Tsay YF, Ho CH, Chen HY, Lin SH. Integration of nitrogen and potassium signaling. Annu Rev Plant Biol. 2011;62:207–26. https://doi.org/10.1146/annurev-arplant-042110-103837.
Article
CAS
PubMed
Google Scholar
Wang Y, Wu WH. Potassium transport and signaling in higher plants. Annu Rev Plant Biol. 2013;64:451–76. https://doi.org/10.1146/annurev-arplant-050312-120153.
Article
CAS
PubMed
Google Scholar
Pettigrew WT. Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiol Plant. 2008;133(4):670–81. https://doi.org/10.1111/j.1399-3054.2008.01073.x.
Article
CAS
PubMed
Google Scholar
Leigh RA, Jones RGW. A hypothesis relating critical potassium concentrations for growth to the distribution and functions of this ion in the plant cell. New Phytol. 1984;97:1–13. https://doi.org/10.2307/2434189.
Article
CAS
Google Scholar
Glass A. Plant mineral nutrition. An introduction to current concepts. Q Rev Biol. 1989;64(4):499. https://doi.org/10.1109/ICIMTR.2012.6236355.
Article
Google Scholar
Fu HH, Luan S. AtKuP1: a dual-affinity K+ transporter from Arabidopsis. Plant Cell. 1998;10:63–73. https://doi.org/10.1105/tpc.10.1.63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Epstein E, Rains DW, Elzam OE. Resolution of dual mechanisms of potassium absorption by barley roots. Proc Natl Acad Sci U S A. 1963;49:684–92. https://doi.org/10.1073/pnas.49.5.684.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Wu WH. Genetic approaches for improvement of the crop potassium acquisition and utilization efficiency. Curr Opin Plant Biol. 2015;25:46–52. https://doi.org/10.1016/j.pbi.2015.04.007.
Article
CAS
PubMed
Google Scholar
Wang Y, Chen YF, Wu WH. Potassium and phosphorus transport and signaling in plants. J Integr Plant Biol. 2021;63(1):34–52. https://doi.org/10.1111/jipb.13053.
Article
CAS
PubMed
Google Scholar
Sustr M, Soukup A, Tylova E. Potassium in root growth and development. Plants (Basel). 2019;8(10):435. https://doi.org/10.3390/plants8100435.
Article
CAS
Google Scholar
Hirsch RE, Lewis BD, Spalding EP, Sussman MR. A role for the AKT1 potassium channel in plant nutrition. Science. 1998;280(5365):918–21. https://doi.org/10.1126/science.280.5365.918.
Article
CAS
PubMed
Google Scholar
Lagarde D, Basset M, Lepetit M, Conejero G, Gaymard F, Astruc S, et al. Tissue-specific expression of Arabidopsis AKT1 gene is consistent with a role in K+ nutrition. Plant J. 1996;9(2):195–203. https://doi.org/10.1046/j.1365-313x.1996.09020195.x.
Article
CAS
PubMed
Google Scholar
Spalding EP, Hirsch RE, Lewis DR, Qi Z, Sussman MR, Lewis BD. Potassium uptake supporting plant growth in the absence of AKT1 channel activity: inhibition by ammonium and stimulation by sodium. J Gen Physiol. 1999;113(6):909–18. https://doi.org/10.1085/jgp.113.6.909.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ragel P, Raddatz N, Leidi EO, Quintero FJ, Pardo JM. Regulation of K+ nutrition in plants. Front Plant Sci. 2019;10:281. https://doi.org/10.3389/fpls.2019.00281.
Article
PubMed
PubMed Central
Google Scholar
Gierth M, Maser P, Schroeder JI. The potassium transporter AtHAK5 functions in K(+) deprivation-induced high-affinity K(+) uptake and AKT1 K(+) channel contribution to K(+) uptake kinetics in Arabidopsis roots. Plant Physiol. 2005;137(3):1105–14. https://doi.org/10.1104/pp.104.057216.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pyo YJ, Gierth M, Schroeder JI, Cho MH. High-affinity K(+) transport in Arabidopsis: AtHAK5 and AKT1 are vital for seedling establishment and postgermination growth under low-potassium conditions. Plant Physiol. 2010;153(2):863–75. https://doi.org/10.1104/pp.110.154369.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rubio F, Nieves-Cordones M, Aleman F, Martinez V. Relative contribution of AtHAK5 and AtAKT1 to K+ uptake in the high-affinity range of concentrations. Physiol Plant. 2008;134(4):598–608. https://doi.org/10.1111/j.1399-3054.2008.01168.x.
Article
CAS
PubMed
Google Scholar
Chérel I, Gaillard I. The complex fine-tuning of K+ fluxes in plants in relation to osmotic and ionic abiotic stresses. Int J Mol Sci. 2019;20(3):715. https://doi.org/10.3390/ijms20030715.
Article
CAS
PubMed Central
Google Scholar
Hasanuzzaman M, Bhuyan M, Nahar K, Hossain M, Mahmud J, Hossen M, et al. Potassium: a vital regulator of plant responses and tolerance to abiotic stresses. Agron J. 2018;8(3):31. https://doi.org/10.3390/agronomy8030031.
Article
CAS
Google Scholar
Zhang X, Wang G, Xue H, Zhang J, Wang Q, Zhang Z, et al. Metabolite profile of xylem sap in cotton seedlings is changed by K deficiency. Front Plant Sci. 2020;11:592591. https://doi.org/10.3389/fpls.2020.592591.
Article
PubMed
PubMed Central
Google Scholar
Liang M, Gao Y, Mao T, Zhang X, Zhang S, Zhang H, Song Z. Song. Characterization and expression of KT/HAK/KUP transporter family genes in willow under potassium deficiency, drought, and salt stresses. Biomed Res Int 2020; 2020: 2690760. https://doi.org/10.1155/2020/2690760.
Rubio F, Nieves-Cordones M, Horie T, Shabala S. Doing ‘business as usual’ comes with a cost: evaluating energy cost of maintaining plant intracellular K+ homeostasis under saline conditions. New Phytol. 2020;225(3):1097–104. https://doi.org/10.1111/nph.15852.
Article
CAS
PubMed
Google Scholar
Zhang M, Liang X, Wang L, Cao Y, Song W, Shi J, et al. A HAK family Na+ transporter confers natural variation of salt tolerance in maize. Nat Plants. 2019;5(12):1297–308. https://doi.org/10.1038/s41477-019-0565-y.
Article
CAS
PubMed
Google Scholar
Chen G, Liu C, Gao Z, Zhang Y, Jiang H, Zhu L, et al. OsHAK1, a high-affinity potassium transporter, positively regulates responses to drought stress in rice. Front Plant Sci. 2017;8:1885. https://doi.org/10.3389/fpls.2017.01885.
Article
PubMed
PubMed Central
Google Scholar
Zhang ML, Huang PP, Ji Y, Wang S, Wang SS, Li Z, et al. KUP9 maintains root meristem activity by regulating K+ and auxin homeostasis in response to low K. EMBO Rep. 2020;21(6):e50164. https://doi.org/10.15252/embr.202050164.
Article
CAS
PubMed
PubMed Central
Google Scholar
Okba SK, Mazrou Y, Elmenofy HM, Ezzat A, Salama AM. New insights of potassium sources impacts as foliar application on ‘Canino’ apricot fruit yield, fruit anatomy, quality and storability. Plants (Basel). 2021;10(6):1163. https://doi.org/10.3390/plants10061163.
Article
CAS
Google Scholar
Kanai S, Ohkura K, Adu-Gyamfi JJ, Mohapatra PK, Nguyen NT, Saneoka H, et al. Depression of sink activity precedes the inhibition of biomass production in tomato plants subjected to potassium deficiency stress. J Exp Bot. 2007;58(11):2917–28. https://doi.org/10.1093/jxb/erm149.
Article
CAS
PubMed
Google Scholar
Lester GE, Jifon JL, Makus DJ. Impact of potassium nutrition on postharvest fruit quality: melon (Cucumis melo L) case study. Plant Soil. 2009;335(1–2):117–31. https://doi.org/10.1007/s11104-009-0227-3.
Article
CAS
Google Scholar
Zorb C, Senbayram M, Peiter E. Potassium in agriculture--status and perspectives. J Plant Physiol. 2014;171(9):656–69. https://doi.org/10.1016/j.jplph.2013.08.008.
Article
CAS
PubMed
Google Scholar
Gao Y, Tang Z, Xia H, Sheng M, Liu M, Pan S, et al. Potassium fertilization stimulates sucrose-to-starch conversion and root formation in sweet potato (Ipomoea batatas (L.) lam.). Int J Mol Sci. 2021;22(9):4826. https://doi.org/10.3390/ijms22094826.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zayan MA, Mikhael GB, Okba SK. Treatments for improving tree growth, yield and fruit quality and for reducing double fruit and deep suture incidence in “desert red” peach trees. Int J Hortic Sci. 2016;22(3–4):7–19. https://doi.org/10.31421/IJHS/22/3-4./1187.
Article
Google Scholar
Guo K, Tu L, He Y, Deng J, Wang M, Huang H, et al. Interaction between calcium and potassium modulates elongation rate in cotton fiber cells. J Exp Bot. 2017;68(18):5161–75. https://doi.org/10.1093/jxb/erx346.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ruan YL, Llewellyn DJ, Furbank RT. The control of single-celled cotton fiber elongation by developmentally reversible gating of plasmodesmata and coordinated expression of sucrose and K+ transporters and expansin. Plant Cell. 2001;13(1):47–60. https://doi.org/10.1105/tpc.13.1.47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang JS, Hu W, Zhao W, Meng Y, Chen B, Wang Y, et al. Soil potassium deficiency reduces cotton fiber strength by accelerating and shortening fiber development. Sci Rep. 2016;6:28856. https://doi.org/10.1038/srep28856.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang J, Hu W, Zhao W, Chen B, Wang Y, Zhou Z, et al. Fruiting branch K(+) level affects cotton fiber elongation through osmoregulation. Front. Plant Sci. 2016;7:13. https://doi.org/10.3389/fpls.2016.00013.
Article
Google Scholar
Hu W, Lv X, Yang J, Chen B, Zhao W, Meng Y, et al. Effects of potassium deficiency on antioxidant metabolism related to leaf senescence in cotton (Gossypium hirsutum L.). Field Crop Res. 2016;191:139–49. https://doi.org/10.1016/j.fcr.2016.02.025.
Article
Google Scholar
Römheld V, Kirkby EA. Research on potassium in agriculture: needs and prospects. Plant Soil. 2010;335(1–2):155–80. https://doi.org/10.1007/s11104-010-0520-1.
Article
CAS
Google Scholar
Amtmann A, Troufflard S, Armengaud P. The effect of potassium nutrition on pest and disease resistance in plants. Physiol Plant. 2008;133(4):682–91. https://doi.org/10.1111/j.1399-3054.2008.01075.x.
Article
CAS
PubMed
Google Scholar
Zhou L, He H, Liu R, Han Q, Shou H, Liu B. Overexpression of GmAKT2 potassium channel enhances resistance to soybean mosaic virus. BMC Plant Biol. 2014;14:154. https://doi.org/10.1186/1471-2229-14-154.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Q. Improvement for agronomically important traits by gene engineering in sweetpotato. Breed Sci. 2017;67(1):15–26. https://doi.org/10.1270/jsbbs.16126.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nguyen HC, Chen CC, Lin KH, Chao PY, Lin HH, Huang MY. Bioactive compounds, antioxidants, and health benefits of sweet potato leaves. Molecules. 2021;26(7):1820. https://doi.org/10.3390/molecules26071820.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang J, Moeinzadeh MH, Kuhl H, Helmuth J, Xiao P, Haas S, et al. Haplotype-resolved sweet potato genome traces back its hexaploidization history. Nat Plants. 2017;3(9):696–703. https://doi.org/10.1038/s41477-017-0002-z.
Article
CAS
PubMed
Google Scholar
Arisha MH, Ahmad MQ, Tang W, Liu Y, Yan H, Kou M, et al. RNA-sequencing analysis revealed genes associated drought stress responses of different durations in hexaploid sweet potato. Sci Rep. 2020;10(1):12573. https://doi.org/10.1038/s41598-020-69232-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29(7):644–52. https://doi.org/10.1038/nbt.1883.
Article
CAS
PubMed
PubMed Central
Google Scholar
Armengaud P, Breitling R, Amtmann A. The potassium-dependent transcriptome of Arabidopsis reveals a prominent role of jasmonic acid in nutrient signasling. Plant Physiol. 2004;136(1):2556–76. https://doi.org/10.1104/pp.104.046482.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qin YJ, Wu WH, Wang Y. ZmHAK5 and ZmHAK1 function in K+ uptake and distribution in maize under low K+ conditions. J Integr Plant Biol. 2019;61(6):691–705. https://doi.org/10.1111/jipb.12756.
Article
CAS
PubMed
Google Scholar
Xu J, Li HD, Chen LQ, Wang Y, Liu LL, He L, et al. A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell. 2006;125(7):1347–60. https://doi.org/10.1016/j.cell.2006.06.011.
Article
CAS
PubMed
Google Scholar
Li H, Yu M, Du XQ, Wang ZF, Wu WH, Quintero FJ, et al. NRT1.5/NPF7.3 functions as a proton-coupled H+/K+ antiporter for K+ loading into the xylem in Arabidopsis. Plant Cell. 2017;29(8):2016–26. https://doi.org/10.1105/tpc.16.00972.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cherel I, Lefoulon C, Boeglin M, Sentenac H. Molecular mechanisms involved in plant adaptation to low K(+) availability. J Exp Bot. 2014;65(3):833–48. https://doi.org/10.1093/jxb/ert402.
Article
CAS
PubMed
Google Scholar
O'Sullivan JN, Asher CJ, Blarney FPC. Nutrient disorders of sweet potato. Monographs. 1997:27–32. https://doi.org/10.22004/ag.econ.117165.
Wang J, Wang H, Zhang Y, Zhou J, Chen X. Intraspecific variation in potassium uptake and utilization among sweet potato (Ipomoea batatas L.) genotypes. Field Crop Res. 2015;170:76–82. https://doi.org/10.1016/j.fcr.2014.10.007.
Article
Google Scholar
Gajanayake B, Raja Reddy K, Shankle MW, Arancibia RA. Growth, developmental, and physiological responses of two sweetpotato (Ipomoea batatas L. [lam]) cultivars to early season soil moisture deficit. Sci Hortic. 2014;168:218–28. https://doi.org/10.1016/j.scienta.2014.01.018.
Article
Google Scholar
Liu M, Zhang A-J, Chen X-G, Jin R, Li H-M, Tang Z-H. Effects of potassium deficiency on root morphology, ultrastructure and antioxidant enzyme system in sweet potato (Ipomoea batatas [L.] lam.) during early growth. Acta Physiol Plant. 2017;39(9):211. https://doi.org/10.1007/s11738-017-2512-8.
Article
CAS
Google Scholar
Ma TL, Wu WH, Wang Y. Transcriptome analysis of rice root responses to potassium deficiency. BMC Plant Biol. 2012;12:161. https://doi.org/10.1186/1471-2229-12-161.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang X, Jiang H, Wang H, Cui J, Wang J, Hu J, et al. Transcriptome analysis of rice seedling roots in response to potassium deficiency. Sci Rep. 2017;7(1):5523. https://doi.org/10.1038/s41598-017-05887-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao Y, Sun R, Liu H, Liu X, Xu K, Xiao K, et al. Multi-omics analyses reveal the molecular mechanisms underlying the adaptation of wheat (Triticum aestivum L.) to potassium deprivation. Front. Plant Sci. 2020;11:588994. https://doi.org/10.3389/fpls.2020.588994.
Article
Google Scholar
Yang H, Li Y, Jin Y, Kan L, Shen C, Malladi A, et al. Transcriptome analysis of pyrus betulaefolia seedling root responses to short-term potassium deficiency. Int J Mol Sci. 2020;21(22):8857. https://doi.org/10.3390/ijms21228857.
Article
CAS
PubMed Central
Google Scholar
Shen C, Wang J, Shi X, Kang Y, Xie C, Peng L, et al. Transcriptome analysis of differentially expressed genes induced by low and high potassium levels provides insight into fruit sugar metabolism of pear. Front Plant Sci. 2017;8:938. https://doi.org/10.3389/fpls.2017.00938.
Article
PubMed
PubMed Central
Google Scholar
Yang D, Li F, Yi F, Eneji AE, Tian X, Li Z. Transcriptome analysis unravels key factors involved in response to potassium deficiency and feedback regulation of K+ uptake in cotton roots. Int J Mol Sci. 2021;22(6):3133. https://doi.org/10.3390/ijms22063133.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao X, Liu Y, Liu X, Jiang J. Comparative transcriptome profiling of two tomato genotypes in response to potassium-deficiency stress. Int J Mol Sci. 2018;19(8):2402. https://doi.org/10.3390/ijms19082402.
Article
CAS
PubMed Central
Google Scholar
Ragel P, Rodenas R, Garcia-Martin E, Andres Z, Villalta I, Nieves-Cordones M, et al. The CBL-interacting protein kinase CIPK23 regulates HAK5-mediated high-affinity K+ uptake in Arabidopsis roots. Plant Physiol. 2015;169(4):2863–73. https://doi.org/10.1104/pp.15.01401.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pei ZM, Murata Y, Benning G, Thomine S, Klusener B, Allen GJ, et al. Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature. 2000;406(6797):731–4. https://doi.org/10.1038/35021067.
Article
CAS
PubMed
Google Scholar
Mustilli AC, Merlot S, Vavasseur A, Fenzi F, Giraudat J. Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell. 2002;14(12):3089–99. https://doi.org/10.1105/tpc.007906.
Article
CAS
PubMed
PubMed Central
Google Scholar
Neill SJ. Hydrogen peroxide and nitric oxide as signalling molecules in plants. J Exp Bot. 2002;53(372):1237–47. https://doi.org/10.1093/jexbot/53.372.1237.
Article
CAS
PubMed
Google Scholar
Shin R, Schachtman DP. Hydrogen peroxide mediates plant root cell response to nutrient deprivation. Proc Natl Acad Sci U S A. 2004;101(23):8827–32. https://doi.org/10.1073/pnas.0401707101.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shin R, Berg RH, Schachtman DP. Schachtman, reactive oxygen species and root hairs in Arabidopsis root response to nitrogen, phosphorus and potassium deficiency. Plant Cell Physiol. 2005;46(8):1350–7. https://doi.org/10.1093/pcp/pci145.
Article
CAS
PubMed
Google Scholar
Jung JY, Shin R, Schachtman DP. Ethylene mediates response and tolerance to potassium deprivation in Arabidopsis. Plant Cell. 2009;21(2):607–21. https://doi.org/10.1105/tpc.108.063099.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang FL, Tan YL, Wallrad L, Du XQ, Eickelkamp A, Wang ZF, et al. A potassium-sensing niche in Arabidopsis roots orchestrates signaling and adaptation responses to maintain nutrient homeostasis. Dev Cell. 2021;56(6):781–94. https://doi.org/10.1016/j.devcel.2021.02.027.
Article
CAS
PubMed
Google Scholar
Kim MJ, Ruzicka D, Shin R, Schachtman DP. The Arabidopsis AP2/ERF transcription factor RAP2.11 modulates plant response to low-potassium conditions. Mol Plant. 2012;5(5):1042–457. https://doi.org/10.1093/mp/sss003.
Article
CAS
PubMed
Google Scholar
Li G, Wu Y, Liu G, Xiao X, Wang P, Gao T, et al. Large-scale proteomics combined with transgenic experiments demonstrates an important role of Jasmonic acid in potassium deficiency response in wheat and rice. Mol Cell Proteomics. 2017;16(11):1889–905. https://doi.org/10.1074/mcp.RA117.000032.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tahir MM, Chen S, Ma X, Li S, Zhang X, Shao Y, et al. Transcriptome analysis reveals the promotive effect of potassium by hormones and sugar signaling pathways during adventitious roots formation in the apple rootstock. Plant Physiol Biochem. 2021;165:123–36. https://doi.org/10.1016/j.plaphy.2021.05.015.
Article
CAS
PubMed
Google Scholar
Deepika SA. Expression dynamics indicate the role of Jasmonic acid biosynthesis pathway in regulating macronutrient (N, P and K+) deficiency tolerance in rice (Oryza sativa L.). Plant Cell Rep. 2021;40(8):1495–512. https://doi.org/10.1007/s00299-021-02721-5.
Article
CAS
PubMed
Google Scholar
Zhao S, Zhang ML, Ma TL, Wang Y. Phosphorylation of ARF2 relieves its repression of transcription of the K+ transporter gene HAK5 in response to low potassium stress. Plant Cell. 2016;28(12):3005–19. https://doi.org/10.1105/tpc.16.00684.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shin R, Burch AY, Huppert KA, Tiwari SB, Murphy AS, Guilfoyle TJ, et al. The Arabidopsis transcription factor MYB77 modulates auxin signal transduction. Plant Cell. 2007;19(8):2440–53. https://doi.org/10.1105/tpc.107.050963.
Article
CAS
PubMed
PubMed Central
Google Scholar
Feng CZ, Luo YX, Wang PD, Gilliham M, Long Y. MYB77 regulates high-affinity potassium uptake by promoting expression of HAK5. New Phytol. 2021;232(1):176–89. https://doi.org/10.1111/nph.17589.
Article
CAS
PubMed
Google Scholar
Vicente-Agullo F, Rigas S, Desbrosses G, Dolan L, Hatzopoulos P, Grabov A. Potassium carrier TRH1 is required for auxin transport in Arabidopsis roots. Plant J. 2004;40(4):523–35. https://doi.org/10.1111/j.1365-313X.2004.02230.x.
Article
CAS
PubMed
Google Scholar
Rigas S, Ditengou FA, Ljung K, Daras G, Tietz O, Palme K, et al. Root gravitropism and root hair development constitute coupled developmental responses regulated by auxin homeostasis in the Arabidopsis root apex. New Phytol. 2013;197(4):1130–41. https://doi.org/10.1111/nph.12092.
Article
CAS
PubMed
Google Scholar
Dombrecht B, Xue GP, Sprague SJ, Kirkegaard JA, Ross JJ, Reid JB, et al. MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis. Plant Cell. 2007;19(7):2225–45. https://doi.org/10.1105/tpc.106.048017.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell. 2003;15(1):63–78. https://doi.org/10.1105/tpc.006130.
Article
CAS
PubMed
PubMed Central
Google Scholar
Verma D, Jalmi SK, Bhagat PK, Verma N, Sinha AK. A bHLH transcription factor, MYC2, imparts salt intolerance by regulating proline biosynthesis in Arabidopsis. FEBS J. 2020;287(12):2560–76. https://doi.org/10.1111/febs.15157.
Article
CAS
PubMed
Google Scholar
Du M, Zhao J, Tzeng DTW, Liu Y, Deng L, Yang T, et al. MYC2 orchestrates a hierarchical transcriptional cascade that regulates jasmonate-mediated plant immunity in tomato. Plant Cell. 2017;29(8):1883–906. https://doi.org/10.1105/tpc.16.00953.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ho CH, Lin SH, Hu HC, Tsay YF. CHL1 functions as a nitrate sensor in plants. Cell. 2009;138(6):1184–94. https://doi.org/10.1016/j.cell.2009.07.004.
Article
CAS
PubMed
Google Scholar
Armengaud P, Sulpice R, Miller AJ, Stitt M, Amtmann A, Gibon Y. Multilevel analysis of primary metabolism provides new insights into the role of potassium nutrition for glycolysis and nitrogen assimilation in Arabidopsis roots. Plant Physiol. 2009;150(2):772–85. https://doi.org/10.1104/pp.108.133629.
Article
CAS
PubMed
PubMed Central
Google Scholar
Siddiqui MH, Khan MN, Mukherjee S, Alamri S, Basahi RA, Al-Amri AA, et al. Hydrogen sulfide (H2S) and potassium (K+) synergistically induce drought stress tolerance through regulation of H+-ATPase activity, sugar metabolism, and antioxidative defense in tomato seedlings. Plant Cell Rep. 2021;40(8):1543–64. https://doi.org/10.1007/s00299-021-02731-3.
Article
CAS
PubMed
Google Scholar
Omondi JO, Lazarovitch N, Rachmilevitch S, Kukew T, Yermiyahu U, Yasuor H. Potassium and storage root development: focusing on photosynthesis, metabolites and soluble carbohydrates in cassava. Physiol Plant. 2020;169(2):169–78. https://doi.org/10.1111/ppl.13060.
Article
CAS
PubMed
Google Scholar
Chen HY, Huh JH, Yu YC, Ho LH, Chen LQ, Tholl D, et al. The Arabidopsis vacuolar sugar transporter SWEET2 limits carbon sequestration from roots and restricts Pythium infection. Plant J. 2015;83(6):1046–58. https://doi.org/10.1111/tpj.12948.
Article
CAS
PubMed
Google Scholar
Hoagland DR, Arnon DI. The water-culture method for growing plants without soil. California department of agriculture experimental station sircular, vol. 347; 1950. p. 1–32. https://doi.org/10.1016/S0140-6736(00)73482-9.
Book
Google Scholar
Li X, Sun J, Chen Z, Jiang J, Jackson A. Characterization of carotenoids and phenolics during fruit ripening of Chinese raspberry (Rubus chingii Hu). RSC Adv. 2021;11(18):10804–13. https://doi.org/10.1039/d0ra10373j.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kanehisa M, Furumichi M, Sato Y, Ishiguro-Watanabe M, Tanabe M. KEGG: integrating viruses and cellular organisms. Nucleic Acids Res. 2021;49(D1):D545–51. https://doi.org/10.1093/nar/gkaa970.
Article
CAS
PubMed
Google Scholar
Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30. https://doi.org/10.1093/nar/28.1.27.
Article
CAS
PubMed
PubMed Central
Google Scholar