Li M, Hou L, Liu S, Zhang C, Yang W, Pang X, Li Y. Genome-wide identification and expression analysis of NAC transcription factors in Ziziphus jujuba Mill. reveal their putative regulatory effects on tissue senescence and abiotic stress responses. Ind Crop Prod. 2021;173:114093. https://doi.org/10.1016/j.indcrop.2021.114093.
Article
CAS
Google Scholar
He F, Shi Y, Mi J, Zhao K, Cui X, Chen L, Yang H, Zhang F, Zhao Q, Huang J, Wan X. Genome-Wide Investigation of the NF-X1 Gene Family in Populus trichocarpa expression profiles during development and stress. Int J Mol Sci. 2021;22:4664. https://doi.org/10.3390/ijms22094664.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li J, Chen X, Zhou X, Huang H, Wu D, Shao J, Zhan R, Chen L. Identification of trihelix transcription factors in Pogostemon cablin reveals PatGT-1 negatively regulates patchoulol biosynthesis. Ind Crop Prod. 2021;161:113182. https://doi.org/10.1016/j.indcrop.2020.113182.
Article
CAS
Google Scholar
Erpen L, Devi HS, Grosser JW, Dutt M. Potential use of the DREB/ERF, MYB, NAC and WRKY transcription factors to improve abiotic and biotic stress in transgenic plants. Plant Cell Tiss Org. 2018;132:1–25. https://doi.org/10.1007/s11240-017-1320-6.
Article
CAS
Google Scholar
Lu X, Liang X, Li X, Shen P, Cao X, Chen C, et al. Genome-wide characterization and expression profiling of the LBD family in Salvia miltiorrhiza reveals the function of LBD50 in jasmonate signaling and phenolic biosynthesis. Ind Crop Prod. 2020;144:112006. https://doi.org/10.1016/j.indcrop.2019.112006.
Qin Y, Ma X, Yu G, Wang Q, Wang L, Kong L, Kim W, Wang HW. Evolutionary history of trihelix family and their functional diversification. DNA Res. 2014;21:499–510. https://doi.org/10.1093/dnares/dsu016.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jin J, Tian F, Yang D, Meng Y, Kong L, Luo J, Gao G. PlantTFDB 40: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res. 2017;45:D1040–5. https://doi.org/10.1093/nar/gkw982.
Article
CAS
PubMed
Google Scholar
Wang Y, Zhang Y, Zhang X, Zhao X, Zhang Y, Wang C, Wang Y, Wang L. Poplar PsnICE1 enhances cold tolerance by binding to different cis-acting elements to improve reactive oxygen species-scavenging capability. Tree Physiol. 2021;41(12):2424–37. https://doi.org/10.1093/treephys/tpab084.
Article
CAS
PubMed
Google Scholar
Guo H, Wang L, Yang C, Zhang Y, Zhang C, Wang C. Identification of novel cis-elements bound by BpIMYB46 involved in abiotic stress responses and secondary wall deposition. J Integr Plant Biol. 2018;60:1000–14. https://doi.org/10.1111/jipb.12671.
Article
CAS
PubMed
Google Scholar
Xu C, Cao H, Zhang Q, Wang H, Xin W, Xu E, Zhang S, Yu R, Yu D, Hu Y. Control of auxin-induced callus formation by bZIP59-LBD complex in arabidopsis regeneration. Nat Plants. 2018;4:108–15. https://doi.org/10.1038/s41477-017-0095-4.
Article
CAS
PubMed
Google Scholar
Huang S, Lin Z, Tung S, Su L, Ho C, Lee GA, Sun C. A novel multiprotein bridging factor 1-like protein induces cyst wall protein gene expression and cyst differentiation in Giardia lamblia. Int J Mol Sci. 2021;22:1370. https://doi.org/10.3390/ijms22031370.
Article
CAS
PubMed
PubMed Central
Google Scholar
Song C, Peng Z, Lin X, Luo H, Song M, Jin L, Xiao X, Ji H. Study on interaction between TATA-Box binding protein (TBP), TATA-Box and multiprotein bridging factor 1(MBF1) in beauveria bassiana by graphene-based electrochemical biosensors. Front Chem. 2020;8:278. https://doi.org/10.3389/fchem.2020.00278.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tsuda KHUS, Tsuji T, Hirose S, Yamazaki K. Three Arabidopsis MBF1 homologs with distinct expression profiles play roles as transcriptional co-activators. Plant Cell Physiol. 2004;45:225–31. https://doi.org/10.1093/pcp/pch017.
Article
CAS
PubMed
Google Scholar
Jaimes-Miranda F, Chávez Montes RA, Gifford M. The plant MBF1 protein family: a bridge between stress and transcription. J Exp Bot. 2020;71:1782–91. https://doi.org/10.1093/jxb/erz525.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo W, Chen R, Du X, Zhang Z, Yin Y, Gong Z, Wang G. Reduced tolerance to abiotic stress in transgenic arabidopsis overexpressing a Capsicum annuum multiprotein bridging factor 1. Bmc Plant Biol. 2014;14:138. https://doi.org/10.1186/1471-2229-14-138.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tojo T, Tsuda K, Yoshizumi T, Ikeda A, Yamaguchi J, Matsui M, Yamazaki K. Arabidopsis MBF1s control leaf cell cycle and its expansion. Plant Cell Physiol. 2009;50:254–64. https://doi.org/10.1093/pcp/pcn187.
Article
CAS
PubMed
Google Scholar
Suzuki N, Rizhsky L, Liang H, Shuman J, Shulaev V, Mittler R. Enhanced tolerance to environmental stress in transgenic plants expressing the transcriptional coactivator multiprotein bridging factor 1c. Plant Physiol. 2005;139:1313–22. https://doi.org/10.1104/pp.105.070110.
Article
CAS
PubMed
PubMed Central
Google Scholar
Suzuki N, Sejima H, Tam R, Schlauch K, Mittler R. Identification of the MBF1 heat-response regulon of Arabidopsis thaliana. Plant J. 2011;66:844–51. https://doi.org/10.1111/j.1365-313X.2011.04550.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Suzuki N, Bajad S, Shuman J, Shulaev V, Mittler R. The transcriptional co-activator MBF1c is a key regulator of thermotolerance in Arabidopsis thaliana. J Biol Chem. 2008;283:9269–75. https://doi.org/10.1074/jbc.M709187200.
Article
CAS
PubMed
Google Scholar
Yan Q, Hou H, Singer SD, Yan X, Guo R, Wang X. The grape VvMBF1 gene improves drought stress tolerance in transgenic Arabidopsis thaliana. Plant Cell Tiss Org. 2014;118:571–82. https://doi.org/10.1007/s11240-014-0508-2.
Article
CAS
Google Scholar
Zhao Q, He L, Wang B, Liu Q, Pan Y, Zhang F, Jiang B, Zhang L. Overexpression of a multiprotein bridging factor 1 gene DgMBF1 improves the salinity tolerance of chrysanthemum. Int J Mol Sci. 2019;20(10):2453. https://doi.org/10.3390/ijms20102453.
Article
CAS
PubMed Central
Google Scholar
Alavilli H, Lee H, Park M, Lee B. Antarctic moss multiprotein bridging factor 1c overexpression in Arabidopsis resulted in enhanced tolerance to salt stress. Front Plant Sci. 2017;8:1206. https://doi.org/10.3389/fpls.2017.01206.
Article
PubMed
PubMed Central
Google Scholar
Feng S, Liu Z, Hu Y, Tian J, Yang T, Wei A. Genomic analysis reveals the genetic diversity, population structure, evolutionary history and relationships of Chinese pepper. Hortic Res. 2020;7:158. https://doi.org/10.1038/s41438-020-00376-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hui W, Wang J, Ma L, Zhao F, Jia L, Zhong Y, Zhang S, Gong W. Identification of key genes in the biosynthesis pathways related to terpenoids, alkaloids and flavonoids in fruits of Zanthoxylum armatum. Sci Hortic. 2021;290:110523. https://doi.org/10.1016/j.scienta.2021.110523.
Article
CAS
Google Scholar
Fei X, Hou L, Shi J, Yang T, Liu Y, Wei A. Patterns of drought response of 38 WRKY transcription factors of Zanthoxylum bungeanum Maxim. Int J Mol Sci. 2018;20:68. https://doi.org/10.3390/ijms20010068.
Article
CAS
PubMed Central
Google Scholar
Premarathne MDGP, Fukutome N, Yamasaki K, Hayakawa F, Nagano AJ, Mizuno H, Ibaragi N, Nagano Y. Elucidation of Japanese pepper (Zanthoxylum piperitum De Candolle) domestication using RAD-Seq. Sci Rep-UK. 2021;11:6464. https://doi.org/10.1038/s41598-021-85909-9.
Article
CAS
Google Scholar
Shi J, Fei X, Hu Y, Liu Y, Wei A. Identification of key genes in the synthesis pathway of volatile terpenoids in fruit of Zanthoxylum bungeanum Maxim. Forests. 2019;10:328. https://doi.org/10.3390/f10040328.
Article
Google Scholar
Jing N, Wang M, Gao M, Zhong Z, Ma Y, Wei A. Color sensory characteristics, nutritional components and antioxidant capacity of Zanthoxylum bungeanum Maxim. as affected by different drying methods. Ind Crop Prod. 2021;160:113167. https://doi.org/10.1016/j.indcrop.2020.113167.
Ke J, Qu Y, Li S, Shen G, Chen A, Luo Q, Liu X, Wu H, Li M, Pu B, Ye M, Zhang Z. Application of HPLC fingerprint based on acid amide components in Chinese prickly ash (Zanthoxylum). Ind Crop Prod. 2018;119:267–76. https://doi.org/10.1016/j.indcrop.2018.04.018.
Article
CAS
Google Scholar
Nooreen Z, Tandon S, Yadav NP, Kumar P, Xuan TD, Ahmad A. Zanthoxylum: a review of its traditional uses, naturally occurring constituents and pharmacological properties. Curr Org Chem. 2019;23:1307–41. https://doi.org/10.2174/1385272823666190528072011.
Article
CAS
Google Scholar
Phuyal N, Jha PK, Prasad Raturi P, Rajbhandary S. Zanthoxylum armatum DC: current knowledge, gaps and opportunities in Nepal. J Ethnopharmacol. 2019;229:326–41. https://doi.org/10.1016/j.jep.2018.08.010.
Article
PubMed
Google Scholar
Khan MF, Mashwani Z, Mehmood A, Qureshi R, Sarwar R, Ahmad KS, Quave CL. An ethnopharmacological survey and comparative analysis of plants from the sudhnoti district, azad jammu and kashmir, pakistan. J Ethnobiol Ethnomed. 2021;17:14. https://doi.org/10.1186/s13002-021-00435-2.
Article
PubMed
PubMed Central
Google Scholar
Kaigongi MM, Lukhoba CW, Yaouba S, Makunga NP, Githiomi J, Yenesew A. In vitro antimicrobial and antiproliferative activities of the root bark extract and isolated chemical constituents of Zanthoxylum paracanthum Kokwaro (Rutaceae). Plants. 2020;9:920. https://doi.org/10.3390/plants9070920.
Article
CAS
PubMed Central
Google Scholar
Wang M, Tong S, Ma T, Xi Z, Liu J. The chromosome-level genome assembly of Sichuan pepper provides insights into apomixis, drought tolerance, and alkaloid biosynthesis. Mol Ecol Resour. 2021;21:2533–45. https://doi.org/10.1111/1755-0998.13449.
Article
CAS
PubMed
Google Scholar
Li FQ, Ueda H, Hirose S. Mediators of activation of fushi tarazu gene transcription by BmFTZ-F1. Mol Cell Biol. 1994;14:3013–21. https://doi.org/10.1128/MCB.14.5.3013.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moturu TR, Thula S, Singh RK, Nodzyński T, Vařeková RS, Friml J, Simon S. Molecular evolution and diversification of the SMXL gene family. J Exp Bot. 2018;69:2367–78. https://doi.org/10.1093/jxb/ery097.
Article
CAS
PubMed
Google Scholar
He F, Shi Y, Zhao Q, Zhao K, Cui X, Chen L, Yang H, Zhang F, Mi J, Huang J, Wan X. Genome-wide investigation and expression profiling of polyphenol oxidase (PPO) family genes uncover likely functions in organ development and stress responses in Populus trichocarpa. BMC Genomics. 2021;22:731. https://doi.org/10.1186/s12864-021-08028-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen B, Feder ME, Kang L. Evolution of heat-shock protein expression underlying adaptive responses to environmental stress. Mol Ecol. 2018;27:3040–54. https://doi.org/10.1111/mec.14769.
Article
PubMed
Google Scholar
Liu D, Meng S, Xiang Z, Yang G, He N. An R1R2R3 MYB transcription factor, MnMYB3R1, regulates the polyphenol oxidase gene in mulberry (Morus notabilis). Int J Mol Sci. 2019;20:2602. https://doi.org/10.3390/ijms20102602.
Article
CAS
PubMed Central
Google Scholar
Schrader L, Schmitz J. The impact of transposable elements in adaptive evolution. Mol Ecol. 2019;28:1537–49. https://doi.org/10.1111/mec.14794.
Article
PubMed
Google Scholar
Zhang L, Zhou D, Hu H, Li W, Hu Y, Xie J, Huang S, Wang W. Genome-wide characterization of a SRO gene family involved in response to biotic and abiotic stresses in banana (Musa spp). Bmc Plant Biol. 2019;19:211. https://doi.org/10.1186/s12870-019-1807-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huo S, Li Y, Li R, Chen R, Xing H, Wang J, Zhao Y, Song X. Genome-wide analysis of the MADS-box gene family in Rhododendron hainanense Merr. and expression analysis under heat and waterlogging stresses. Ind Crop Prod. 2021;172:114007. https://doi.org/10.1016/j.indcrop.2021.114007.
Article
CAS
Google Scholar
Ma Y, Chhapekar SS, Lu L, Oh S, Singh S, Kim CS, Kim S, Choi GJ, Lim YP, Choi SR. Genome-wide identification and characterization of NBS-encoding genes in Raphanus sativus L. and their roles related to Fusarium oxysporum resistance. BMC Plant Biol. 2021;21:47. https://doi.org/10.1186/s12870-020-02803-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xie T, Chen C, Li C, Liu J, Liu C, He Y. Genome-wide investigation of WRKY gene family in pineapple: evolution and expression profiles during development and stress. BMC Genomics. 2018;19:490. https://doi.org/10.1186/s12864-018-4880-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Feng S, Zhao L, Liu Z, Liu Y, Yang T, Wei A. De novo transcriptome assembly of Zanthoxylum bungeanum using Illumina sequencing for evolutionary analysis and simple sequence repeat marker development. Sci Rep. 2017;7:1. https://doi.org/10.1038/s41598-017-15911-7.
Article
CAS
Google Scholar
Yang H, Zhou Y, Zhang Y, Wang J, Shi H. Identification of transcription factors of nitrate reductase gene promoters and NRE2 cis-element through yeast one-hybrid screening in Nicotiana tabacum. Bmc Plant Biol. 2019;19:145. https://doi.org/10.1186/s12870-019-1724-z.
Article
PubMed
PubMed Central
Google Scholar
Zhao B, Cao J, Hu G, Chen Z, Wang L, Shangguan X, Wang L, Mao Y, Zhang T, Wendel JF, Chen X. Core cis-element variation confers subgenome-biased expression of a transcription factor that functions in cotton fiber elongation. New Phytol. 2018;218:1061–75. https://doi.org/10.1111/nph.15063.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chuang Y, Hung Y, Hsu C, Yeh C, Mitsuda N, Ohme-Takagi M, Tsai W, Chen W, Chen H. A dual repeat cis-element determines expression of geranyl diphosphate synthase for monoterpene production in Phalaenopsis orchids. Front Plant Sci. 2018;9:765. https://doi.org/10.3389/fpls.2018.00765.
Article
PubMed
PubMed Central
Google Scholar
Arce DP, Tonon C, Zanetti ME, Godoy AV, Hirose S, Casalongue CA. The potato transcriptional co-activator StMBF1 is up-regulated in response to oxidative stress and interacts with the TATA-box binding protein. J Biochem Mol Biol. 2006;39:355–60. https://doi.org/10.5483/BMBRep.2006.39.4.355.
Article
CAS
PubMed
Google Scholar
Zhang L, Wang Y, Zhang Q, Jiang Y, Zhang H, Li R. Overexpression of HbMBF1a, encoding multiprotein bridging factor 1 from the halophyte Hordeum brevisubulatum, confers salinity tolerance and ABA insensitivity to transgenic Arabidopsis thaliana. Plant Mol Biol. 2020;102:1–17. https://doi.org/10.1007/s11103-019-00926-70.
Article
CAS
PubMed
Google Scholar
Wang Y, Xia D, Li W, Cao X, Ma F, Wang Q, Zhan X, Hua T. Overexpression of a tomato AP2/ERF transcription factor SlERFB1 increases sensitivity to salt and drought stresses. Sci Hortic. 2022;304:111332. https://doi.org/10.1016/j.scienta.2022.111332.
Article
CAS
Google Scholar
Yu R, Suo Y, Yang R, Chang Y, Tian T, Song Y, Wang H, Wang C, Yang R, Liu H, Gao G. StMBF1c positively regulates disease resistance to Ralstonia solanacearum via it’s primary and secondary upregulation combining expression of StTPS5 and resistance marker genes in potato. Plant Sci. 2021;307:110877. https://doi.org/10.1016/j.plantsci.2021.110877.
Article
CAS
PubMed
Google Scholar
Kim G, Cho Y, Yoo S. Regulatory functions of evolutionarily conserved AN1/A20-like Zinc finger family proteins in Arabidopsis stress responses under high temperature. Biochem Bioph Res Co. 2015;457:213–20. https://doi.org/10.1016/j.bbrc.2014.12.090.
Article
CAS
Google Scholar
Qin D, Wang F, Geng X, Zhang L, Yao Y, Ni Z, Peng H, Sun Q. Overexpression of heat stress-responsive TaMBF1c, a wheat (Triticum aestivum L) multiprotein bridging factor, confers heat tolerance in both yeast and rice. Plant Mol Biol. 2015;87:31–45. https://doi.org/10.1007/s11103-014-0259-9.
Article
CAS
PubMed
Google Scholar
Pnueli L, Hallak-Herr E, Rozenberg M, Cohen M, Goloubinoff P, Kaplan A, Mittler R. Molecular and biochemical mechanisms associated with dormancy and drought tolerance in the desert legume Retama raetam. Plant J. 2002;31:319–30. https://doi.org/10.1046/j.1365-313X.2002.01364.x.
Article
CAS
PubMed
Google Scholar
Zou L, Yu B, Ma XL, Cao B, Chen G, Chen C, Lei J. Cloning and expression analysis of the BocMBF1c gene involved in heat tolerance in Chinese kale. Int J Mol Sci. 2019;20:5637. https://doi.org/10.3390/ijms20225637.
Article
CAS
PubMed Central
Google Scholar
Teshome DT, Zharare GE, Naidoo S. The threat of the combined effect of biotic and abiotic stress factors in forestry under a changing climate. Front Plant Sci. 2020;11:601009. https://doi.org/10.3389/fpls.2020.601009.
Article
PubMed
PubMed Central
Google Scholar
Hartman S, Liu Z, van Veen H, Vicente J, Reinen E, Martopawiro S, Zhang H, van Dongen N, Bosman F, Bassel GW, Visser EJW, Bailey-Serres J, Theodoulou FL, Hebelstrup KH, Gibbs DJ, Holdsworth MJ, Sasidharan R, Voesenek LACJ. Ethylene-mediated nitric oxide depletion pre-adapts plants to hypoxia stress. Nat Commun. 2019;10:4020. https://doi.org/10.1038/s41467-019-12045-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Loreti E, van Veen H, Perata P. Plant responses to flooding stress. Curr Opin Plant Biol. 2016;33:64–71. https://doi.org/10.1016/j.pbi.2016.06.005.
Article
CAS
PubMed
Google Scholar
Zhu J. Abiotic stress signaling and responses in plants. Cell. 2016;167:313–24. https://doi.org/10.1016/j.cell.2016.08.029.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pamela Arce D, Verónica Godoy A, Tsuda K, Yamazaki K, Marta Valle E, José Iglesias M, Di Mauro MF, Anahí CC. The analysis of an Arabidopsis triple knock-down mutant reveals functions for MBF1 genes under oxidative stress conditions. J Plant Physiol. 2010;167(3):194–200. https://doi.org/10.1016/j.jplph.2009.09.003.
Article
CAS
Google Scholar
Cheng C, Krishnakumar V, Chan AP, Thibaud-Nissen F, Schobel S, Town CD. Araport11: a complete reannotation of the Arabidopsis thaliana reference genome. Plant J. 2017;89:789–804. https://doi.org/10.1111/tpj.13415.
Article
CAS
PubMed
Google Scholar
Ouyang S, Zhu W, Hamilton J, Lin H, Campbell M, Childs K, Thibaud-Nissen F, Malek RL, Lee Y, Zheng L, Orvis J, Haas B, Wortman J, Buell CR. The TIGR rice genome annotation resource: improvements and new features. Nucleic Acids Res. 2007;35:D883–7. https://doi.org/10.1093/nar/gkl976.
Article
CAS
PubMed
Google Scholar
Tuskan GA, Difazio S, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Jansson S, Campbell M, Carlson J, Chalot M, Chapman J, Chen GL, Cooper D, Coutinho PM, Couturier J, Covent S, Cronk Q, Bohlmann J, Cunningham R, Davis J, Degroeve S, Dejardin A, Depamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehiting J, Grigoriev I, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Hellsten U, Henrissat B, Holligan D, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjärvi J, Putnam N, Ralph S, Rombauts S, Salamov A. Oak Ridge National Lab Ornl ORTU The genome of black cottonwood, Populus trichocarpa (Torr & Gray). Science. 2006;313:1596–604. https://doi.org/10.1126/science.1128691.
Article
CAS
PubMed
Google Scholar
Xu Q, Chen L, Ruan X, Chen D, Zhu A, Chen C, Bertrand D, Jiao W, Hao B, Lyon MP, Chen J, Gao S, Xing F, Lan H, Chang J, Ge X, Lei Y, Hu Q, Miao Y, Wang L, Xiao S, Biswas MK, Zeng W, Guo F, Cao H, Yang X, Xu X, Cheng Y, Xu J, Liu J, Luo OJ, Tang Z, Guo W, Kuang H, Zhang H, Roose ML, Nagarajan N, Deng X, Ruan Y. The draft genome of sweet orange (Citrus sinensis). Nat Genet. 2013;45:59–66. https://doi.org/10.1038/ng.2472.
Article
CAS
PubMed
Google Scholar
Liu H, Wang X, Wang G, Cui P, Wu S, Ai C, Hu N, Li A, He B, Shao X, Wu Z, Feng H, Chang Y, Mu D, Hou J, Dai X, Yin T, Ruan J, Cao F. The nearly complete genome of Ginkgo biloba illuminates gymnosperm evolution. Nat Plants. 2021;7:748–56. https://doi.org/10.1038/s41477-021-00933-x.
Article
CAS
PubMed
Google Scholar
Zheng Y, Jiao C, Sun H, Rosli HG, Pombo MA, Zhang P, Banf M, Dai X, Martin GB, Giovannoni JJ, Zhao PX, Rhee SY, Fei Z. iTAK: A program for genome-wide prediction and classification of plant transcription factors, transcriptional regulators, and protein kinases. Mol Plant. 2016;9:1667–70. https://doi.org/10.1016/j.molp.2016.09.014.
Article
CAS
PubMed
Google Scholar
Shen W, Le S, Li Y, Hu F. SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. Plos One. 2016;11:e0163962. https://doi.org/10.1371/journal.pone.0163962.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res. 2012;40:D1178–86. https://doi.org/10.1093/nar/gkr944.
Article
CAS
PubMed
Google Scholar
Hui W, Liu M, Wu G, Wang J, Zhong Y, Li H, Tang H, Zeng W, Ma L, Zhang Y, Xiang L, Chen X, Gong W. Ectopic expression of an AGAMOUS homologue gene in Jatropha curcas causes early flowering and heterostylous phenotypes. Gene. 2021;766:145141. https://doi.org/10.1016/j.gene.2020.145141.
Article
CAS
PubMed
Google Scholar
Hu B, Jin J, Guo A, Zhang H, Luo J, Gao G. GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics. 2015;31:1296–7. https://doi.org/10.1093/bioinformatics/btu817.
Article
PubMed
Google Scholar
Bailey TL, Johnson J, Grant CE, Noble WS. The MEME suite. Nucleic Acids Res. 2015;43:W39–49. https://doi.org/10.1093/nar/gkv416.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu S, Wang J, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Marchler GH, Song JS, Thanki N, Yamashita RA, Yang M, Zhang D, Zheng C, Lanczycki CJ, Marchler-Bauer A. CDD/SPARCLE: the conserved domain database in 2020a. Nucleic Acids Res. 2020;48:D265–8. https://doi.org/10.1093/nar/gkz991.
Article
CAS
PubMed
Google Scholar
Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant. 2020;13:1194–202. https://doi.org/10.1016/j.molp.2020.06.009.
Article
CAS
PubMed
Google Scholar
Wang Y, Tang H, DeBarry JD, Tan X, Li J, Wang X, Lee T, Jin H, Marler B, Guo H, Kissinger JC, Paterson AH. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012;40:e49. https://doi.org/10.1093/nar/gkr1293.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouze P, Rombauts S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002;30:325–7. https://doi.org/10.1093/nar/30.1.325.
Article
CAS
PubMed
PubMed Central
Google Scholar
Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46:W296–303. https://doi.org/10.1093/nar/gky427.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hui W, Zhao F, Wang J, Chen X, Li J, Zhong Y, Li H, Zheng J, Zhang L, Que Q, Wu A, Gong W. De novo transcriptome assembly for the five major organs of Zanthoxylum armatum and the identification of genes involved in terpenoid compound and fatty acid metabolism. BMC Genomics. 2020;21:81. https://doi.org/10.1186/s12864-020-6521-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. https://doi.org/10.1186/s13059-014-0550-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hui W, Wang Y, Chen X, Zayed M, Wu G. Analysis of transcriptional responses of the inflorescence meristems in Jatropha curcas following gibberellin treatment. Int J Mol Sci. 2018;19:432. https://doi.org/10.3390/ijms190.
Article
PubMed Central
Google Scholar