Venske E, Dos Santos RS, Busanello C, Gustafson P, de Oliveira AC. Bread wheat: a role model for plant domestication and breeding. Hereditas. 2019;156(1):1–11.
Article
Google Scholar
Kohajdová Z, Karovicova J. Nutritional value and baking application of spelt wheat. Acta Sci Pol Technol Aliment. 2008;7(3):5–14.
Google Scholar
Ruibal-Mendieta NL, Delacroix DL, Mignolet E, Pycke J-M, Marques C, Rozenberg R, et al. Spelt (Triticum aestivum ssp. spelta) as a source of breadmaking flours and bran naturally enriched in oleic acid and minerals but not phytic acid. J Agric Food Chem. 2005;53(7):2751–9.
Article
CAS
PubMed
Google Scholar
Dvorak J, Deal KR, Luo M-C, You FM, von Borstel K, Dehghani H. The Origin of Spelt and Free-Threshing Hexaploid Wheat. J Hered. 2012;103(3):426–41.
Article
CAS
PubMed
Google Scholar
Gegas VC, Nazari A, Griffiths S, Simmonds J, Fish L, Orford S, et al. A genetic framework for grain size and shape variation in wheat. Plant Cell. 2010;22(4):1046–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Breseghello F, Sorrells ME. QTL analysis of kernel size and shape in two hexaploid wheat mapping populations. Field Crops Res. 2007;101(2):172–9.
Article
Google Scholar
Yang J, Zhou Y, Wu Q, Chen Y, Zhang P, Zhang YE, et al. Molecular characterization of a novel TaGL3–5A allele and its association with grain length in wheat (Triticum aestivum L.). Theor Appl Genet. 2019;132(6):1799–814.
Article
CAS
PubMed
Google Scholar
Zhang Y, Liu J, Xia X, He Z. TaGS-D1, an ortholog of rice OsGS3, is associated with grain weight and grain length in common wheat. Mol Breed. 2014;34(3):1097–107.
Article
CAS
Google Scholar
Doerge RW. Mapping and analysis of quantitative trait loci in experimental populations. Nat Rev Genet. 2002;3(1):43–52.
Article
CAS
PubMed
Google Scholar
Campbell KG, Bergman CJ, Gualberto DG, Anderson JA, Giroux MJ, Hareland G, et al. Quantitative trait loci associated with kernel traits in a soft× hard wheat cross. Crop Sci. 1999;39(4):1184–95.
Article
CAS
Google Scholar
Cui F, Zhao C, Ding A, Li J, Wang L, Li X, et al. Construction of an integrative linkage map and QTL mapping of grain yield-related traits using three related wheat RIL populations. Theor Appl Genet. 2014;127(3):659–75.
Article
PubMed
Google Scholar
Huang Y, Kong Z, Wu X, Cheng R, Yu D, Ma Z. Characterization of three wheat grain weight QTLs that differentially affect kernel dimensions. Theor Appl Genet. 2015;128(12):2437–45.
Article
CAS
PubMed
Google Scholar
Su Z, Jin S, Lu Y, Zhang G, Chao S, Bai G. Single nucleotide polymorphism tightly linked to a major QTL on chromosome 7A for both kernel length and kernel weight in wheat. Mol Breed. 2016;36(2):15.
Article
CAS
Google Scholar
Brinton J, Simmonds J, Minter F, Leverington-Waite M, Snape J, Uauy C. Increased pericarp cell length underlies a major quantitative trait locus for grain weight in hexaploid wheat. New Phytol. 2017;215(3):1026–38.
Article
CAS
PubMed
Google Scholar
Ma J, Zhang H, Li S, Zou Y, Li T, Liu J, et al. Identification of quantitative trait loci for kernel traits in a wheat cultivar Chuannong16. BMC Genet. 2019;20(1):77.
Article
PubMed
PubMed Central
CAS
Google Scholar
Qu X, Liu J, Xie X, Xu Q, Tang H, Mu Y, et al. Genetic mapping and validation of loci for kernel-related traits in wheat (Triticum aestivum L.). Front Plant Sci. 2021;12:667493.
Article
PubMed
PubMed Central
Google Scholar
Zhou J, Li C, You J, Tang H, Mu Y, Jiang Q, et al. Genetic identification and characterization of chromosomal regions for kernel length and width increase from tetraploid wheat. BMC Genom. 2021;22(1):706.
Article
CAS
Google Scholar
Michelmore RW, Paran I, Kesseli R. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. P Natl A Sci. 1991;88(21):9828–32.
Article
CAS
Google Scholar
Wu J, Wang Q, Liu S, Huang S, Mu J, Zeng Q, et al. Saturation mapping of a major effect QTL for stripe rust resistance on wheat chromosome 2B in cultivar Napo 63 using SNP genotyping arrays. Front Plant Sci. 2017;8:653.
Article
PubMed
PubMed Central
Google Scholar
Liu H, Su W, Li X, Chao K, Wang M, Yue W, et al. Rapid mapping of a stripe rust resistance gene YrZl31 using bulked segregant a combined with high-throughput single-nucleotide polymorphism genotyping arrays. Crop Prot. 2020;134: 105174.
Article
CAS
Google Scholar
Sun C, Dong Z, Zhao L, Ren Y, Zhang N, Chen F. The Wheat 660K SNP array demonstrates great potential for marker-assisted selection in polyploid wheat. Plant Biotechnol J. 2020;18(7):1635–1635.
Google Scholar
Li H, Wang Q, Xu L, Mu J, Wu J, Zeng Q, et al. Rapid identification of a major effect QTL conferring adult plant resistance to stripe rust in wheat cultivar Yaco “S.” Euphytica. 2017;213(6):124.
Article
CAS
Google Scholar
Pu Z, Hou Y, Zheng Y. SSR and storage protein difference analysis of new wheat varieties CN16 and 99E18. J Wheat Crops. 2004;3:25–8 ((in Chinese)).
Google Scholar
Su Z, Bernardo A, Tian B, Chen H, Wang S, Ma H, et al. A deletion mutation in TaHRC confers Fhb1 resistance to Fusarium head blight in wheat. Nat Genet. 2019;51(7):1099–105.
Article
CAS
PubMed
Google Scholar
Simmonds J, Scott P, Brinton J, Mestre TC, Bush M, Del Blanco A, et al. A splice acceptor site mutation in TaGW2-A1 increases thousand grain weight in tetraploid and hexaploid wheat through wider and longer grains. Theor Appl Genet. 2016;129(6):1099–112.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stein N, Herren G, Keller B. A new DNA extraction method for high-throughput marker analysis in a large-genome species such as Triticum aestivum. Plant Breed. 2001;120(4):354–6.
Article
CAS
Google Scholar
Ertiro BT, Ogugo V, Worku M, Das B, Olsen M, Labuschagne M, et al. Comparison of Kompetitive Allele Specific PCR (KASP) and genotyping by Specific (GBS) for quality control analysis in maize. BMC Genom. 2015;16:1–12.
Article
CAS
Google Scholar
Zhu T, Wang L, Rimbert H, Rodriguez JC, Deal KR, De Oliveira R, et al. Optical maps refine the bread wheat Triticum aestivum cv. Chinese Spring genome assembly Plant J. 2021;107(1):303–14.
CAS
PubMed
Google Scholar
Goddard M. A mixed model for analyses of data on multiple genetic markers. Theor Appl Genet. 1992;83(6–7):878–86.
Article
CAS
PubMed
Google Scholar
Li H, Ribaut J-M, Li Z, Wang J. Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations. Theor Appl Genet. 2008;116(2):243–60.
Article
PubMed
Google Scholar
Zhu T, Wang L, Rodriguez JC, Deal KR, Avni R, Distelfeld A. Improved Genome Sequence of Wild Emmer Wheat Zavitan with the Aid of Optical Maps. G3 (Bethesda). 2019;9(3):619–24.
Article
CAS
Google Scholar
Ma S, Wang M, Wu J, Guo W, Chen Y, Li G, et al. WheatOmics: a platform combining multiple omics data to accelerate functional genomics studies in wheat. Mol Plant. 2021;S1674–2052(1621):00430–5.
Google Scholar
Manickavelu A, Kawaura K, Imamura H, Mori M, Ogihara Y. Molecular mapping of quantitative trait loci for domestication traits and beta-glucan content in a wheat recombinant inbred line population. Euphytica. 2011;177(2):179–90.
Article
CAS
Google Scholar
Mohler V, Albrecht T, Castell A, Diethelm M, Schweizer G, Hartl L. Considering causal genes in the genetic dissection of kernel traits in common wheat. J Appl Genet. 2016;57(4):467–76.
Article
CAS
PubMed
Google Scholar
Sun X, Wu K, Zhao Y, Kong F, Han G, Jiang H-M, et al. QTL analysis of kernel shape and weight using recombinant inbred lines in wheat. Euphytica. 2009;165(3):615–24.
Article
CAS
Google Scholar
Kumari S, Jaiswal V, Mishra VK, Paliwal R, Balyan HS, Gupta PK. QTL mapping for some grain traits in bread wheat (Triticum aestivum L.). Physiol Mol Biol Plants. 2018;24(5):909–20.
Article
PubMed
PubMed Central
Google Scholar
Chen W, Sun D, Yan X, Li R, Wang S, Shi Y, et al. QTL analysis of wheat kernel traits, and genetic effects of qKW-6A on kernel width. Euphytica. 2019;215(2):11.
Article
CAS
Google Scholar
Ren T, Fan T, Chen S, Li C, Chen Y, Ou X, et al. Utilization of a Wheat55K SNP array-derived high-density genetic map for high-resolution mapping of quantitative trait loci for important kernel-related traits in common wheat. Theor Appl Genet. 2021;134(3):807–21.
Article
CAS
PubMed
Google Scholar
Williams K, Sorrells ME. Three-dimensional seed size and shape QTL in hexaploid wheat (Triticum aestivum L.) populations. Crop Sci. 2014;54(1):98–110.
Article
Google Scholar
Cao P, Liang X, Zhao H, Feng B, Xu E, Wang L, et al. Identification of the quantitative trait loci controlling spike-related traits in hexaploid wheat (Triticum aestivum L.). Planta. 2019;250(6):1967–81.
Article
CAS
PubMed
Google Scholar
Suchowilska E, Wiwart M, Krska R, Kandler W. Do Triticum aestivum L. and Triticum spelta L. Hybrids Constitute a Promising Source Material for Quality Breeding of New Wheat Varieties? Agronomy 2020;10(1):43.
Gosti F, Beaudoin N, Serizet C, Webb AA, Vartanian N, Giraudat J. ABI1 protein phosphatase 2C is a negative regulator of abscisic acid signaling. Plant Cell. 1999;11(10):1897–909.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dräger B. Tropinone reductases, enzymes at the branch point of tropane alkaloid metabolism. Phytochemistry. 2006;67(4):327–37.
Article
PubMed
CAS
Google Scholar
Manadas BJ, Vougas K, Fountoulakis M, Duarte CB. Sample sonication after trichloroacetic acid precipitation increases protein recovery from cultured hippocampal neurons, and improves resolution and reproducibility in two-dimensional gel electrophoresis. Electrophoresis. 2006;27(9):1825–31.
Article
CAS
PubMed
Google Scholar
Cui F, Ding A, Li J, Zhao C, Li X, Feng D, et al. Wheat kernel dimensions: how do they contribute to kernel weight at an individual QTL level? J Genet. 2011;90(3):409–25.
Article
PubMed
Google Scholar
Zhang G, Wang Y, Guo Y, Zhao Y, Kong F, Li S. Characterization and mapping of QTLs on chromosome 2D for grain size and yield traits using a mutant line induced by EMS in wheat. Crop J. 2015;3(2):135–44.
Article
CAS
Google Scholar
Yan L, Liang F, Xu H, Zhang X, Zhai H, Sun Q, et al. Identification of QTL for grain size and shape on the D genome of natural and synthetic allohexaploid wheats with near-identical AABB genomes. Front Plant Sci. 2017;8:1705.
Article
PubMed
PubMed Central
Google Scholar
Xie Q, Mayes S, Sparkes DL. Carpel size, grain filling, and morphology determine individual grain weight in wheat. J Exp Bot. 2015;66(21):6715–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shen X, Zhou M, Lu W, Ohm H. Detection of Fusarium head blight resistance QTL in a wheat population using bulked segregant analysis. Theor Appl Genet. 2003;106(6):1041–7.
Article
CAS
PubMed
Google Scholar
Shi X, Wu P, Hu J, Qiu D, Qu Y, Li Y, et al. Molecular characterization of adult plant resistance loci against powdery mildew in winter wheat cultivar Liangxing 99 using BSR-Seq technology. Plant Dis. 2021.
Pickrell JK, Marioni JC, Pai AA, Degner JF, Engelhardt BE, Nkadori E, et al. Understanding mechanisms underlying human gene expression variation with RNA sequencing. Nature. 2010;464(7289):768–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rowland O, Ludwig AA, Merrick CJ, Baillieul F, Tracy FE, Durrant WE, et al. Functional analysis of Avr9/Cf-9 rapidly elicited genes identifies a protein kinase, ACIK1, that is essential for full Cf-9-dependent disease resistance in tomato. Plant Cell. 2005;17(1):295–310.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang N, Xie Y, Li Y, Wu S, Li S, Guo Y, et al. High-resolution mapping of the novel early leaf senescence gene Els2 in common wheat. Plants. 2020;9(6):698.
Article
CAS
PubMed Central
Google Scholar
Zhou C, Xiong H, Li Y, Guo H, Xie Y, Zhao L, et al. Genetic analysis and QTL mapping of a novel reduced height gene in common height (Triticum aestivum L.). J Integr Agr. 2020;19(7):1721–30.
Article
CAS
Google Scholar