Doust AN, Devos KM, Gadberry MD, Gale MD, Kellogg EA. Genetic control of branching in foxtail millet. Proc Natl Acad Sci U S A. 2004;101(24):9045–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Doust AN, Kellogg EA, Devos KM, Bennetzen JL. Foxtail millet: a sequence-driven grass model system. Plant Physiol. 2009;149(1):137–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiayang LI, Jeffrey LB, James S, Xianmin D. Initiation of Setaria as a model plant. Front Agric Sci Eng. 2014;1(1):16–20.
Article
Google Scholar
Li Y, Wu SZ. Traditional maintenance and multiplication of foxtail millet (Setaria italica (L.) P. Beauv.) landraces in China. Euphytica. 1996;87(1):33–8.
Article
Google Scholar
Lee G-A, Crawford GW, Liu L, Chen X. Plants and people from the Early Neolithic to Shang periods in North China. Proc Natl Acad Sci. 2007;104(3):1087–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Diao X, Jia G. Origin and Domestication of Foxtail Millet. Genetics and genomics of Setaria. Cham: Springer; 2017. p. 61–72.
Brutnell TP, Wang L, Swartwood K, Goldschmidt A, Jackson D, Zhu XG, Kellogg E, Van Eck J. Setaria viridis: a model for C4 photosynthesis. Plant Cell. 2010;22(8):2537–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li P, Brutnell TP. Setaria viridis and Setaria italica, model genetic systems for the Panicoid grasses. J Exp Bot. 2011;62(9):3031–7.
Article
CAS
PubMed
Google Scholar
Devos KM, Wang ZM, Beales J, Sasaki T, Gale MD. Comparative genetic maps of foxtail millet (Setaria italica) and rice (Oryza sativa). Theor Appl Genet. 1998;96(1):63–8.
Article
CAS
Google Scholar
Shahidi F, Chandrasekara A. Millet grain phenolics and their role in disease risk reduction and health promotion: A review. Journal of Functional Foods. 2013;5(2):570–81.
Article
CAS
Google Scholar
Kaur P, Purewal SS, Sandhu KS, Kaur M, Salar RK. Millets: a cereal grain with potent antioxidants and health benefits. J Food Meas Charact. 2019;13(1):793–806.
Article
Google Scholar
Liang S, Liang K. Millet grain as a candidate antioxidant food resource: a review. Int J Food Prop. 2019;22(1):1652–61.
Article
CAS
Google Scholar
Sachdev N, Goomer S, Singh LR. Foxtail millet: a potential crop to meet future demand scenario for alternative sustainable protein. J Sci Food Agric. 2021;101(3):831–42.
Article
CAS
PubMed
Google Scholar
Sushree Shyamli P, Rana S, Suranjika S, Muthamilarasan M, Parida A, Prasad M. Genetic determinants of micronutrient traits in graminaceous crops to combat hidden hunger. Theor Appl Genet. 2021;134(10):3147–65.
Article
CAS
PubMed
Google Scholar
Muthamilarasan M, Prasad M. Advances in Setaria genomics for genetic improvement of cereals and bioenergy grasses. Theor Appl Genet. 2015;128(1):1–14.
Article
CAS
PubMed
Google Scholar
Muthamilarasan M, Prasad M. Small Millets for Enduring Food Security Amidst Pandemics. Trends Plant Sci. 2021;26(1):33–40.
Article
CAS
PubMed
Google Scholar
Klein J, Saedler H, Huijser P. A new family of DNA binding proteins includes putative transcriptional regulators of theAntirrhinum majus floral meristem identity geneSQUAMOSA. Mol Gen Genet. 1996;250(1):7–16.
CAS
PubMed
Google Scholar
Cardon G, Höhmann S, Klein J, Nettesheim K, Saedler H, Huijser P. Molecular characterisation of the Arabidopsis SBP-box genes. Gene. 1999;237(1):91–104.
Article
CAS
PubMed
Google Scholar
Birkenbihl RP, Jach G, Saedler H, Huijser P. Functional dissection of the plant-specific SBP-domain: overlap of the DNA-binding and nuclear localization domains. J Mol Biol. 2005;352(3):585–96.
Article
CAS
PubMed
Google Scholar
Yamasaki K, Kigawa T, Inoue M, Tateno M, Yamasaki T, Yabuki T, Aoki M, Seki E, Matsuda T, Nunokawa E, et al. A novel zinc-binding motif revealed by solution structures of DNA-binding domains of Arabidopsis SBP-family transcription factors. J Mol Biol. 2004;337(1):49–63.
Article
CAS
PubMed
Google Scholar
Yamasaki K, Kigawa T, Inoue M, Yamasaki T, Yabuki T, Aoki M, Seki E, Matsuda T, Tomo Y, Terada T, et al. An Arabidopsis SBP-domain fragment with a disrupted C-terminal zinc-binding site retains its tertiary structure. FEBS Lett. 2006;580(8):2109–16.
Article
CAS
PubMed
Google Scholar
Salinas M, Xing S, Hohmann S, Berndtgen R, Huijser P. Genomic organization, phylogenetic comparison and differential expression of the SBP-box family of transcription factors in tomato. Planta. 2012;235(6):1171–84.
Article
CAS
PubMed
Google Scholar
Liu M, Sun W, Ma Z, Huang L, Wu Q, Tang Z, Bu T, Li C, Chen H. Genome-wide identification of the SPL gene family in Tartary Buckwheat (Fagopyrum tataricum) and expression analysis during fruit development stages. BMC Plant Biol. 2019;19(1):299.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fan Y, Yang H, Lai D, He A, Cheng J. Genome-Wide Identification and Expression Analysis of The BHLH Transcription Factor Family and Its Response to Abiotic Stress in Sorghum [Sorghum Bicolor (L.) Moench]. BMC Genomics. 2021;22(1):415.
Article
CAS
PubMed
PubMed Central
Google Scholar
Puranik S, Sahu PP, Mandal SN, Parida SK, Prasad M. Comprehensive genome-wide survey, genomic constitution and expression profiling of the NAC transcription factor family in foxtail millet (Setaria italica L.). PloS One. 2013;8(5):e64594.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fan Y, Wei X, Lai D, Yang H, Feng L, Li L, Niu K, Chen L, Xiang D, Ruan J. Genome-wide investigation of the GRAS transcription factor family in foxtail millet (Setaria italica L). BMC Plant Biology. 2021;21(1):1–19.
Article
Google Scholar
Lata C, Mishra AK, Muthamilarasan M, Bonthala VS, Khan Y, Prasad M. Genome-wide investigation and expression profiling of AP2/ERF transcription factor superfamily in foxtail millet (Setaria italica L). PLoS One. 2014;9(11):e113092.
Article
PubMed
PubMed Central
CAS
Google Scholar
Xu M, Hu T, Zhao J, Park MY, Earley KW, Wu G, Yang L, Poethig RS. Developmental Functions of miR156-Regulated SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) Genes in Arabidopsis thaliana. PLoS Genet. 2016;12(8):e1006263.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hou H, Li J, Gao M, Singer SD, Wang H, Mao L, Fei Z, Wang X. Genomic organization, phylogenetic comparison and differential expression of the SBP-box family genes in grape. PLoS ONE. 2013;8(3):e59358.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cai C, Guo W, Zhang B. Genome-wide identification and characterization of SPL transcription factor family and their evolution and expression profiling analysis in cotton. Sci Rep. 2018;8(1):762.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yang Z, Wang X, Gu S, Hu Z, Xu H, Xu C. Comparative study of SBP-box gene family in Arabidopsis and rice. Gene. 2008;407(1–2):1–11.
Article
CAS
PubMed
Google Scholar
Zhong H, Kong W, Gong Z, Fang X, Deng X, Liu C, Li Y. Evolutionary Analyses Reveal Diverged Patterns of SQUAMOSA Promoter Binding Protein-Like (SPL) Gene Family in Oryza Genus. Front Plant Sci. 2019;10:565.
Article
PubMed
PubMed Central
Google Scholar
Zhu T, Liu Y, Ma L, Wang X, Zhang D, Han Y, Ding Q, Ma L. Genome-wide identification, phylogeny and expression analysis of the SPL gene family in wheat. BMC Plant Biol. 2020;20(1):420.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tripathi RK, Bregitzer P, Singh J. Genome-wide analysis of the SPL/miR156 module and its interaction with the AP2/miR172 unit in barley. Sci Rep. 2018;8(1):7085.
Article
PubMed
PubMed Central
CAS
Google Scholar
Peng X, Wang Q, Zhao Y, Li X, Ma Q. Comparative genome analysis of the SPL gene family reveals novel evolutionary features in maize. Genet Mol Biol. 2019;42(2):380–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang H, Wang H. The miR156/SPL Module, a Regulatory Hub and Versatile Toolbox, Gears up Crops for Enhanced Agronomic Traits. Mol Plant. 2015;8(5):677–88.
Article
CAS
PubMed
Google Scholar
Stone JM, Liang X, Nekl ER, Stiers JJ. Arabidopsis AtSPL14, a plant-specific SBP-domain transcription factor, participates in plant development and sensitivity to fumonisin B1. Plant J. 2005;41(5):744–54.
Article
CAS
PubMed
Google Scholar
Unte US, Sorensen AM, Pesaresi P, Gandikota M, Leister D, Saedler H, Huijser P. SPL8, an SBP-box gene that affects pollen sac development in Arabidopsis. Plant Cell. 2003;15(4):1009–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, Schwarz S, Saedler H, Huijser P. SPL8, a local regulator in a subset of gibberellin-mediated developmental processes in Arabidopsis. Plant Mol Biol. 2007;63(3):429–39.
Article
CAS
PubMed
Google Scholar
Wang L, Zhang Q. Boosting Rice Yield by Fine-Tuning SPL Gene Expression. Trends Plant Sci. 2017;22(8):643–6.
Article
CAS
PubMed
Google Scholar
Jiao Y, Wang Y, Xue D, Wang J, Yan M, Liu G, Dong G, Zeng D, Lu Z, Zhu X, et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet. 2010;42(6):541–4.
Article
CAS
PubMed
Google Scholar
Lu Z, Yu H, Xiong G, Wang J, Jiao Y, Liu G, Jing Y, Meng X, Hu X, Qian Q, et al. Genome-wide binding analysis of the transcription activator ideal plant architecture1 reveals a complex network regulating rice plant architecture. Plant Cell. 2013;25(10):3743–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang S, Li S, Liu Q, Wu K, Zhang J, Wang S, Wang Y, Chen X, Zhang Y, Gao C, et al. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nat Genet. 2015;47(8):949–54.
Article
CAS
PubMed
Google Scholar
Wang S, Wu K, Yuan Q, Liu X, Liu Z, Lin X, Zeng R, Zhu H, Dong G, Qian Q, et al. Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet. 2012;44(8):950–4.
Article
CAS
PubMed
Google Scholar
Zhou M, Tang W. MicroRNA156 amplifies transcription factor-associated cold stress tolerance in plant cells. Mol Genet Genomics. 2019;294(2):379–93.
Article
CAS
PubMed
Google Scholar
Pandey P, Srivastava PK, Pandey SP. Prediction of Plant miRNA Targets. Methods Mol Biol. 2019;1932:99–107.
Article
CAS
PubMed
Google Scholar
Yamaguchi A, Wu MF, Yang L, Wu G, Poethig RS, Wagner D. The microRNA-regulated SBP-Box transcription factor SPL3 is a direct upstream activator of LEAFY, FRUITFULL, and APETALA1. Dev Cell. 2009;17(2):268–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang JW, Czech B, Weigel D. miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell. 2009;138(4):738–49.
Article
CAS
PubMed
Google Scholar
Xu L, Hu Y, Cao Y, Li J, Ma L, Li Y, Qi Y. An expression atlas of miRNAs in Arabidopsis thaliana. Sci China Life Sci. 2018;61(2):178–89.
Article
CAS
PubMed
Google Scholar
Padmanabhan MS, Ma S, Burch-Smith TM, Czymmek K, Huijser P, Dinesh-Kumar SP. Novel positive regulatory role for the SPL6 transcription factor in the N TIR-NB-LRR receptor-mediated plant innate immunity. PLoS Pathog. 2013;9(3):e1003235.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cho SH, Coruh C, Axtell MJ. miR156 and miR390 regulate tasiRNA accumulation and developmental timing in Physcomitrella patens. Plant Cell. 2012;24(12):4837–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Walther D, Brunnemann R, Selbig J. The regulatory code for transcriptional response diversity and its relation to genome structural properties in A. thaliana. PLoS Genet. 2007;3(2):e11.
Article
PubMed
PubMed Central
CAS
Google Scholar
Arshad M, Feyissa BA, Amyot L, Aung B, Hannoufa A. MicroRNA156 improves drought stress tolerance in alfalfa (Medicago sativa) by silencing SPL13. Plant Sci. 2017;258:122–36.
Article
CAS
PubMed
Google Scholar
Mao YB, Liu YQ, Chen DY, Chen FY, Fang X, Hong GJ, Wang LJ, Wang JW, Chen XY. Jasmonate response decay and defense metabolite accumulation contributes to age-regulated dynamics of plant insect resistance. Nat Commun. 2017;8:13925.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ye BB, Shang GD, Pan Y, Xu ZG, Zhou CM, Mao YB, Bao N, Sun L, Xu T, Wang JW. AP2/ERF Transcription Factors Integrate Age and Wound Signals for Root Regeneration. Plant Cell. 2020;32(1):226–41.
Article
CAS
PubMed
Google Scholar
Kriventseva EV, Koch I, Apweiler R, Vingron M, Bork P, Gelfand MS, Sunyaev S. Increase of functional diversity by alternative splicing. Trends Genet. 2003;19(3):124–8.
Article
CAS
PubMed
Google Scholar
Stetefeld J, Ruegg MA. Structural and functional diversity generated by alternative mRNA splicing. Trends Biochem Sci. 2005;30(9):515–21.
Article
CAS
PubMed
Google Scholar
Parenteau J, Maignon L, Berthoumieux M, Catala M, Gagnon V, Abou Elela S. Introns are mediators of cell response to starvation. Nature. 2019;565(7741):612–7.
Article
CAS
PubMed
Google Scholar
Morgan JT, Fink GR, Bartel DP. Excised linear introns regulate growth in yeast. Nature. 2019;565(7741):606–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shabalina SA, Ogurtsov AY, Spiridonov AN, Novichkov PS, Spiridonov NA, Koonin EV. Distinct patterns of expression and evolution of intronless and intron-containing mammalian genes. Mol Biol Evol. 2010;27(8):1745–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roy SW, Gilbert W. The evolution of spliceosomal introns: patterns, puzzles and progress. Nat Rev Genet. 2006;7(3):211–21.
Article
PubMed
Google Scholar
Chorev M, Carmel L. The function of introns Front Genet. 2012;3:55.
PubMed
Google Scholar
Jo BS, Choi SS. Introns: The Functional Benefits of Introns in Genomes. Genomics Inform. 2015;13(4):112–8.
Article
PubMed
PubMed Central
Google Scholar
Zhang G, Liu X, Quan Z, Cheng S, Xu X, Pan S, Xie M, Zeng P, Yue Z, Wang W, et al. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat Biotechnol. 2012;30(6):549–54.
Article
CAS
PubMed
Google Scholar
Xie K, Wu C, Xiong L. Genomic organization, differential expression, and interaction of SQUAMOSA promoter-binding-like transcription factors and microRNA156 in rice. Plant Physiol. 2006;142(1):280–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chuck GS, Tobias C, Sun L, Kraemer F, Li C, Dibble D, Arora R, Bragg JN, Vogel JP, Singh S, et al. Overexpression of the maize Corngrass1 microRNA prevents flowering, improves digestibility, and increases starch content of switchgrass. Proc Natl Acad Sci U S A. 2011;108(42):17550–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang X, Zou Z, Zhang J, Zhang Y, Han Q, Hu T, Xu X, Liu H, Li H, Ye Z. Over-expression of sly-miR156a in tomato results in multiple vegetative and reproductive trait alterations and partial phenocopy of the sft mutant. FEBS Lett. 2011;585(2):435–9.
Article
CAS
PubMed
Google Scholar
Bergonzi S, Albani MC. Ver Loren van Themaat E, Nordstrom KJ, Wang R, Schneeberger K, Moerland PD, Coupland G: Mechanisms of age-dependent response to winter temperature in perennial flowering of Arabis alpina. Science. 2013;340(6136):1094–7.
Article
CAS
PubMed
Google Scholar
Gandikota M, Birkenbihl RP, Hohmann S, Cardon GH, Saedler H, Huijser P. The miRNA156/157 recognition element in the 3’ UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings. Plant J. 2007;49(4):683–93.
Article
CAS
PubMed
Google Scholar
Li XY, Lin EP, Huang HH, Niu MY, Tong ZK, Zhang JH. Molecular Characterization of SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) Gene Family in Betula luminifera. Front Plant Sci. 2018;9:608.
Article
PubMed
PubMed Central
Google Scholar
Yamasaki H, Hayashi M, Fukazawa M, Kobayashi Y, Shikanai T. SQUAMOSA Promoter Binding Protein-Like7 Is a Central Regulator for Copper Homeostasis in Arabidopsis. Plant Cell. 2009;21(1):347–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Hu Z, Yang Y, Chen X, Chen G. Genome-wide identification, phylogeny, and expression analysis of the SBP-box gene family in grapevine. Russ J Plant Physiol. 2010;57(2):273–82.
Article
CAS
Google Scholar
Preston JC, Hileman LC. Functional Evolution in the Plant SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) Gene Family. Front Plant Sci. 2013;4(80):80.
PubMed
PubMed Central
Google Scholar
Vazquez F, Gasciolli V, Crete P, Vaucheret H. The nuclear dsRNA binding protein HYL1 is required for microRNA accumulation and plant development, but not posttranscriptional transgene silencing. Curr Biol. 2004;14(4):346–51.
Article
CAS
PubMed
Google Scholar
Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D. Specific effects of microRNAs on the plant transcriptome. Dev Cell. 2005;8(4):517–27.
Article
CAS
PubMed
Google Scholar
Shikata M, Koyama T, Mitsuda N, Ohme-Takagi M. Arabidopsis SBP-box genes SPL10, SPL11 and SPL2 control morphological change in association with shoot maturation in the reproductive phase. Plant Cell Physiol. 2009;50(12):2133–45.
Article
CAS
PubMed
Google Scholar
Baurle I, Dean C. The timing of developmental transitions in plants. Cell. 2006;125(4):655–64.
Article
CAS
PubMed
Google Scholar
Wang JW. Regulation of flowering time by the miR156-mediated age pathway. J Exp Bot. 2014;65(17):4723–30.
Article
CAS
PubMed
Google Scholar
Wu G, Poethig RS. Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development. 2006;133(18):3539–47.
Article
CAS
PubMed
Google Scholar
Schwarz S, Grande AV, Bujdoso N, Saedler H, Huijser P. The microRNA regulated SBP-box genes SPL9 and SPL15 control shoot maturation in Arabidopsis. Plant Mol Biol. 2008;67(1–2):183–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jung JH, Ju Y, Seo PJ, Lee JH, Park CM. The SOC1-SPL module integrates photoperiod and gibberellic acid signals to control flowering time in Arabidopsis. Plant J. 2012;69(4):577–88.
Article
CAS
PubMed
Google Scholar
Jung JH, Seo PJ, Kang SK, Park CM. miR172 signals are incorporated into the miR156 signaling pathway at the SPL3/4/5 genes in Arabidopsis developmental transitions. Plant Mol Biol. 2011;76(1–2):35–45.
Article
CAS
PubMed
Google Scholar
Martin RC, Asahina M, Liu P-P, Kristof JR, Coppersmith JL, Pluskota WE, Bassel GW, Goloviznina NA, Nguyen TT, Martínez-Andújar C, et al. The microRNA156 and microRNA172 gene regulation cascades at post-germinative stages inArabidopsis. Seed Sci Res. 2010;20(2):79–87.
Article
CAS
Google Scholar
Martin RC, Asahina M, Liu P-P, Kristof JR, Coppersmith JL, Pluskota WE, Bassel GW, Goloviznina NA, Nguyen TT, Martínez-Andújar C, et al. The regulation of post-germinative transition from the cotyledon- to vegetative-leaf stages by microRNA-targeted SQUAMOSA PROMOTER-BINDING PROTEIN LIKE13 in Arabidopsis. Seed Sci Res. 2010;20(2):89–96.
Article
CAS
Google Scholar
Miura K, Ikeda M, Matsubara A, Song XJ, Ito M, Asano K, Matsuoka M, Kitano H, Ashikari M. OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat Genet. 2010;42(6):545–9.
Article
CAS
PubMed
Google Scholar
Luo L, Li W, Miura K, Ashikari M, Kyozuka J. Control of tiller growth of rice by OsSPL14 and Strigolactones, which work in two independent pathways. Plant Cell Physiol. 2012;53(10):1793–801.
Article
CAS
PubMed
Google Scholar
Wang J, Zhou L, Shi H, Chern M, Yu H, Yi H, He M, Yin J, Zhu X. A single transcription factor promotes both yield and immunity in rice. Science. 2018;361(6406):1026–8.
Article
CAS
PubMed
Google Scholar
Yue E, Li C, Li Y, Liu Z, Xu JH. MiR529a modulates panicle architecture through regulating SQUAMOSA PROMOTER BINDING-LIKE genes in rice (Oryza sativa). Plant Mol Biol. 2017;94(4–5):469–80.
Article
CAS
PubMed
Google Scholar
Yan Y, Wei M, Li Y, Tao H, Wu H, Chen Z, Li C, Xu JH. MiR529a controls plant height, tiller number, panicle architecture and grain size by regulating SPL target genes in rice (Oryza sativa L.). Plant Sci. 2021;302:110728.
Article
CAS
PubMed
Google Scholar
Yu N, Cai WJ, Wang S, Shan CM, Wang LJ, Chen XY. Temporal control of trichome distribution by microRNA156-targeted SPL genes in Arabidopsis thaliana. Plant Cell. 2010;22(7):2322–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gou JY, Felippes FF, Liu CJ, Weigel D, Wang JW. Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor. Plant Cell. 2011;23(4):1512–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen X, Zhang Z, Liu D, Zhang K, Li A, Mao L. SQUAMOSA promoter-binding protein-like transcription factors: star players for plant growth and development. J Integr Plant Biol. 2010;52(11):946–51.
Article
CAS
PubMed
Google Scholar
Zhang B, Chen X, Lu X, Shu N, Wang X, Yang X, Wang S, Wang J, Guo L, Wang D, et al. Transcriptome Analysis of Gossypium hirsutum L. Reveals Different Mechanisms among NaCl, NaOH and Na2CO3 Stress Tolerance. Sci Rep. 2018;8(1):13527.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fan Y, Wei X, Lai D, Yang H, Feng L, Li L, Niu K, Chen L, Xiang D, Ruan J, et al. Genome-wide investigation of the GRAS transcription factor family in foxtail millet (Setaria italica L.). BMC Plant Biol. 2021;21(1):508.
Article
CAS
PubMed
PubMed Central
Google Scholar