Castle SJ, Perring TM, Farrar CA, Kishaba A. Field and laboratory transmission of watermelon mosaic virus 2 and zucchini yellow mosaic virus by various aphid species. Phytopatol. 1992;82:235–40.
Article
Google Scholar
Desbiez C, Lecoq H. Zucchini yellow mosaic virus Plant Path. 1997;46:809–29. https://doi.org/10.1046/j.1365-3059.1997.d01-87.x.
Article
Google Scholar
Katis NI, Tsitsipis JA, Lykouressis DP, Papapanayotou A, Margaritopoulos JT, Kokinis GM, Perdikis DC, Manoussopoulos IN. Transmission of zucchini yellow mosaic virus by colonizing and non-colonizing aphids in Greece and new aphid species vectors of the virus. J Phytopathol. 2006;154:293–302.
Article
Google Scholar
Robinson RW, Weeden NF, Provvidenti R. Inheritance of resistance to zucchini yellow mosaic virus in the interspecific cross Cucurbita maxima x C. ecuadorensis. Cucurbit Gen Coop Rep. 1988;11:74–5.
Google Scholar
Leibman D, Wolf D, Saharan V, Zelcer A, Arazi T, Yoel S, Gaba V, Gal-On A. A high level of transgenic viral small RNA is associated with broad potyvirus resistance in cucurbits. Mol Plant-Microbe Interact. 2011;24:1220–38.
Article
CAS
Google Scholar
Pachner M, Paris HS, Lelley T. Genes for resistance to zucchini yellow mosaic in tropical pumpkin. J Hered. 2011;102:330–5. https://doi.org/10.1093/jhered/esr006.
Article
CAS
PubMed
Google Scholar
Paris HS, Cohen S, Burger Y, Yoseph R. Singlegene resistance to zucchini yellow mosaic virus in Cucurbita moschata. Euphytica. 1988;37:27–9.
Article
Google Scholar
Pachner M, Lelley T. Progress in cucurbit genetics and breeding research. Proc Cucurbitaceae. In: Lebeda A, Paris HS, editors. Different genes for resistance to zucchini yellow mosaic virus (ZYMV) in Cucurbita moschata. Olomouc: 8th EUCARPIA meeting on cucurbit genetics and breeding; 2004. p. 237–43.
Google Scholar
Nacar Ç, Fidan H, Ekbiç E, Aras V, Denli N, Keles D. In: Development of suitable sources of resistance to ZYMV in Cucurbita pepo. Cucurbitaceae. Antalya, Turkey: Proceedings of the 10th EUCARPIA Meeting on Genetics and Breeding of Cucurbitaceae; 2012. p. 633–7 15–18 October.
Google Scholar
Paris HS, Cohen S. Oligogenic inheritance for resistance to Zucchini yellow mosaic virus in Cucurbita pepo. Annals of Applied Biology. 2000;136:209–14. https://doi.org/10.1111/j.1744-7348.2000.tb00027.x.
Article
Google Scholar
Capuozzo C, Formisano G, Iovieno P, Andolfo G, Tomassoli L, Barbella MM, Pico B, Paris HS, Ercolano MR. Inheritance analysis and identification of SNP markers associated with ZYMV resistance in Cucurbita pepo. Mol Breeding. 2017;37:99. https://doi.org/10.1007/s11032-017-0698-5.
Article
CAS
Google Scholar
Pachner M, Paris HS, Winkler J, Lelley T. Phenotypic and marker-assisted pyramiding of genes for resistance to zucchini yellow mosaic virus in oilseed pumpkin (Cucurbita pepo). Plant Breed. 2015;134:121–8. https://doi.org/10.1111/pbr.12219.
Article
CAS
Google Scholar
Anagnostou K, Jahn M, Perl-Treves R. Inheritance and linkage analysis of resistance to zucchini yellow mosaic virus, watermelon mosaic virus, papaya ringspot virus and powdery mildew in melon. Euphytica. 2000;116:265–70. https://doi.org/10.1023/A:1004005716806.
Article
CAS
Google Scholar
Park Y, Katzir N, Brotman Y, King J, Bertrand F, Havey M. Comparative mapping of ZYMV resistances in cucumber (Cucumis sativus L.) and melon (Cucumis melo L.). Theor Appl Genet. 2004;109:707–12. https://doi.org/10.1007/s00122-004-1684-y.
Article
CAS
PubMed
Google Scholar
Iovieno P, Andolfo G, Schiavulli A, Catalano D, Ricciardi L, Frusciante L, Ercolano MR, Pavan S. Structure, evolution and functional inference on the Mildew Locus O (MLO) gene family in three cultivated Cucurbitaceae spp. BMC Genomics. 2015;16:1112. https://doi.org/10.1186/s12864-015-2325-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Montero-Pau J, Blanca J, Bombarely A, Ziarsolo P, Esteras C, Martí-Gómez C, Ferriol M, Gómez P, Jamilena M, Mueller L, Picó B, Cañizares J. De novo assembly of the zucchini genome reveals a whole-genome duplication associated with the origin of the Cucurbita genus. Plant Biotechnol J. 2018;16:1161–71. https://doi.org/10.1111/pbi.12860.
Article
CAS
PubMed
Google Scholar
Wyatt L, Strickler S, Mueller L, Mazourek M. An acorn squash (Cucurbita pepo ssp. ovifera) fruit and seed transcriptome as a resource for the study of fruit traits in Cucurbita. Hortic Res. 2015;2:14070. https://doi.org/10.1038/hortres.2014.70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xanthopoulou A, Psomopoulos F, Ganopoulos I, Manioudaki M, Tsaftaris A, Nianiou-Obeidat I, Panagiotis M. De novo transcriptome assembly of two contrasting pumpkin cultivars. Genomics Data. 2016;7:200–1. https://doi.org/10.1016/j.gdata.2016.01.006.
Article
PubMed
PubMed Central
Google Scholar
Andolfo G, Di Donato A, Darrudi R, Errico A, Aiese Cigliano R, Ercolano MR. Draft of Zucchini (Cucurbita pepo L.) Proteome: A Resource for Genetic and Genomic Studies. Front Genet. 2017;8:181.
Article
Google Scholar
Zhou D, Xin Z, Yi L, Zhenhai Z, Zhen S. agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res. 2010;38:64–70.
Article
Google Scholar
Inoue H, Li M, Schnell DJ. An essential role for chloroplast heat shock protein 90 (Hsp90C) in protein import into chloroplasts. Proc Natl Acad Sci U S A. 2013;110:3173–8. https://doi.org/10.1073/pnas.1219229110.
Article
PubMed
PubMed Central
Google Scholar
Rajniak J, Barco B, Clay N, Sattely E. A new cyanogenic metabolite in Arabidopsis required for inducible pathogen defence. Nat. 2015;525:376–9. https://doi.org/10.1038/nature14907.
Article
CAS
Google Scholar
Zellnig G, Pöckl MH, Möstl S, Zechmann B. Two- and three-dimensional characterization of Zucchini Yellow Mosaic Virus induced structural alterations in Cucurbita pepo L. plants. J Struct Biol. 2014;186:245–52.
Article
Google Scholar
Bengyella L, Waikhom SD, Allie F, Rey C. Virus tolerance and recovery from viral induced symptoms in plants are associated with transcriptome reprograming. Plant Mol Biol. 2015;89:243–52. https://doi.org/10.1007/s11103-015-0362-6.
Article
CAS
PubMed
Google Scholar
Hanley-Bowdoin L, Bejarano E, Robertson D, Mansoor S. Geminiviruses: masters at redirecting and reprogramming plant processes. Nat Rev Microbiol. 2013;11:777–88. https://doi.org/10.1038/nrmicro3117.
Article
CAS
PubMed
Google Scholar
Ghoshal B, Sanfaçon H. Symptom recovery in virus-infected plants: Revisiting the role of RNA silencing mechanisms. Virology. 2015;479–480:167–79. https://doi.org/10.1016/j.virol.2015.01.008.
Article
CAS
PubMed
Google Scholar
Nigam D, LaTourrette K, Souza Pedro FN, Garcia-Ruiz H. Genome-Wide Variation in Potyviruses. Front in Plant Sci. 2019;10:1439. https://doi.org/10.3389/fpls.2019.01439.
Article
Google Scholar
Wu CY, Nagy PD. Blocking tombusvirus replication through the antiviral functions of DDX17-like RH30 DEAD- box helicase. PLoS Pathog. 2019;15:128. https://doi.org/10.1371/journal.ppat.1007771.
Article
CAS
Google Scholar
Pandey S, Prasad A, Sharma N, Prasad M. Linking the plant stress responses with RNA helicases. Plant Sci. 2020;299:110607. https://doi.org/10.1016/j.plantsci.2020.110607.
Article
CAS
PubMed
Google Scholar
Kumar S, Karmakar R, Gupta I, Patel AK. Interaction of potyvirus helper component-proteinase (HcPro) with RuBisCO and nucleosome in viral infections of plants. Plant Physiol Biochem. 2020;151:313–22.
Article
CAS
Google Scholar
Nováková S, Flores-Ramírez G, Glasa M, Danchenko M, Fiala R, Skultety L. Partially resistant Cucurbita pepo showed late onset of the Zucchini yellow mosaic virus infection due to rapid activation of defense mechanisms as compared to susceptible cultivar. Front Plant Sci. 2015;6:263. https://doi.org/10.3389/fpls.2015.00263.
Article
PubMed
PubMed Central
Google Scholar
Oh SE, Yeung C, Babaei-Rad R, Zhao R. Cosuppression of the chloroplast localized molecular chaperone HSP90.5 impairs plant development and chloroplast biogenesis in Arabidopsis. BMC Res Notes. 2014;7:643. https://doi.org/10.1186/1756-0500-7-643.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hubert DA, Tornero P, Belkhadir Y, Krishna P, Takahashi A, Shirasu K, Dangl JL. Cytosolic HSP90 associates with and modulates the Arabidopsis RPM1 disease resistance protein. EMBO J. 2003;22:5679–89. https://doi.org/10.1093/emboj/cdg547.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Y, Burch-Smith T, Schiff M, Feng S, Dinesh-Kumar SP. Molecular chaperone Hsp90 associates with resistance protein N and its signalling proteins SGT1 and Rar1 to modulate an innate immune response in plants. J Biol Chem. 2004;279:2101–8. https://doi.org/10.1074/jbc.M310029200.
Article
CAS
PubMed
Google Scholar
Aoki K, Kragler F, Xoconostle-Cazares B, Lucas WJ. A subclass of plant heat shock cognate 70 chaperones carries a motif that facilitates trafficking through plasmodesmata. Proc Natl Acad Sci U S A. 2002;99:16342–7. https://doi.org/10.1073/pnas.252427999.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang XP, Glaser E. Interaction of plant mitochondrial and chloroplast signal peptides with the Hsp70 molecular chaperone. Trends Plant Sci. 2002;7:14–21.
Article
CAS
Google Scholar
Osuna-Cruz CM, Paytuvi-Gallart A, Di Donato A, Sundesha V, Andolfo G, Aiese Cigliano R, Sanseverino W, Ercolano MR. PRGdb 3.0: a comprehensive platform for prediction and analysis of plant disease resistance genes. Nuc Acids Res. 2018;46:1197–201. https://doi.org/10.1093/nar/gkx1119.
Article
CAS
Google Scholar
Niehl A, Wyrsch I, Boller T, Heinlein M. Double-stranded RNAs induce a pattern-triggered immune signaling pathway in plants. New Phytol. 2016;211:1008–19. https://doi.org/10.1111/nph.13944.
Article
CAS
PubMed
Google Scholar
Andolfo G, Jupe F, Witek K, Etherington G, Ercolano MR, Jones JDG. Defining the full tomato NB-LRR resistance gene repertoire using genomic and cDNA RenSeq. BMC Plant Biol. 2014;14:120. https://doi.org/10.1186/1471-2229-14-120.
Article
CAS
PubMed
PubMed Central
Google Scholar
Andolfo G, Di Donato A, Chiaiese P, De Natale A, Pollio A, Jones JDG, Frusciante L, Ercolano MR. Alien Domains Shaped the Modular Structure of Plant NLR Proteins. Genome Biol Evol. 2019;11:3466–77. https://doi.org/10.1093/gbe/evz248.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu R, Zhang S, Lu L, Cao H, Zheng C. A genome-wide analysis of the RNA helicase gene family in Solanum lycopersicum. Gene. 2013;513(1):128–40. https://doi.org/10.1016/j.gene.2012.10.053.
Article
CAS
PubMed
Google Scholar
Ishibashi K, Kezuka Y, Kobayashi C, Kato M, Inoue T, Nonaka T, Ishikawa M, Matsumura H, Katoh E. Structural basis for the recognition-evasion arms race between Tomato mosaic virus and the resistance gene Tm-1. Proc Natl Acad Sci. 2014;111:E3486–95.
CAS
PubMed
PubMed Central
Google Scholar
Gao Q, Xu S, Zhu X, Wang L, Yang Z, Zhao X. Genome-wide identification and characterization of the RIO atypical kinase family in plants. Genes Genom. 2018;40:669–83. https://doi.org/10.1007/s13258-018-0658-4.
Article
CAS
Google Scholar
Yoshioka K, Matsushita Y, Kasahara M, Konagaya K, Nyunoya H. Interaction of tomato mosaic virus movement protein with tobacco RIO kinase. Mol Cells. 2004;17:223–9.
CAS
PubMed
Google Scholar
Uchiyama A, Shimada-Beltran H, Levy A, Zheng JY, Javia PA, Lazarowitz SG. The Arabidopsis synaptotagmin SYTA regulates the cell-to-cell movement of diverse plant viruses. Front in Plant Sci. 2014;5:584.
Article
Google Scholar
Lewis DJ, Lazarowitz SG. Arabidopsis synaptotagmin SYTA regulates endocytosis and virus movement protein cell-to-cell transport. Proc Natl Acad Sci. 2010;107:2491–6. https://doi.org/10.1073/pnas.0909080107.
Article
PubMed
PubMed Central
Google Scholar
Li W, Zhao Y, Liu C, Yao G, Wu S, Hou C, Zhang M, Wang D. Callose deposition at plasmodesmata is a critical factor in restricting the cell-to-cell movement of Soybean mosaic virus. Plant Cell Rep. 2012;31:905–16. https://doi.org/10.1007/s00299-011-1211-y.
Article
CAS
PubMed
Google Scholar
Bo X, Yunfei D, Masahiro M, Kanaoka KO, Zonglie H. Expression of Arabidopsis callose synthase 5 results in callose accumulation and cell wall permeability alteration. Plant Sci. 2012;183:1–8. https://doi.org/10.1016/j.plantsci.2011.10.015.
Article
CAS
Google Scholar
Liu F, Jiang H, Ye S, Chen W, Liang W, Xu Y, Sun B, Sun J, Wang Q, Cohen JD, Li C. The Arabidopsis P450 protein CYP82C2 modulates jasmonate-induced root growth inhibition, defense gene expression and indole glucosinolate biosynthesis. Cell Res. 2010;20:539–52. https://doi.org/10.1038/cr.2010.36.
Article
CAS
PubMed
Google Scholar
Paris HS, Brown R. The Genes of Pumpkin and Squash. HortSci. 2005;40:1620–30.
Article
CAS
Google Scholar
Vara C, Paytuví-Gallart A, Cuartero Y, Le Dily F, Garcia F, Salvà-Castro J, Gómez-H L, Julià E, Moutinho C, Aiese Cigliano R, et al. Three-dimensional genomic structure and cohesin occupancy correlate with transcriptional activity during spermatogenesis. Cell Rep. 2019;28:352–67.
Article
CAS
Google Scholar
Tian T, Yue L, Hengyu Y, Qi Y, Xin Y, Zhou D, Wenying X, Zhen S. agriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res. 2017;45:W122. https://doi.org/10.1093/nar/gkx382.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. 1000 Genome Project Data Processing Subgroup, The Sequence Alignment/Map format and SAMtools. Bioinforma. 2009;25:2078–9. https://doi.org/10.1093/bioinformatics/btp352.
Article
CAS
Google Scholar
Zhang H, Meltzer P, Davis S. RCircos: an R package for Circos 2D track plots. BMC Bioinformatics. 2013;14:244. https://doi.org/10.1186/1471-2105-14-244.
Article
PubMed
PubMed Central
Google Scholar
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acid Res. 2004;32:1792–7.
Article
CAS
Google Scholar