Mills RE, Walter K, Stewart C, Handsaker RE, Chen K, Alkan C, et al. Mapping copy number variation by population-scale genome sequencing. Nature. 2011;470:59–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saitou M, Gokcumen O. An evolutionary perspective on the impact of genomic copy number variation on human health. J Mol Evol. 2020;88:104–19.
Article
CAS
PubMed
Google Scholar
Liu GE, Bickhart DM. Copy number variation in the cattle genome. Funct Integr Genomics. 2012;12:609–24.
Article
CAS
PubMed
Google Scholar
Wang Y, Gu X, Feng C, Song C, Hu X, Li N. A genome-wide survey of copy number variation regions in various chicken breeds by array comparative genomic hybridization method. Anim Genet. 2012;43:282–9.
Article
CAS
PubMed
Google Scholar
Bickhart DM, Liu GE. The challenges and importance of structural variation detection in livestock. Front Genet. 2014;5:37.
Article
PubMed
PubMed Central
CAS
Google Scholar
Henrichsen CN, Chaignat E, Reymond A. Copy number variants, diseases and gene expression. Hum Mol Genet. 2009;18:R1–8.
Article
CAS
PubMed
Google Scholar
Zhang F, Gu W, Hurles ME, Lupski JR. Copy number variation in human health, disease, and evolution. Annu Rev Genom Hum Genet. 2009;10:451–81.
Article
CAS
Google Scholar
Long J, Delahanty RJ, Li G, Gao YT, Lu W, Cai Q, et al. A common deletion in the APOBEC3 genes and breast cancer risk. J Natl Cancer Inst. 2013;105:573–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Warland A, Kendall KM, Rees E, Kirov G, Caseras X. Schizophrenia-associated genomic copy number variants and subcortical brain volumes in the UK biobank. Mol Psychiatry. 2019;25:854–62.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kendall KM, Rees E, Bracher-Smith M, Legge S, Riglin L, Zammit S, et al. Association of rare copy number variants with risk of depression. JAMA Psychiatry. 2019;76:818–25.
Article
PubMed
PubMed Central
Google Scholar
Sahajpal NS, Jill Lai CY, Hastie A, Mondal AK, Dehkordi SR, van der Made CI, et al. Optical genome mapping identifies rare structural variations as predisposition factors associated with severe COVID-19. iScience. 2022;25:103760.
Article
CAS
PubMed
PubMed Central
Google Scholar
Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, et al. Finding the missing heritability of complex diseases. Nature. 2009;461:747–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pailhoux E, Vigier B, Chaffaux S, Servel N, Taourit S, Furet JP, et al. A 11.7-kb deletion triggers intersexuality and polledness in goats. Nat Genet. 2001;29:453–8.
Article
CAS
PubMed
Google Scholar
Rosengren Pielberg G, Golovko A, Sundström E, Curik I, Lennartsson J, Seltenhammer MH, et al. A cis-acting regulatory mutation causes premature hair graying and susceptibility to melanoma in the horse. Nat Genet. 2008;40:1004–9.
Article
CAS
PubMed
Google Scholar
Meyers SN, McDaneld TG, Swist SL, Marron BM, Steffen DJ, O’Toole D, et al. A deletion mutation in bovine SLC4A2 is associated with osteopetrosis in red Angus cattle. BMC Genomics. 2010;11:1–14.
Article
CAS
Google Scholar
Giuffra E, Törnsten A, Marklund S, Bongcam-Rudloff E, Chardon P, Kijas JMH, et al. A large duplication associated with dominant white color in pigs originated by homologous recombination between LINE elements flanking KIT. Mamm Genome. 2002;13:569–77.
Article
CAS
PubMed
Google Scholar
Zhao M, Wang Q, Wang Q, Jia P, Zhao Z. Computational tools for copy number variation (CNV) detection using next-generation sequencing data: features and perspectives. BMC Bioinformatics. 2013;14:1–16.
Article
Google Scholar
Abyzov A, Urban AE, Snyder M, Gerstein M. CNVnator: an approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Res. 2011;21:974–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yoon S, Xuan Z, Makarov V, Ye K, Sebat J. Sensitive and accurate detection of copy number variants using read depth of coverage. Genome Res. 2009;19:1586–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Strillacci MG, Gorla E, Cozzi MC, Vevey M, Genova F, Scienski K, et al. A copy number variant scan in the autochthonous Valdostana red pied cattle breed and comparison with specialized dairy populations. Plos One. 2018;13:e0204669.
Article
PubMed
PubMed Central
CAS
Google Scholar
Butty AM, Chud TCS, Miglior F, Schenkel FS, Kommadath A, Krivushin K, et al. High confidence copy number variants identified in Holstein dairy cattle from whole genome sequence and genotype array data. Sci Rep. 2020;10:1–13.
Article
CAS
Google Scholar
Letaief R, Rebours E, Grohs C, Meersseman C, Fritz S, Trouilh L, et al. Identification of copy number variation in French dairy and beef breeds using next-generation sequencing. Genet Sel Evol. 2017;49:77.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yuan C, Lu Z, Guo T, Yue Y, Wang X, Wang T, et al. A global analysis of CNVs in Chinese indigenous fine-wool sheep populations using whole-genome resequencing. BMC Genomics. 2021;22:1–10.
Article
Google Scholar
Ladeira GC, Pilonetto F, Fernandes AC, Bóscollo PP, Dauria BD, Titto CG, et al. CNV detection and their association with growth, efficiency and carcass traits in Santa Inês sheep. J Anim Breed Genet. 2022;00:1.
Google Scholar
Salehian-Dehkordi H, Xu YX, Xu S, Li X, Luo LY, Liu YJ, et al. Genome-wide detection of copy number variations and their association with distinct phenotypes in the world’s sheep. Front Genet. 2021;12:611.
Article
Google Scholar
Guo J, Zhong J, Liu GE, Yang L, Li L, Chen G, et al. Identification and population genetic analyses of copy number variations in six domestic goat breeds and bezoar ibexes using next-generation sequencing. BMC Genomics. 2020;21:1–13.
Article
Google Scholar
Nandolo W, Mészáros G, Wurzinger M, Banda LJ, Gondwe TN, Mulindwa HA, et al. Detection of copy number variants in African goats using whole genome sequence data. BMC Genomics. 2021;22:1–15.
Article
CAS
Google Scholar
Guan D, Castelló A, Luigi-Sierra MG, Landi V, Delgado JV, Martínez A, et al. Estimating the copy number of the agouti signaling protein (ASIP) gene in goat breeds with different color patterns. Livest Sci. 2021;246:104440.
Article
Google Scholar
Qiu Y, Ding R, Zhuang Z, Wu J, Yang M, Zhou S, et al. Genome-wide detection of CNV regions and their potential association with growth and fatness traits in Duroc pigs. BMC Genomics. 2021;22:1–16.
Article
CAS
Google Scholar
Zheng X, Zhao P, Yang K, Ning C, Wang H, Zhou L, et al. CNV analysis of Meishan pig by next-generation sequencing and effects of AHR gene CNV on pig reproductive traits. J Anim Sci Biotechnol. 2020;11:1–11.
Article
CAS
Google Scholar
Bovo S, Ribani A, Muñoz M, Alves E, Araujo JP, Bozzi R, et al. Genome-wide detection of copy number variants in European autochthonous and commercial pig breeds by whole-genome sequencing of DNA pools identified breed-characterising copy number states. Anim Genet. 2020;51:541–56.
Article
CAS
PubMed
Google Scholar
Strillacci MG, Cozzi MC, Gorla E, Mosca F, Schiavini F, Román-Ponce SI, et al. Genomic and genetic variability of six chicken populations using single nucleotide polymorphism and copy number variants as markers. Animal. 2017;11:737–45.
Article
CAS
PubMed
Google Scholar
Seol D, Ko BJ, Kim B, Chai HH, Lim D, Kim H. Identification of copy number variation in domestic chicken using whole-genome sequencing reveals evidence of selection in the genome. Animals. 2019;9:809.
Article
PubMed Central
Google Scholar
Lin S, Lin X, Zhang Z, Jiang M, Rao Y, Nie Q, et al. Copy number variation in SOX6 contributes to chicken muscle development. Genes. 2018;9:42.
Article
PubMed Central
CAS
Google Scholar
Strillacci MG, Gorla E, Ríos-Utrera A, Vega-Murillo VE, Montaño-Bermudez M, Garcia-Ruiz A, et al. Copy number variation mapping and genomic variation of autochthonous and commercial turkey populations. Front Genet. 2019;10:982.
Article
PubMed
PubMed Central
Google Scholar
Strillacci MG, Marelli SP, Milanesi R, Zaniboni L, Punturiero C, Cerolini S. Copy number variants in four Italian Turkey breeds. Animals. 2021;11:391.
Article
PubMed
PubMed Central
Google Scholar
Strillacci MG, Moradi-Shahrbabak H, Davoudi P, Ghoreishifar SM, Mokhber M, Masroure AJ, et al. A genome-wide scan of copy number variants in three Iranian indigenous river buffaloes. BMC Genomics. 2021;22:1–14.
Article
CAS
Google Scholar
Wang H, Chai Z, Hu D, Ji Q, Xin J, Zhang C, et al. A global analysis of CNVs in diverse yak populations using whole-genome resequencing. BMC Genomics. 2019;20:1–12.
Google Scholar
Zhang X, Wang K, Wang L, Yang Y, Ni Z, Xie X, et al. Genome-wide patterns of copy number variation in the Chinese yak genome. BMC Genomics. 2016;17:1–12.
Article
CAS
Google Scholar
Fontanesi L, Martelli PL, Scotti E, Russo V, Rogel-Gaillard C, Casadio R, et al. Exploring copy number variation in the rabbit (Oryctolagus cuniculus) genome by array comparative genome hybridization. Genomics. 2012;100:245–51.
Article
CAS
PubMed
Google Scholar
Fontanesi L, Beretti F, Martelli PL, Colombo M, Dall’Olio S, Occidente M, et al. A first comparative map of copy number variations in the sheep genome. Genomics. 2011;97:158–65.
Article
CAS
PubMed
Google Scholar
Upadhyay M, da Silva VH, Megens HJ, Visker MHPW, Ajmone-Marsan P, Bâlteanu VA, et al. Distribution and functionality of copy number variation across European cattle populations. Front Genet. 2017;8:108.
Article
PubMed
PubMed Central
CAS
Google Scholar
Stafuzza NB, Silva RMDO, Fragomeni BDO, Masuda Y, Huang Y, Gray K, et al. A genome-wide single nucleotide polymorphism and copy number variation analysis for number of piglets born alive. BMC Genomics. 2019;20:1–11.
Article
Google Scholar
Feng Z, Li X, Cheng J, Jiang R, Huang R, Wang D, et al. Copy number variation of the PIGY gene in sheep and its association analysis with growth traits. Animals. 2020;10:688.
Article
PubMed Central
Google Scholar
Turner P, Buijs S, Rommers JM, Tessier M. The code of practice for the care and handling of farmed mink, vol. 58. Rexdale: The National Farm Animal Care Council; 2013.
Google Scholar
Do DN, Miar Y. Evaluation of growth curve models for body weight in American mink. Animals. 2019;10:22.
Article
PubMed Central
Google Scholar
Karimi K, Do DN, Sargolzaei M, Miar Y. Population genomics of American mink using whole genome sequencing data. Genes. 2021;12:258.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen Y, Chen Y, Shi C, Huang Z, Zhang Y, Li S, et al. SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. Gigascience. 2018;7:1–6.
Article
PubMed
PubMed Central
Google Scholar
Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM; 2013.
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Toolkit P. Broad institute, GitHub repository; 2019.
Google Scholar
Suvakov M, Panda A, Diesh C, Holmes I, Abyzov A. CNVpytor: a tool for copy number variation detection and analysis from read depth and allele imbalance in whole-genome sequencing. Gigascience. 2021;10:1–9.
Article
Google Scholar
Rausch T, Zichner T, Schlattl A, Stütz AM, Benes V, Korbel JO. DELLY: structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics. 2012;28:i333–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen X, Schulz-Trieglaff O, Shaw R, Barnes B, Schlesinger F, Källberg M, et al. Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics. 2016;32:1220–2.
Article
CAS
PubMed
Google Scholar
Jeffares DC, Jolly C, Hoti M, Speed D, Shaw L, Rallis C, et al. Transient structural variations have strong effects on quantitative traits and reproductive isolation in fission yeast. Nat Commun. 2017;8:1–11.
Article
CAS
Google Scholar
Kim JH, Hu HJ, Yim SH, Bae JS, Kim SY, et al. CNVRuler: a copy number variation-based case–control association analysis tool. Bioinformatics. 2012;28:1790–2.
Article
CAS
PubMed
Google Scholar
Keel BN, Nonneman DJ, Lindholm-Perry AK, Oliver WT, Rohrer GA. A survey of copy number variation in the porcine genome detected from whole-genome sequence. Front Genet. 2019;10:737.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pierce MD, Dzama K, Muchadeyi FC. Genetic diversity of seven cattle breeds inferred using copy number variations. Front Genet. 2018;9:163.
Article
PubMed
PubMed Central
CAS
Google Scholar
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, et al. G:profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019;47:91–8.
Article
CAS
Google Scholar
Peterson H, Kolberg L, Raudvere U, Kuzmin I, Vilo J. gprofiler2 - an R package for gene list functional enrichment analysis and namespace conversion toolset g:Profiler. F1000Res. 2020;9.
Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16:284–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guangchuang Y. Enrichplot: visualization of functional enrichment result. R package version 1142; 2022.
Google Scholar
Carlson M. org. Hs.eg.db: Genome wide annotation for Human. R package version 382. 2019.
Google Scholar
Karimi K, Farid AH, Sargolzaei M, Myles S, Miar Y. Linkage disequilibrium, effective population size and genomic inbreeding rates in American mink using genotyping-by-sequencing data. Front Genet. 2020;11:223.
Article
CAS
PubMed
PubMed Central
Google Scholar
Da Silva VH, De Almeida Regitano LC, Geistlinger L, Pértille F, Giachetto PF, Brassaloti RA, et al. Genome-wide detection of cnvs and their association with meat tenderness in Nelore cattle. Plos One. 2016;11:e0157711.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liu M, Woodward-Greene J, Kang X, Pan MG, Rosen B, van Tassell CP, et al. Genome-wide CNV analysis revealed variants associated with growth traits in African indigenous goats. Genomics. 2020;112:1477–80.
Article
CAS
PubMed
Google Scholar
Fernandes AC, da Silva VH, Goes CP, Moreira GCM, Godoy TF, Ibelli AMG, et al. Genome-wide detection of CNVs and their association with performance traits in broilers. BMC Genomics. 2021;22:1–18.
Article
CAS
Google Scholar
Hu Y, Xia H, Li M, Xu C, Ye X, Su R, et al. Comparative analyses of copy number variations between Bos taurus and Bos indicus. BMC Genomics. 2020;21:1–11.
Article
Google Scholar
Antunes de Lemos MV, Berton MP, Ferreira de Camargo GM, Peripolli E, de Oliveira Silva RM, Ferreira Olivieri B, et al. Copy number variation regions in Nellore cattle: evidences of environment adaptation. Livest Sci. 2018;207:51–8.
Article
Google Scholar
Griffin DK, Robertson LB, Tempest HG, Vignal A, Fillon V, Crooijmans RPMA, et al. Whole genome comparative studies between chicken and Turkey and their implications for avian genome evolution. BMC Genomics. 2008;9:1–16.
Article
CAS
Google Scholar
Locke MEO, Milojevic M, Eitutis ST, Patel N, Wishart AE, Daley M, et al. Genomic copy number variation in Mus musculus. BMC Genomics. 2015;16:1–19.
Article
CAS
Google Scholar
Teo SM, Pawitan Y, Ku CS, Chia KS, Salim A. Statistical challenges associated with detecting copy number variations with next-generation sequencing. Bioinformatics. 2012;28:2711–8.
Article
CAS
PubMed
Google Scholar
Wang H, Wang C, Yang K, Liu J, Zhang Y, Wang Y, et al. Genome wide distributions and functional characterization of copy number variations between Chinese and western pigs. Plos One. 2015;10:e0131522.
Article
PubMed
PubMed Central
CAS
Google Scholar
Khatri B, Kang S, Shouse S, Anthony N, Kuenzel W, Kong BC. Copy number variation study in Japanese quail associated with stress related traits using whole genome re-sequencing data. Plos One. 2019;14:e0214543.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ghosh S, Qu Z, Das PJ, Fang E, Juras R, Cothran EG, et al. Copy number variation in the horse genome. Plos Genet. 2014;10:e1004712.
Article
PubMed
PubMed Central
CAS
Google Scholar
Genova F, Longeri M, Lyons LA, Bagnato A, Gandolfi B, Aberdein D, et al. First genome-wide CNV mapping in FELIS CATUS using next generation sequencing data. BMC Genomics. 2018;19:1–13.
Article
CAS
Google Scholar
Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, et al. Global variation in copy number in the human genome. Nature. 2006;444:444–54.
Negishi M, Oinuma I, Katoh H. Plexins: axon guidance and signal transduction. Cell Mol Life Sci. 2005;62:1363–71.
Article
CAS
PubMed
Google Scholar
McFadden K, Minshew NJ. Evidence for dysregulation of axonal growth and guidance in the etiology of ASD. Front Hum Neurosci. 2013;7:671.
Article
PubMed
PubMed Central
Google Scholar
Ding H, Zhao H, Cheng G, Yang Y, Wang X, Zhao X, et al. Analyses of histological and transcriptome differences in the skin of short-hair and long-hair rabbits. BMC Genomics. 2019;20:1–12.
Article
Google Scholar
Emerson KJ, Bradshaw WE, Holzapfel CM. Concordance of the circadian clock with the environment is necessary to maximize fitness in natural populations. Evolution. 2008;62:979–83.
Article
PubMed
PubMed Central
Google Scholar
Jallageas M, Mas N. Balance between opposite effects of short day stimulation and testicular steroid feedback inhibition on pituitary pulsatile LH release in male mink, Mustela vison. Comp Biochem Physiol C Toxicol Pharmacol. 1996;115:27–32.
CAS
Google Scholar
Martinet L, Mondain-Monval M, Monnerie R. Endogenous circannual rhythms and photorefractoriness of testis activity, moult and prolactin concentrations in mink (Mustela vison). J Reprod Fertil. 1992;95:325–38.
Article
CAS
PubMed
Google Scholar
Boissin-Agasse L, Boissin J. Incidence of a circadian cycle of photosensitivity in the regulation of the annual testis cycle in the mink: A short-day mammal. Gen Comp Endocrinol. 1985;60:109–15.
Article
CAS
PubMed
Google Scholar
Boissin-Agasse L, Boissin J, Ortavant R. Circadian photosensitive phase and photoperiodic control of testis activity in the mink (mustela vison peale and beauvois), a short-day mammal. Biol Reprod. 1982;26:110–9.
Article
CAS
PubMed
Google Scholar
Zschille J, Stier N, Roth M. Gender differences in activity patterns of American mink Neovison vison in Germany. Eur J Wildl Res. 2010;56:187–94.
Article
Google Scholar
Rose J, Oldfield J, Stormshak F. Apparent role of melatonin and prolactin in initiating winter fur growth in mink. Gen Comp Endocrinol. 1987;65:212–5.
Article
CAS
PubMed
Google Scholar
Rose J, Stormshak F, Oldfield J, Adair J. Induction of winter fur growth in mink (Mustela Vison) with melatonin. J Anim Sci. 1984;58:57–61.
Article
CAS
PubMed
Google Scholar
Martinet L, Allain D, Meunier M. Regulation in pregnant mink (Mustela vison) of plasma progesterone and prolactin concentrations and regulation of onset of the spring moult by daylight ratio and melatonin injections. Can J Zool. 1983;61:1959–63.
Article
CAS
Google Scholar
Millar SE, Willert K, Salinas PC, Roelink H, Nusse R, Sussman DJ, et al. WNT signaling in the control of hair growth and structure. Dev Biol. 1999;207:133–49.
Article
CAS
PubMed
Google Scholar
Rishikaysh P, Dev K, Diaz D, Shaikh Qureshi WM, Filip S, Mokry J. Signaling involved in hair follicle morphogenesis and development. Int J Mol Sci. 2014;15:1647–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shimizu H, Morgan BA. Wnt signaling through the β-catenin pathway is sufficient to maintain, but not restore, anagen-phase characteristics of dermal papilla cells. J Invest Dermatol. 2004;122:239–45.
Article
CAS
PubMed
Google Scholar
Kishimoto J, Burgeson RE, Morgan BA. Wnt signaling maintains the hair-inducing activity of the dermal papilla. Genes Dev. 2000;14:1181–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mermall V, Post PL, Mooseker MS. Unconventional myosins in cell movement, membrane traffic, and signal transduction. Science. 1998;279:527–33.
Article
CAS
PubMed
Google Scholar
Manakhov AD, Andreeva T, v., Trapezov O v., Kolchanov NA, Rogaev EI. Genome analysis identifies the mutant genes for common industrial Silverblue and Hedlund white coat colours in American mink. Sci Rep. 2019;9:1–8.
Article
CAS
Google Scholar
Fontanesi LL, Scotti E, Dall’Olio S, Oulmouden A, Russo V. Identification and analysis of single nucleotide polymorphisms in the myosin VA (MYO5A) gene and its exclusion as the causative gene of the dilute coat colour locus in rabbit. World Rabbit Sci. 2012;20:35–41.
Article
Google Scholar
Bierman A, Guthrie AJ, Harper CK. Lavender foal syndrome in Arabian horses is caused by a single-base deletion in the MYO5A gene. Anim Genet. 2010;41:199–201.
Article
CAS
Google Scholar
Christen M, de le Roi M, Jagannathan V, Becker K, Leeb T. Myo5a frameshift variant in a miniature dachshund with coat color dilution and neurological defects resembling human griscelli syndrome type 1. Genes. 2021;12:1479.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang H, Wu Z, Yang L, Zhang Z, Chen H, Ren J. Novel mutations in the Myo5a gene cause a dilute coat color phenotype in mice. FASEB J. 2021;35:e21261.
CAS
PubMed
Google Scholar
Westbroek W, Lambert J, de Schepper S, Kleta R, van den Bossche K, Seabra MC, et al. Rab27b is up-regulated in human griscelli syndrome type ii melanocytes and linked to the actin cytoskeleton via exon f-myosin va transcripts. Pigment Cell Res. 2004;17:498–505.
Article
CAS
PubMed
Google Scholar
Ménasché G, Ho CH, Sanal O, Feldmann J, Tezcan I, Ersoy F, et al. Griscelli syndrome restricted to hypopigmentation results from a melanophilin defect (GS3) or a MYO5A F-exon deletion (GS1). J Clin Investig. 2003;112:450–6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chen Y, Samaraweera P, Sun TT, Kreibich G, Orlow SJ. Rab27b association with melanosomes: dominant negative mutants disrupt melanosomal movement. J Invest Dermatol. 2002;118:933–40.
Article
CAS
PubMed
Google Scholar
Ku KE, Choi N, Sung JH. Inhibition of Rab27a and Rab27b has opposite effects on the regulation of hair cycle and hair growth. Int J Mol Sci. 2020;21:5672.
Article
CAS
PubMed Central
Google Scholar
Ornitz DM, Itoh N. The fibroblast growth factor signaling pathway. Wiley Interdiscip Rev Dev Biol. 2015;4:215–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin WH, Xiang LJ, Shi HX, Zhang J, Jiang LP, Cai PT, et al. Fibroblast growth factors stimulate hair growth through β -catenin and shh expression in C57BL/6 mice. Biomed Res Int. 2015;730139 .
Lv X, Chen W, Sun W, Hussain Z, Wang S, Wang J. Analysis of lncRNAs expression profiles in hair follicle of hu sheep lambskin. Animals. 2020;10:1035.
Article
PubMed Central
Google Scholar
Wang FH, Zhang L, Gong G, Yan XC, Zhang LT, Zhang FT, et al. Genome-wide association study of fleece traits in Inner Mongolia cashmere goats. Anim Genet. 2021;52:375–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jyotsana N, Ta KT, DelGiorno KE. The role of cystine/glutamate antiporter SLC7A11/xCT in the pathophysiology of cancer. Front Oncol. 2022;0:631.
Google Scholar
He X, Li H, Zhou Z, Zhao Z, Li W. Production of brown/yellow patches in the SLC7A11 transgenic sheep via testicular injection of transgene. J Genet Genomics. 2012;39:281–5.
Article
CAS
PubMed
Google Scholar
Tian X, Meng X, Wang L, Song Y, Zhang D, Ji Y, et al. Molecular cloning, mRNA expression and tissue distribution analysis of Slc7a11 gene in alpaca (Lama paco) skins associated with different coat colors. Gene. 2015;555:88–94.
Article
CAS
PubMed
Google Scholar
Chen Y, Hu S, Mu L, Zhao B, Wang M, Yang N, et al. Slc7a11 modulated by POU2F1 is involved in pigmentation in rabbit. Int J Mol Sci. 2019;20:2493.
Article
CAS
PubMed Central
Google Scholar
Wang LM, Bu HY, Song FB, Zhu WB, Fu JJ, Dong ZJ. Characterization and functional analysis of slc7a11 gene, involved in skin color differentiation in the red tilapia. Comp Biochem Physiol Mol Amp Integr Physiol. 2019;236:110529.
Article
CAS
Google Scholar
Deb-Choudhury S. Crosslinking between trichocyte keratins and keratin associated proteins. Adv Exp Med Biol. 2018;1054:173–83.
Article
CAS
PubMed
Google Scholar
Shimomura Y, Ito M. Human hair keratin-associated proteins. J Investig Dermatol Symp Proc. 2005;10:230–3.
Article
CAS
PubMed
Google Scholar
Ito S, Wakamatsu K. Quantitative analysis of eumelanin and pheomelanin in humans, mice, and other animals: a comparative review. Pigment Cell Res. 2003;16:523–31.
Article
PubMed
Google Scholar
Granholm DE, Reese RN, Granholm NH. Agouti alleles alter cysteine and glutathione concentrations in hair follicles and serum of mice (ay/a, AwJ/AwJ, and a/a). J Invest Dermatol. 1996;106:559–63.
Article
CAS
PubMed
Google Scholar
Chintala S, Li W, Lamoreux ML, Ito S, Wakamatsu K, Sviderskaya EV, et al. Slc7a11 gene controls production of pheomelanin pigment and proliferation of cultured cells. Proc Natl Acad Sci. 2005;102:10964–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Song X, Xu C, Liu Z, Yue Z, Liu L, Yang T, et al. Comparative transcriptome analysis of mink (Neovison vison) skin reveals the key genes involved in the melanogenesis of black and white coat colour. Sci Rep. 2017;7:1–11.
Article
CAS
Google Scholar
Han J, Kraft P, Nan H, Guo Q, Chen C, Qureshi A, et al. A genome-wide association study identifies novel alleles associated with hair color and skin pigmentation. Plos Genet. 2008;4:e1000074.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li Z, Wei S, Li H, Wu K, Cai Z, Li D, et al. Genome-wide genetic structure and differentially selected regions among landrace, Erhualian, and Meishan pigs using specific-locus amplified fragment sequencing. Sci Rep. 2017;7:1–12.
CAS
Google Scholar
Guo J, Tao H, Li P, Li L, Zhong T, Wang L, et al. Whole-genome sequencing reveals selection signatures associated with important traits in six goat breeds. Sci Rep. 2018;8:1–11.
Article
Google Scholar
Baranov MV, Revelo NH, Dingjan I, Maraspini R, ter Beest M, Honigmann A, et al. SWAP70 organizes the actin cytoskeleton and is essential for phagocytosis. Cell Rep. 2016;17:1518–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qian Q, Li Y, Fu J, Leng D, Dong Z, Shi J, et al. Switch-associated protein 70 protects against nonalcoholic fatty liver disease via suppression of TAK1. Hepatology. 2021;75:1507–22.
Karimi K, Farid AH, Myles S, Miar Y. Detection of selection signatures for response to Aleutian mink disease virus infection in American mink. Sci Rep. 2021;11:1–13.
Article
CAS
Google Scholar
Picard C, Gilles A, Pontarotti P, Olive D, Collette Y. Cutting edge: recruitment of the ancestral fyn gene during emergence of the adaptive immune system. J Immunol. 2002;168:2595–8.
Article
CAS
PubMed
Google Scholar
Comba A, Dunn PJ, Argento AE, Kadiyala P, Ventosa M, Patel P, et al. Fyn tyrosine kinase, a downstream target of receptor tyrosine kinases, modulates antiglioma immune responses. Neuro-Oncol. 2020;22:806–18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zanella R, Gava D, de O Peixoto J, Schaefer R, Ciacci-Zanella JR, Biondo N, et al. Unravelling the genetic components involved in the immune response of pigs vaccinated against influenza virus. Virus Res. 2015;210:327–36.
Article
CAS
PubMed
Google Scholar
Feske S, Picard C, Fischer A. Immunodeficiency due to mutations in ORAI1 and STIM1. J Clin Immunol. 2010;135:169–82.
Article
CAS
Google Scholar
Bagnall N, Gough J, Cadogan L, Burns B, Kongsuwan K. Expression of intracellular calcium signalling genes in cattle skin during tick infestation. Parasite Immunol. 2009;31:177–87.
Article
CAS
PubMed
Google Scholar
Xue Y, Zhou S, Xie W, Meng M, Ma N, Zhang H, et al. STIM1–Orai1 interaction exacerbates lps-induced inflammation and endoplasmic reticulum stress in bovine hepatocytes through store-operated calcium entry. Genes. 2022;13:874.
Article
CAS
PubMed
PubMed Central
Google Scholar
Beck A, Kolisek M, Bagley LA, Fleig A, Penner R, Beck A, et al. Nicotinic acid adenine dinucleotide phosphate and cyclic ADP-ribose regulate TRPM2 channels in T lymphocytes. FASEB J. 2006;20:962–4.
Article
CAS
PubMed
Google Scholar
Yamamoto S, Shimizu S, Kiyonaka S, Takahashi N, Wajima T, Hara Y, et al. TRPM2-mediated Ca2+ influx induces chemokine production in monocytes that aggravates inflammatory neutrophil infiltration. Nat Med. 2008;14:738–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Knowles H, Heizer JW, Li Y, Chapman K, Ogden CA, Andreasen K, et al. Transient receptor potential melastatin 2 (TRPM2) ion channel is required for innate immunity against listeria monocytogenes. Proc Natl Acad Sci. 2011;108:11578–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hartwig J, Loebel M, Steiner S, Bauer S, Karadeniz Z, Roeger C, et al. Metformin attenuates ROS via FOXO3 activation in immune cells. Front Immunol. 2021;12.
Jepsen JR, D’Amore F, Baandrup U, Clausen MR, Gottschalck E, Aasted B. Aleutian mink disease virus and humans. Emerg Infect Dis. 2009;15:2040–42.
Article
PubMed
PubMed Central
Google Scholar