Rajjayabun PH, Garg S, Durkan GC, Charlton R, Robinson MC, Mellon JK. Caveolin-1 expression is associated with high-grade bladder cancer. Urology. 2001;58(5):811–4. https://doi.org/10.1016/S0090-4295(01)01337-1.
Article
CAS
PubMed
Google Scholar
Wang S, Zhou H, Wu D, Ni H, Chen Z, Chen C, et al. MicroRNA let-7a regulates angiogenesis by targeting TGFBR3 mRNA. J Cell Mol Med. 2019;23(1):556–67. https://doi.org/10.1111/jcmm.13960.
Article
CAS
PubMed
Google Scholar
Harada H, Nagai H, Tsuneizumi M, Mikami I, Sugano S, Emi M. Identification of DMC1, a novel gene in the TOC region on 17q25.1 that shows loss of expression in multiple human cancers. J Hum Genet. 2001;46(2):90–5. https://doi.org/10.1007/s100380170115.
Article
CAS
PubMed
Google Scholar
Feng X, Wang Z, Fillmore R, Xi Y. MiR-200, a new star miRNA in human cancer. Cancer Lett. 2014;344(2):166–73. https://doi.org/10.1016/j.canlet.2013.11.004.
Article
CAS
PubMed
Google Scholar
Chang IW, Li C-F, Lin VC-H, He H-L, Liang P-I, Wu W-J, et al. Prognostic impact of Thrombospodin-2 (THBS2) overexpression on patients with urothelial carcinomas of upper urinary tracts and bladders. J Cancer. 2016;7(11):1541–9. https://doi.org/10.7150/jca.15696.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abdelaziz M, Watanabe Y, Kato M. PMEPA1/TMEPAI knockout impairs tumour growth and lung metastasis in MDA-MB-231 cells without changing monolayer culture cell growth. J Biochem. 2019;165(5):411–4. https://doi.org/10.1093/jb/mvz022.
Article
CAS
PubMed
Google Scholar
Kuo C-Y, Ann DK. When fats commit crimes: fatty acid metabolism, cancer stemness and therapeutic resistance. Cancer Commun (Lond). 2018;38(1):47. https://doi.org/10.1186/s40880-018-0317-9.
Article
Google Scholar
Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics. 2013;14(1):128. https://doi.org/10.1186/1471-2105-14-128.
Article
PubMed
PubMed Central
Google Scholar
Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;44(W1):W90–7. https://doi.org/10.1093/nar/gkw377.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Liu J, Huang BO, Xu YM, Li J, Huang LF, et al. Mechanism of alternative splicing and its regulation. Biomed Rep. 2015;3(2):152–8. https://doi.org/10.3892/br.2014.407.
Article
CAS
PubMed
Google Scholar
Witte T, Plass C, Gerhauser C. Pan-cancer patterns of DNA methylation. Genome Med. 2014;6(8):66. https://doi.org/10.1186/s13073-014-0066-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shi M, Tsui SK, Wu H, Wei Y. Pan-cancer analysis of differential DNA methylation patterns. BMC Med Genet. 2020;13(Suppl 10):154. https://doi.org/10.1186/s12920-020-00780-3.
Article
CAS
Google Scholar
Goldman MJ, Craft B, Hastie M, Repečka K, McDade F, Kamath A, Banerjee A, Luo Y, Rogers D, Brooks AN, Zhu J, Haussler D. Visualizing and interpreting cancer genomics data via the Xena platform. Nat Biotechnol. 2020;38(6):675–8. https://doi.org/10.1038/s41587-020-0546-8.
Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120(1):15–20. https://doi.org/10.1016/j.cell.2004.12.035.
Article
CAS
PubMed
Google Scholar
Betel D, Wilson M, Gabow A, Marks DS, Sander C. The microRNA.org resource: targets and expression. Nucleic Acids Res. 2008;36(Database issue):D149–53. https://doi.org/10.1093/nar/gkm995.
Article
CAS
PubMed
Google Scholar
Chou CH, Chang NW, Shrestha S, Hsu SD, Lin YL, Lee WH, et al. miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database. Nucleic Acids Res. 2016;44(D1):D239–47. https://doi.org/10.1093/nar/gkv1258.
Article
CAS
PubMed
Google Scholar