Samonte SOP, Wilson LT, McClung AM. Path analyses of yield and yield-related traits of fifteen diverse rice genotypes. Crop Sci. 1998;38(5):1130–6.
Article
Google Scholar
Jiao Y, Wang Y, Xue D, Wang J, Yan M, Liu G, et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet. 2010;42(6):541–4.
Article
CAS
PubMed
Google Scholar
Li X, Qian Q, Fu Z, Wang Y, Xiong G, Zeng D, et al. Control of tillering in rice. Nature [Internet]. 2003;422(6932):618–21. Available from: https://doi.org/10.1038/nature01518
Minakuchi K, Kameoka H, Yasuno N, Umehara M, Luo L, Kobayashi K, et al. FINE CULM1 (FC1) works downstream of strigolactones to inhibit the outgrowth of axillary buds in rice. Plant Cell Physiol. 2010;51(7):1127–35.
Article
CAS
PubMed
Google Scholar
Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, et al. Plant science: Cytokinin oxidase regulates rice grain production. Science (1979). 2005;309(5735):741–5.
CAS
Google Scholar
Huang X, Qian Q, Liu Z, Sun H, He S, Luo D, et al. Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet. 2009;41(4):494–7.
Article
CAS
PubMed
Google Scholar
Ikeda K, Ito M, Nagasawa N, Kyozuka J, Nagato Y. Rice ABERRANT PANICLE ORGANIZATION 1, encoding an F-box protein, regulates meristem fate. Plant J. 2007;51(6):1030–40.
Article
CAS
PubMed
Google Scholar
Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, et al. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet. 2006;112(6):1164–71.
Article
CAS
PubMed
Google Scholar
Miura K, Ikeda M, Matsubara A, Song XJ, Ito M, Asano K, et al. OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat Genet. 2010;42(6):545–9.
Article
CAS
PubMed
Google Scholar
Kim SR, Ramos J, Ashikari M, Virk PS, Torres EA, Nissila E, Hechanova SL, Mauleon R, Jena KK. Development and validation of allele-specific SNP/indel markers for eight yield-enhancing genes using whole-genome sequencing strategy to increase yield potential of rice, Oryza sativa L. Rice. 2016;9(1):1–17.
Kim SR, Ramos JM, Hizon RJ, Ashikari M, Virk PS, Torres EA, Nissila E, Jena KK. Introgression of a functional epigenetic OsSPL14WFP allele into elite indica rice genomes greatly improved panicle traits and grain yield. Scientific reports. 2018;8(1):1–12.
Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, et al. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet. 2008;40(6):761–7.
Article
CAS
PubMed
Google Scholar
Wei X, Xu J, Guo H, Jiang L, Chen S, Yu C, et al. DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously. Plant Physiol. 2010;153(4):1747–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yan W, Liu H, Zhou X, Li Q, Zhang J, Lu L, et al. Natural variation in Ghd7.1 plays an important role in grain yield and adaptation in rice. Cell Res. 2013;23:969–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yan WH, Wang P, Chen HX, Zhou HJ, Li QP, Wang CR, et al. A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. Mol Plant. 2011;4(2):319–30.
Article
CAS
PubMed
Google Scholar
Zhang ZH, Wang K, Guo L, Zhu YJ, Fan YY, Cheng SH, Zhuang JY. Pleiotropism of the photoperiod-insensitive allele of Hd1 on heading date, plant height and yield traits in rice. PloS one. 2012;7(12):e52538.
Chen JY, Zhang HW, Zhang HL, Ying JZ, Ma LY, Zhuang JY. Natural variation at qHd1 affects heading date acceleration at high temperatures with pleiotropism for yield traits in rice. BMC plant biology. 2018;18(1):1–11.
Chen JY, Guo L, Ma H, Chen YY, Zhang HW, Ying JZ, et al. Fine mapping of qHd1, a minor heading date QTL with pleiotropism for yield traits in rice (Oryza sativa L.). Theor Appl Genet. 2014;127(11):2515–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu YJ, Fan YY, Wang K, Huang DR, Liu WZ, Ying JZ, Zhuang JY. Rice Flowering Locus T 1 plays an important role in heading date influencing yield traits in rice. Scientific reports. 2017;7(1):1–10.
Endo-Higashi N, Izawa T. Flowering time genes heading date 1 and early heading date 1 together control panicle development in rice. Plant Cell Physiol. 2011;52(6):1083–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang ZH, Zhu YJ, Wang SL, Fan YY, Zhuang JY. Importance of the interaction between heading date genes Hd1 and Ghd7 for controlling yield traits in rice. International journal of molecular sciences. 2019;20(3):516.
Wilson L, Wu G, Samonte O, McClung A, Park W, Pinson S, Stansel JW. Identifying optimal phenotypic trait sets using physiologically‐based modeling. In: Proceedings of the 27th Rice Technical Working Group, Texas Agricultural Experiment Station, College Station, Texas. 1998;70.
Wilson LT, Wu G, Pinson S, McClung A. Rice Physiological Modeling. Texas Rice Special Section, Highlighting Research. Texas A&M University System Agricultural Research and Extension Center, Beaumont, Texas. 2001;13. Available online at https://beaumont.tamu.edu/eLibrary/Newsletter/2001_Highlights_in_Research.pdf.
Samonte SOPB, Wilson LT, Tabien RE. Maximum node production rate and main culm node number contributions to yield and yield-related traits in rice. Field Crop Res. 2006;96(2–3):313–9.
Article
Google Scholar
Eizenga GC, Edwards JD, Yeater KM, McCouch SR, McClung AM. Transgressive variation for yield components measured throughout the growth cycle of jefferson rice (Oryza sativa) × O. rufipogon introgression lines. Crop Science. Crop Science. 2016;56(5):2336–47.
Article
Google Scholar
Rebolledo MC, Dingkuhn M, Péré P, Mcnally KL, Luquet D. Developmental Dynamics and Early Growth Vigour in Rice. I. Relationship Between Development Rate (1/Phyllochron) and Growth. Journal of Agronomy and Crop Science. 2012;198(5):374–84.
Article
Google Scholar
Nemoto K, Morita S, Baba T. Shoot and Root Development in Rice Related to the Phyllochron. Crop Sci. 1995;35(1):24–9.
Article
Google Scholar
Itoh Y, Sano Y. Phyllochron dynamics under controlled environments in rice (Oryza sativa L.). Euphytica. 2006;150(1–2):87–95.
Article
CAS
Google Scholar
Lipka AE, Kandianis CB, Hudson ME, Yu J, Drnevich J, Bradbury PJ, et al. From association to prediction: Statistical methods for the dissection and selection of complex traits in plants. Curr Opin Plant Biol. 2015;24:110–8.
Article
PubMed
Google Scholar
McCouch SR, Wright MH, Tung CW, Maron LG, McNally KL, Fitzgerald M, et al. Open access resources for genome-wide association mapping in rice. Nat Commun. 2016;4:7.
Google Scholar
Mather KA, Caicedo AL, Polato NR, Olsen KM, McCouch S, Purugganan MD. The extent of linkage disequilibrium in rice (Oryza sativa L.). Genetics. 2007;177(4):2223–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
McNally KL, Childs KL, Bohnert R, Davidson RM, Zhao K, Ulat VJ, et al. Genomewide SNP variation reveals relationships among landraces and modern varieties of rice. Proceedings of the National Academy of Sciences [Internet]. 2009 Jul 28;106(30):12273. Available from: http://www.pnas.org/content/106/30/12273.abstract
Huang X, Zhao Y, Wei X, Li C, Wang A, Zhao Q, et al. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat Genet. 2012;44(1):32–9.
Article
CAS
Google Scholar
Courtois B, Audebert A, Dardou A, Roques S, Ghneim-Herrera T, Droc G, Frouin J, Rouan L, Gozé E, Kilian A, Ahmadi N. Genome-wide association mapping of root traits in a japonica rice panel. PloS one. 2013;8(11):e78037.
Inoue H, Takahashi M, Kobayashi T, Suzuki M, Nakanishi H, Mori S, et al. Identification and localisation of the rice nicotianamine aminotransferase gene OsNAAT1 expression suggests the site of phytosiderophore synthesis in rice. Plant Mol Biol. 2008;66(1–2):193–203.
Article
CAS
PubMed
Google Scholar
Buchner P, Takahashi H, Hawkesford MJ. Plant sulphate transporters: co-ordination of uptake, intracellular and long-distance transport. Journal of experimental botany. 2004;55(404):1765–73.
Yamaji N, Takemoto Y, Miyaji T, Mitani-Ueno N, Yoshida KT, Ma JF. Reducing phosphorus accumulation in rice grains with an impaired transporter in the node. Nature. 2017;541(7635):92–5.
Article
CAS
PubMed
Google Scholar
Kawahara Y, de la Bastide M, Hamilton JP, Kanamori H, Mccombie WR, Ouyang S, et al. Improvement of the oryza sativa nipponbare reference genome using next generation sequence and optical map data. Rice. 2013;6(1):3–10.
Article
Google Scholar
Rebolledo MC, Dingkuhn M, Courtois B, Gibon Y, Clément-Vidal A, Cruz DF, et al. Phenotypic and genetic dissection of component traits for early vigour in rice using plant growth modelling, sugar content analyses and association mapping. J Exp Bot. 2015;66(18):5555–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Khing EE, Kyaw Win K, Min D, Win S. Effects of Different Nitrogen Fertilizer Levels and Spacing on Phyllochron, Yield and Yield Components of Rice (Oryza sativa L.) under System of Rice Intensification (SRI). J Agric Res. 2019;6:70–9.
Martínez-Eixarch M, Zhu DF, Catalá-Forner M del M, Pla-Mayor E, Tomás-Navarro N. Water, Nitrogen and Plant Density Affect the Response of Leaf Appearance of Direct Seeded Rice to Thermal Time. Rice Science. 2013;20(1):52–60.
Article
Google Scholar
Nozoye T, Inoue H, Takahashi M, Ishimaru Y, Nakanishi H, Mori S, et al. The expression of iron homeostasis-related genes during rice germination. Plant Mol Biol. 2007;64(1–2):35–47.
Article
CAS
PubMed
Google Scholar
Kotla A, Agarwal S, Yadavalli VR, Vinukonda VP, Chakravarthi Dhavala VN, Neelamraju S. Quantitative trait loci and candidate genes for yield and related traits in Madhukar x Swarna RIL population of rice. J Crop Sci Biotechnol. 2013;16(1):35–44.
Article
Google Scholar
Faraday CD, Spanswick RM. Evidence for a membrane skeleton in higher plants: A spectrin‐like polypeptide co‐isolates with rice root plasma membranes. FEBS letters. 1993;318(3):313–6.
de Ruijter NCA, Ketelaar T, Blumenthal SSD, Emons AMC, Schel JHN. Spectrin-like proteins in plant nuclei. Cell Biol Int. 2000;24(7):427–38.
Article
PubMed
CAS
Google Scholar
Pérez-Munive C, de la Espina SMD. Nuclear spectrin-like proteins are structural actin-binding proteins in plants. Biol Cell. 2011;103(3):145–57.
Article
PubMed
Google Scholar
Fang J, Yuan S, Li C, Jiang D, Zhao L, Peng L, et al. Reduction of ATPase activity in the rice kinesin protein Stemless Dwarf 1 inhibits cell division and organ development. Plant J. 2018;96(3):620–34.
Article
CAS
PubMed
Google Scholar
Kitagawa K, Kurinami S, Oki K, Abe Y, Ando T, Kono I, et al. A novel kinesin 13 protein regulating rice seed length. Plant Cell Physiol. 2010;51(8):1315–29.
Article
CAS
PubMed
Google Scholar
Li J, Jiang J, Qian Q, Xu Y, Zhang C, Xiao J, et al. Mutation of rice BC12/GDD1, which encodes a kinesin-like protein that binds to a GA biosynthesis gene promoter, leads to dwarfism with impaired cell elongation. Plant Cell. 2011;23(2):628–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ran Q, Akhter D, Chengcong Y, Nath UK, Eshag J, Xiaoli J, et al. SRG1, Encoding a Kinesin-4 Protein, Is an Important Factor for Determining Grain Shape in Rice. Rice Sci. 2018;25(6):297–307.
Article
Google Scholar
Wu T, Shen Y, Zheng M, Yang C, Chen Y, Feng Z, et al. Gene SGL, encoding a kinesin-like protein with transactivation activity, is involved in grain length and plant height in rice. Plant Cell Rep. 2014;33(2):235–44.
Article
CAS
PubMed
Google Scholar
Zhang M, Zhang B, Qian Q, Yu Y, Li R, Zhang J, et al. Brittle Culm 12, a dual-targeting kinesin-4 protein, controls cell-cycle progression and wall properties in rice. Plant J. 2010;63(2):312–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou S, Wang Y, Li W, Zhao Z, Ren Y, Wang Y, et al. Pollen semi-sterility1 encodes a kinesin-1-like protein important for male meiosis, anther dehiscence, and fertility in rice. Plant Cell. 2011;23(1):111–29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gil P, Green PJ. Regulatory activity exerted by the SAUR-AC1 promoter region in transgenic plants, vol. 34. Plant Molecular Biology: Kluwer Academic Publishers; 1997.
Google Scholar
Lehti-Shiu MD, Shiu SH. Diversity, classification and function of the plant protein kinase superfamily. Philosophical Transactions of the Royal Society B: Biological Sciences. 2012;367(1602):2619–39.
Article
CAS
Google Scholar
Matsubara K, Kono I, Hori K, Nonoue Y, Ono N, Shomura A, et al. Novel QTLs for photoperiodic flowering revealed by using reciprocal backcross inbred lines from crosses between japonica rice cultivars. Theor Appl Genet. 2008;117(6):935–45.
Article
CAS
PubMed
Google Scholar
Yu SB, Li JX, Xu CG, Tan YF, Li XH, Zhang Q. Identification of quantitative trait loci and epistatic interactions for plant height and heading date in rice. Theor Appl Genet. 2002;104(4):619–25.
Article
CAS
PubMed
Google Scholar
Heuer S, Hansen S, rg Bantin J, Brettschneider R, Kranz E, Lö rz H, et al. The Maize MADS Box Gene ZmMADS3 Affects Node Number and Spikelet Development and Is Co-Expressed with ZmMADS1 during Flower Development, in Egg Cells, and Early Embryogenesis 1 [Internet]. Vol. 127, Plant Physiology. 2001. Available from: www.plantphysiol.org
Miyamoto N, Goto Y, Matsui M, Ukai Y, Morita M, Nemoto K. Quantitative trait loci for phyllochron and tillering in rice. Theor Appl Genet. 2004;109(4):700–6.
Article
CAS
PubMed
Google Scholar
Morita M, Tang DQ, Miyamoto N, Goto Y, Ukai Y, Nemoto K. Quantitative trait loci for rice phyllochron in lemont x IR36 cross. Plant Production Science. 2005;8(2):199–202.
Article
CAS
Google Scholar
R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2021.
Google Scholar
Aravind J, Mukesh Sankar S, Wankhede DP, Kaur V. Augmented RCBD: Analysis of augmented randomised complete block designs. R package version 0.1. 2020;2.
Lenth R v. Response-Surface Methods in R, Using rsm [Internet]. Vol. 32, JSS Journal of Statistical Software. 2009. Available from: http://www.jstatsoft.org/
Browning SR, Browning BL. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am J Hum Genet. 2007;81(5):1084–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics. 2007;23(19):2633–5.
Article
CAS
PubMed
Google Scholar
Tukey JW. Exploratory Data Analysis. Reading: Addison-Wesley; 1977.
VanRaden PM. Efficient methods to compute genomic predictions. J Dairy Sci. 2008;91(11):4414–23.
Article
CAS
PubMed
Google Scholar
Lipka AE, Tian F, Wang Q, Peiffer J, Li M, Bradbury PJ, et al. GAPIT: Genome association and prediction integrated tool. Bioinformatics. 2012;28(18):2397–9.
Article
CAS
PubMed
Google Scholar
Wang J, Zhang Z. GAPIT Version 3: Boosting Power and Accuracy for Genomic Association and Prediction. Genomics, Proteomics & Bioinformatics. 2021;19(4):629–40.
Segura V, Vilhjálmsson BJ, Platt A, Korte A, Seren Ü, Long Q, et al. An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations. Nat Genet. 2012;44(7):825–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gao X, Becker LC, Becker DM, Starmer JD, Province MA. Avoiding the high bonferroni penalty in genome-wide association studies. Genet Epidemiol. 2010;34(1):100–5.
PubMed
PubMed Central
Google Scholar
Johnson RC, Nelson GW, Troyer JL, Lautenberger JA, Kessing BD, Winkler CA, O'Brien SJ. Accounting for multiple comparisons in a genome-wide association study (GWAS). BMC genomics. 2010;11(1):1–6.
Turner S. qqman: an R package for visualizing GWAS results using Q-Q and manhattan plots. Journal of Open Source Software. 2018;3(25):731.
Article
Google Scholar
Sakai H, Lee SS, Tanaka T, Numa H, Kim J, Kawahara Y, Wakimoto H, Yang CC, Iwamoto M, Abe T, Yamada Y. Rice Annotation Project Database (RAP-DB): an integrative and interactive database for rice genomics. Plant and Cell Physiology. 2013;54(2):e6.