Zongo A, Khera P, Sawadogo M, Shasidhar Y, Sriswathi M, Vishwakarma MK, Sankara P, Ntare BR, Varshney RK, Pandey MK, Desmae H. SSR markers associated to early leaf spot disease resistance through selective genotyping and single marker analysis in groundnut (Arachis hypogaea L.). Biotechnol Rep. 2017;15:132–7.
Article
Google Scholar
Arya SS, Salve AR, Chauhan S. Peanuts as functional food: a review. J Food Sci Technol. 2015;53(1):31–41.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mallikarjuna N, Varshney R K. 2014. Genetics, Genomics and Breeding of Peanuts. In:Chen X, ed., Peanut Transcriptomics. Taylor & Francis Group, LLC, FL; 2014.p. 140.
Wang ML, Sukumaran S, Barkley NA, Chen Z, Chen CY, Guo B, Pittman RN, Stalker HT, Holbrook CC, Pederson GA, Yu J. Population structure and marker–trait association analysis of the US peanut (Arachis hypogaea L.) mini-core collection. Theor Appl Genet. 2011;23(8):1307–17.
Article
CAS
Google Scholar
Bhapkar DG, Patil PS, Patil VA. Dormancy in groundnut: a review. Maharashtra Agric Univ. 1986;11:68–71.
Google Scholar
Li P, Wang Y, Qian Q, Fu Z, Wang M, Zeng D, Li B, Wang X, Li J. LAZY1 controls rice shoot gravitropism through regulating polar auxin transport. Cell Res. 2007;17(5):402–10.
Article
CAS
PubMed
Google Scholar
Jin J, Huang W, Gao JP, Yang J, Shi M, Zhu MZ, Luo D, Lin HX. Genetic control of rice plant architecture under domestication. Nat Genet. 2008;40(11):1365–9.
Article
CAS
PubMed
Google Scholar
Wu Y, Ke Y, Wen J, Guo P, Ran F, Wang M, Liu M, Li P, Li J, Du H. Evolution and expression analyses of the MADS-box gene family in Brassica napus. PLoS ONE. 2018;13: e0200762.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yu B, Lin Z, Li H, Li X, Li J, Wang Y, Zhang X, Zhu Z, Zhai W, Wang X, Xie D. TAC1, a major quantitative trait locus controlling tiller angle in rice. Plant J. 2007;52(5):891–8.
Article
CAS
PubMed
Google Scholar
Doebley J, Stec A, Hubbard L. The evolution of apical dominance in maize. Nat. 1997;386(6624):485–8.
Article
CAS
Google Scholar
Li H, Zhang L, Hu J, Zhang F, Chen B, Xu K, Gao G, Li H, Zhang T, Li Z, Wu X. Genome-wide association mapping reveals the genetic control underlying branch angle in rapeseed (Brassica napus L.). Front Plant Sci. 2017;8:1054.
Article
PubMed
PubMed Central
Google Scholar
Zhang Y, Wang L, Gao Y, Li D, Yu J, Zhou R, Zhang X. Genetic dissection and fine mapping of a novel dt gene associated with determinate growth habit in sesame. BMC Genet. 2018;19(1):38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dardick C, Callahan A, Horn R, Ruiz KB, Zhebentyayeva T, Hollender C, Whitaker M, Abbott A, Scorza R. Ppe TAC1 promotes the horizontal growth of branches in peach trees and is a member of a functionally conserved gene family found in diverse plants species. Plant J. 2013;75(4):618–30.
Article
CAS
PubMed
Google Scholar
Braun N, de Saint GA, Pillot JP, Boutet-Mercey S, Dalmais M, Antoniadi I, Li X, Maia-Grondard A, Le Signor C, Bouteiller N, Luo D. The pea TCP transcription factor PsBRC1 acts downstream of strigolactones to control shoot branching. Plant Physiol. 2012;158(1):225–38.
Article
CAS
PubMed
Google Scholar
Martín-Trillo M, Grandío EG, Serra F, Marcel F, Rodríguez-Buey ML, Schmitz G, Theres K, Bendahmane A, Dopazo H, Cubas P. Role of tomato BRANCHED1-like genes in the control of shoot branching. Plant J. 2011;67(4):701–14.
Article
PubMed
CAS
Google Scholar
Patel JS, John CM, Seshadri CR. The inheritance of characters in the groundnut Arachis hypogaea. Indian Acad Sci. 1936;3:214–33.
Article
Google Scholar
Hayes TR. The classification of groundnut varieties with a preliminary note on the inheritance of some characters. Trop Agr. 1933;10:318–27.
Google Scholar
Higgins B B. Peanut breeding. Pro. 39th Ann. Comv. Assn. South. Agric. Wkrs., Atlanta, Ga. 1938;57–58.
Silvestre P. Monographie des recherches conduites à Bambey sur l’arachide. Agr Trop. 1961;16:624–738.
Gan XM, Cao YL, Gu SY. Genetic variation of several quality traits in peanut. Peanut Sci Technol. 1984;2:002.
Google Scholar
Ashri A. Intergenic and genic-cytoplasmic interactions affecting growth habit in peanuts. Genetics. 1964;50:363–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ashri A. 1968. Genic-cytoplasmic interactions affecting growth habit in peanuts, A. hypogaea II. a Revised Model. Genetics. 1968;60:807–810.
Kayam G, Brand Y, Faigenboim-Doron A, Patil A, Hedvat I, Hovav R. Fine-mapping the branching habit trait in cultivated peanut by combining bulked segregant analysis and high-throughput sequencing. Front Plant Sci. 2017;8:467.
Article
PubMed
PubMed Central
Google Scholar
Fonceka D, Tossim HA, Rivallan R, Vignes H, Lacut E, De Bellis F, Faye I, Ndoye O, Leal-Bertioli SC, Valls JF, Bertioli DJ. Construction of chromosome segment substitution lines in peanut (Arachis hypogaea L.) using a wild synthetic and QTL mapping for plant morphology. PLoS One. 2012;7:e48642.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fan CC, Yu XQ, Xing YZ, Xu CG, Luo LJ, Zhang Q. The main effects, epistatic effects and environmental interactions of QTLs on the cooking and eating quality of rice in a doubled-haploid line population. Theor Appl Genet. 2005;110(8):1445–52.
Article
CAS
PubMed
Google Scholar
Salome PA, Bomblies K, Laitinen RA, Yant L, Mott R, Weigel D. Genetic architecture of flowering-time variation in Arabidopsis thaliana. Genetics. 2011;188:421–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Michelmore RW, Paran I, Kesseli RV. Identifcation of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specifc genomic regions by using segregating populations. Proc Natl Acad Sci USA. 1991;88:9828–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S, Innan H, Cano LM, Kamoun S, Terauchi R. QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J. 2013;74:174–83.
Article
CAS
PubMed
Google Scholar
Liu HJ, Yan J. Crop genome-wide association study: a harvest of biological relevance. Plant J. 2019;97(1):8–18.
Article
CAS
PubMed
Google Scholar
Varshney RK, Pandey MK, Bohra A, Singh VK, Thudi M, Saxena RK. Toward the sequence-based breeding in legumes in the post-genome sequencing era. Theor Appl Genet. 2019;132(3):797–816.
Article
CAS
PubMed
Google Scholar
Dou J, Zhao S, Lu X, He N, Zhang L, Ali A, Kuang H, Liu W. Genetic mapping reveals a candidate gene (ClFS1) for fruit shape in watermelon (Citrullus lanatus L.). Theor Appl Genet. 2018;131(4):947–58.
Article
CAS
PubMed
Google Scholar
Mu J, Huang S, Liu S, Zeng Q, Dai M, Wang Q, Wu J, Yu S, Kang Z, Han D. Genetic architecture of wheat stripe rust resistance revealed by combining QTL mapping using SNP-based genetic maps and bulked segregant analysis. Theor Appl Genet. 2019;132(2):443–55.
Article
CAS
PubMed
Google Scholar
Zhao X, Han Y, Li Y, Liu D, Sun M, Zhao Y, Lv C, Li D, Yang Z, Huang L, Teng W. Loci and candidate gene identification for resistance to Sclerotinia sclerotiorum in soybean (Glycine max L. Merr.) via association and linkage maps. Plant J. 2015;82(2):245–255.
Sun F, Liu J, Hua W, Sun X, Wang X, Wang H. Identification of stable QTLs for seed oil content by combined linkage and association mapping in Brassica napus. Plant Sci. 2016;252:388–99.
Article
CAS
PubMed
Google Scholar
Luo H, Pandey MK, Khan AW, Guo J, Wu B, Cai Y, Huang L, Zhou X, Chen Y, Chen W, Liu N. Discovery of genomic regions and candidate genes controlling shelling percentage using QTL‐seq approach in cultivated peanut (Arachis hypogaea L.). Plant Biotechnol. 2019;17(7):1248–60.
Article
CAS
Google Scholar
Zhang X, Zhu S, Zhang K, Wan Y, Liu F, Sun Q, Li Y. Establishment and evaluation of a peanut association panel and analysis of key nutritional traits. J Integr Plant Biol. 2018;60(3):195–215.
Article
CAS
PubMed
Google Scholar
Zhang X, Zhang J, He X, Wang Y, Ma X, Yin D. Genome-wide association study of major agronomic traits related to domestication in peanut. Front Plant Sci. 2017;8:1611.
Article
PubMed
PubMed Central
Google Scholar
Yang XC, Hwa CM. Genetic modification of plant architecture and variety improvement in rice. Heredity. 2008;101(5):396–404.
Article
CAS
PubMed
Google Scholar
Roychoudhry S, Kepinski S. Shoot and root branch growth angle control—The wonderfulness of lateralness. Curr Opin Plant Biol. 2015;23:124–31.
Article
PubMed
Google Scholar
Yang X, Gao S, Xu S, Zhang Z, Prasanna B, Li L, Li J, Yan J. Characterization of a global germplasm collection and its potential utilization for analysis of complex quantitative traits in maize. Mol Breed. 2010;28:511–26.
Article
Google Scholar
Zhang H, Zhang D, Wang M, Sun J, Qi Y, Li J, Han L, Qiu Z, Tang S, Li Z. A core collection and mini core collection of Oryza sativa L. China Theor Appl Genet. 2011;122(1):49–61.
Article
PubMed
Google Scholar
Upadhyaya HD, Pundir RP, Dwivedi SL, Gowda CL, Reddy VG, Singh S. Developing a mini core collection of sorghum for diversified utilization of germplasm. Crop Sci. 2019;49(5):1769–80.
Article
Google Scholar
Upadhyaya HD, Bramel PJ, Ortiz R, Singh S. Developing a mini core of peanut for utilization of genetic resources. Crop Sci. 2002;42:2150–6.
Article
Google Scholar
Holbrook CC, Dong W. Development and evaluation of a mini core collection for the US peanut germplasm collection. Crop Sci. 2005;45:1540–4.
Article
Google Scholar
Jiang H, Ren X, Huang J, Liao B, Lei Y. Establishment of peanut mini core collection in China and exploration of new resource with high oleat. Chin J Oil Crop Sci. 2008;30:294–9.
Google Scholar
Jiang H, Huang L, Ren X, Chen Y, Zhou X, Xia Y, Huang J, Lei Y, Yan L, Wan L, Liao B. Diversity characterization and association analysis of agronomic traits in a Chinese peanut (Arachis hypogaea L.) mini‐core collection. J Integr Plant Biol. 2014;56(2):159–69.
Article
PubMed
Google Scholar
Mukri G, Nadaf HL, Bhat RS, Gowda MV, Upadhyaya HD, Sujay V. Phenotypic and molecular dissection of ICRISAT mini core collection of peanut (Arachis hypogaea L.) for high oleic acid. Plant Breed. 2012;131(3):418–22.
Otyama PI, Wilkey A, Kulkarni R, Assefa T, Chu Y, Clevenger J, O’Connor DJ, Wright GC, Dezern SW, MacDonald GE, Anglin NL. Evaluation of linkage disequilibrium, population structure, and genetic diversity in the US peanut mini core collection. BMC Genomics. 2019;20(1):1–7.
Article
CAS
Google Scholar
Cao Y, Li S, Wang Z, Chang F, Kong J, Gai J, Zhao T. Identification of major quantitative trait loci for seed oil content in soybeans by combining linkage and genome-wide association mapping. Front Plant Sci. 2017;8:1222.
Article
PubMed
PubMed Central
Google Scholar
Sun Z, Wang X, Liu Z, Gu Q, Zhang Y, Li Z, Ke H, Yang J, Wu J, Wu L, Zhang G. Genome-wide association study discovered genetic variation and candidate genes of fibre quality traits in Gossypium hirsutum L. Plant Biotechnol J. 2017;15(8):982–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Patil P G, Bohra A, Satheesh N S, Dubey J, Pandey P, Dutta D, Singh F, Singh I P, Singh N P. Validation of QTLs for plant ideotype, earliness and growth habit traits in pigeonpea (Cajanus cajan Millsp.). Physiol Mol Biol Plants. 2018; 24(6):1245–1259.
Liu J, Wang W, Mei D, Wang H, Fu L, Liu D, Li Y, Hu Q. Characterizing variation of branch angle and genome-wide association mapping in rapeseed (Brassica napus L.). Front Plant Sci. 2016;7:21.
Korte A, Farlow A. The advantages and limitations of trait analysis with GWAS: a review. Plant Methods. 2013;9(1):1–9.
Article
CAS
Google Scholar
Han K, Lee HY, Ro NY, Hur OS, Lee JH, Kwon JK, Kang BC. QTL mapping and GWAS reveal candidate genes controlling capsaicinoid content in Capsicum. Plant Biotechnol J. 2018;16(9):1546–58.
Article
CAS
PubMed Central
Google Scholar
Zhao X, Luo L, Cao Y, Liu Y, Li Y, Wu W, Lan Y, Jiang Y, Gao S, Zhang Z, Shen Y. Genome-wide association analysis and QTL mapping reveal the genetic control of cadmium accumulation in maize leaf. BMC Genomics. 2018;19(1):1–3.
Article
CAS
Google Scholar
Li F, Numa H, Hara N, Sentoku N, Ishii T, Fukuta Y, Nishimura N, Kato H. Identification of a locus for seed shattering in rice (Oryza sativa L.) by combining bulked segregant analysis with whole-genome sequencing. Mol Breed. 2019;39(3):36, 39, 1–14.
Dharmasiri N, Dharmasiri S, Weijers D, Lechner E, Yamada M, Hobbie L, Ehrismann JS, Jürgens G, Estelle M. Plant development is regulated by a family of auxin receptor F box proteins. Dev Cell. 2005;9(1):109–19.
Article
CAS
PubMed
Google Scholar
Barkan A, Small I. Pentatricopeptide repeat proteins in plants. Annu Rev Plant Biol. 2014;65:415–42.
Article
CAS
PubMed
Google Scholar
Chen G, Geng J, Rahman M, Liu X, Tu J, Fu T, Li G, McVetty PB, Tahir M. Identification of QTL for oil content, seed yield, and flowering time in oilseed rape (Brassica napus). Euphytica. 2010;175(2):161–74.
Article
CAS
Google Scholar
Lorrain S, Allen T, Duek PD, Whitelam GC, Fankhauser C. Phytochrome-mediated inhibition of shade avoidance involves degradation of growth-promoting bHLH transcription factors. Plant J. 2008;53(2):312–23.
Article
CAS
PubMed
Google Scholar
Kumar P, Kumar P, Sharma D, Shailender KV, Dennis H, Arun K. Genome-wide identification and expression profiling of basic leucine zipper transcription factors following abiotic stresses in potato (Solanum tuberosum L.). PloS One, 2021; 16(3): e0247864.
Song H, Sun W, Yang G, Sun J. WRKY transcription factors in legumes. BMC Plant Biol. 2018;18(1):243.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu Y, Zhao S, Li X, Zhang B, Jiang L, Tang Y, Zhao J, Ma X, Cai H, Sun C, Tan L. Deletions linked to PROG1 gene participate in plant architecture domestication in Asian and African rice. Nat Commun. 2008;9(1):1–10.
Google Scholar
Zhang C, Hou Y, Hao Q, Chen H, Chen L, Yuan S, Shan Z, Zhang X, Yang Z, Qiu D, Zhou X. Genome-wide survey of the soybean GATA transcription factor gene family and expression analysis under low nitrogen stress. PLoS ONE. 2015;10(4): e0125174.
Article
PubMed
PubMed Central
CAS
Google Scholar
Morita MT, Sakaguchi K, Kiyose SI, Taira K, Kato T, Nakamura M, Tasaka M. A C2H2-type zinc finger protein, SGR5, is involved in early events of gravitropism in Arabidopsis inflorescence stems. Plant J. 2006;47(4):619–28.
Article
CAS
PubMed
Google Scholar
Xu J, Wang X, Guo W. The cytochrome P450 superfamily: Key players in plant development and defense. J Integr Agric. 2015;14(9):1673–86.
Article
CAS
Google Scholar
Ma L, Li G. Far1-related sequence (FRS) and Frs-related factor (FRF) family proteins in Arabidopsis growth and development. Front Plant Sci. 2018;9:692.
Article
PubMed
PubMed Central
Google Scholar
Chen, CY, Barkley NA, Wang ML, Holbrook CC, and Dang PM. Registration of purified accessions for the U.S. peanut mini-core germplasm collection. J Plant Regist. 2014;8(1):77–85.
Porebski S, Bailey G, Baum BR. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol Biol Reporter. 1997;15:8–15.
Article
CAS
Google Scholar
Cai D, Xiao Y, Yang W, Ye W, Wang B, Younas M, Wu J, Liu K. Association mapping of six yield-related traits in rapeseed (Brassica napus L.). Theor Appl Genet. 2014;127:85–96.
Article
CAS
PubMed
Google Scholar
Li X, Singh J, Qin M, Li S, Zhang X, Zhang M, Khan A, Zhang S, Wu J. Development of an integrated 200K SNP genotyping array and application for genetic mapping, genome assembly improvement and genome wide association studies in pear (Pyrus). Plant Biotechnol J. 2019;17(8):1582–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Turner SD. qqman: an R package for visualizing GWAS results using QQ and manhattan plots. Biorxiv. 2014;005165.
Li R, Li Y, Kristiansen K, Wang J. SOAP: short oligonucleotide alignment program. Bioinformatics. 2008;24:713–4.
Article
CAS
PubMed
Google Scholar
DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis A, Angel G, Rivas MA, Hanna M, McKenna A, Fennell Tj, Kernytsky AM, Sivachenko AY, Cibulskis K, Gabriel SB, Altshuler D, Daly, MJ. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011;43:491–498.
Zhao N, He M, Li L, Cui S, Hou M, Wang L, Mu G, Liu L, Yang X. Identification and expression analysis of WRKY gene family under drought stress in peanut (Arachis hypogaea L.). PLoS One. 2020;15(4):e0231396.
Article
CAS
PubMed
PubMed Central
Google Scholar