Dodd AN, Kudla J, Sanders D. The language of calcium signaling. Annu Rev Plant Biol. 2010;61:593–620. https://doi.org/10.1146/annurev-arplant-070109-104628.
Article
CAS
PubMed
Google Scholar
Kudla J, Batistic O, Hashimoto K. Calcium signals: the lead currency of plant information processing. Plant Cell. 2010;22(3):541–63. https://doi.org/10.1105/tpc.109.072686.
Article
CAS
PubMed
PubMed Central
Google Scholar
Iqbal Z, Shariq Iqbal M, Singh SP, Buaboocha T. Ca(2+)/Calmodulin complex triggers CAMTA transcriptional machinery under stress in plants: signaling cascade and molecular regulation. Front Plant Sci. 2020;11: 598327. https://doi.org/10.3389/fpls.2020.598327.
Article
PubMed
PubMed Central
Google Scholar
Sanders D, Brownlee C, Harper JF. Communicating with calcium. Plant Cell. 1999;11(4):691. https://doi.org/10.2307/3870893.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hashimoto K, Kudla J. Calcium decoding mechanisms in plants. Biochimie. 2011;93(12):2054–9. https://doi.org/10.1016/j.biochi.2011.05.019.
Article
CAS
PubMed
Google Scholar
Du L, Poovaiah BW. A novel family of Ca2+/calmodulin-binding proteins involved in transcriptional regulation: interaction with Fsh/Ring3 class transcription activators. Plant Mol Biol. 2004;54(4):549–69. https://doi.org/10.1023/B:PLAN.0000038269.98972.bb.
Article
CAS
PubMed
Google Scholar
Kim Y, Gilmour SJ, Chao L, Park S, Thomashow MF. Arabidopsis CAMTA transcription factors regulate pipecolic acid biosynthesis and priming of immunity genes. Mol Plant. 2020;13(1):157–68. https://doi.org/10.1016/j.molp.2019.11.001.
Article
CAS
PubMed
Google Scholar
Lorenzo O. Bzip edgetic mutations: at the frontier of plant metabolism, development and stress trade-off. J Exp Bot. 2019;70(20):5517–20. https://doi.org/10.1093/jxb/erz298.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu D, Hou L, Xiao P, Guo Y, Deyholos MK, Liu X. VvWRKY30, a grape WRKY transcription factor, plays a positive regulatory role under salinity stress. Plant Sci. 2019;280:132–42. https://doi.org/10.1016/j.plantsci.2018.03.018.
Article
CAS
PubMed
Google Scholar
Bouche N, Scharlat A, Snedden W, Bouchez D, Fromm H. A novel family of calmodulin-binding transcription activators in multicellular organisms. J Biol Chem. 2002;277(24):21851–61. https://doi.org/10.1074/jbc.M200268200.
Article
CAS
PubMed
Google Scholar
Yang T, Poovaiah BW. A calmodulin-binding/CGCG box DNA-binding protein family involved in multiple signaling pathways in plants. J Biol Chem. 2002;277(47):45049–58. https://doi.org/10.1074/jbc.M207941200.
Article
CAS
PubMed
Google Scholar
Finkler A, Ashery-Padan R, Fromm H. CAMTAs: calmodulin-binding transcription activators from plants to human. FEBS Lett. 2007;581(21):3893–8. https://doi.org/10.1016/j.febslet.2007.07.051.
Article
CAS
PubMed
Google Scholar
Aravind L, Koonin EV. Gleaning non-trivial structural, functional and evolutionary information about proteins by iterative database searches. J Mol Biol. 1999;287(5):1023–40. https://doi.org/10.1006/jmbi.1999.2653.
Article
CAS
PubMed
Google Scholar
Rubtsov AM, Lopina OD. Ankyrins. FEBS Lett. 2000;482(1–2):1–5. https://doi.org/10.1016/S0014-5793(00)01924-4.
Article
CAS
PubMed
Google Scholar
Sedgwick SG, Smerdon SJ. The ankyrin repeat: a diversity of interactions on a common structural framework. Trends Biochem Sci. 1999;24(8):311–6. https://doi.org/10.1016/s0968-0004(99)01426-7.
Article
CAS
PubMed
Google Scholar
Kaplan B, Davydov O, Knight H, Galon Y, Knight MR, Fluhr R, Fromm H. Rapid transcriptome changes induced by cytosolic Ca2+ transients reveal ABRE-related sequences as Ca2+-responsive cis elements in Arabidopsis. Plant Cell. 2006;18(10):2733–48. https://doi.org/10.1105/tpc.106.042713.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reddy AS, Reddy VS, Golovkin M. A calmodulin binding protein from Arabidopsis is induced by ethylene and contains a DNA-binding motif. Biochem Biophys Res Commun. 2000;279(3):762–9. https://doi.org/10.1006/bbrc.2000.4032.
Article
CAS
PubMed
Google Scholar
Yue R, Lu C, Sun T, Peng T, Han X, Qi J, Yan S, Tie S. Identification and expression profiling analysis of calmodulin-binding transcription activator genes in maize (Zea mays L.) under abiotic and biotic stresses. Front Plant Sci. 2015;6:576. https://doi.org/10.3389/fpls.2015.00576.
Article
PubMed
PubMed Central
Google Scholar
Shangguan L, Wang X, Leng X, Liu D, Ren G, Tao R, Zhang C, Fang J. Identification and bioinformatic analysis of signal responsive/calmodulin-binding transcription activators gene models in Vitis vinifera. Mol Biol Rep. 2014;41(5):2937–49. https://doi.org/10.1007/s11033-014-3150-5.
Article
CAS
PubMed
Google Scholar
Yang T, Peng H, Whitaker BD, Conway WS. Characterization of a calcium/calmodulin-regulated SR/CAMTA gene family during tomato fruit development and ripening. BMC Plant Biol. 2012;12:19. https://doi.org/10.1186/1471-2229-12-19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meer L, Mumtaz S, Labbo AM, Khan MJ, Sadiq I. Genome-wide identification and expression analysis of calmodulin-binding transcription activator genes in banana under drought stress. Sci Hortic. 2019;244:10–4. https://doi.org/10.1016/j.scienta.2018.09.022.
Article
CAS
Google Scholar
Yang Y, Sun T, Xu L, Pi E, Wang S, Wang H, Shen C. Genome-wide identification of CAMTA gene family members in medicago truncatula and their expression during root nodule symbiosis and hormone treatments. Front Plant Sci. 2015;6:459. https://doi.org/10.3389/fpls.2015.00459.
Article
PubMed
PubMed Central
Google Scholar
Du L, Ali GS, Simons KA, Hou J, Yang T, Reddy AS, Poovaiah BW. Ca(2+)/calmodulin regulates salicylic-acid-mediated plant immunity. Nature. 2009;457(7233):1154–8. https://doi.org/10.1038/nature07612.
Article
CAS
PubMed
Google Scholar
Zhang J, Pan XT, Ge T, Yi SL, Xie RJ. Genome-wide identification of citrus CAMTA genes and their expression analysis under stress and hormone treatments. J Hortic Sci Biotechnol. 2018;94(3):331–40. https://doi.org/10.1080/14620316.2018.1504631.
Article
CAS
Google Scholar
Yang F, Dong FS, Hu FH, Liu YW, Chai JF, Zhao H, Lv MY, Zhou S. Genome-wide identification and expression analysis of the calmodulin-binding transcription activator (CAMTA) gene family in wheat (Triticum aestivum L.). BMC Genet. 2020;21(1):105. https://doi.org/10.1186/s12863-020-00916-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang XC, Zhao QY, Ma CL, Zhang ZH, Cao HL, Kong YM, Yue C, Hao XY, Chen L, Ma JQ, et al. Global transcriptome profiles of Camellia sinensis during cold acclimation. BMC Genomics. 2013;14:415. https://doi.org/10.1186/1471-2164-14-415.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ali E, Raza MA, Cai M, Hussain N, Shahzad AN, Hussain M, Ali M, Bukhari SAH, Sun P. Calmodulin-binding transcription activator (CAMTA) genes family: Genome-wide survey and phylogenetic analysis in flax (Linum usitatissimum). PLoS ONE. 2020;15(7): e0236454. https://doi.org/10.1371/journal.pone.0236454.
Article
CAS
PubMed
PubMed Central
Google Scholar
Galon Y, Snir O, Fromm H. How calmodulin binding transcription activators (CAMTAs) mediate auxin responses. Plant Signal Behav. 2010;5(10):1311–4. https://doi.org/10.4161/psb.5.10.13158.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pandey N, Ranjan A, Pant P, Tripathi RK, Ateek F, Pandey HP, Patre UV, Sawant SV. CAMTA 1 regulates drought responses in Arabidopsis thaliana. BMC Genomics. 2013;14:216. https://doi.org/10.1186/1471-2164-14-216.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thomashow MF. Molecular basis of plant cold acclimation: insights gained from studying the CBF cold response pathway. Plant Physiol. 2010;154(2):571–7. https://doi.org/10.1104/pp.110.161794.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim Y, Park S, Gilmour SJ, Thomashow MF. Roles of CAMTA transcription factors and salicylic acid in configuring the low-temperature transcriptome and freezing tolerance of Arabidopsis. Plant J. 2013;75(3):364–76. https://doi.org/10.1111/tpj.12205.
Article
CAS
PubMed
Google Scholar
Wang L, Feng X, Yao L, Ding C, Lei L, Hao X, Li N, Zeng J, Yang Y, Wang X. Characterization of CBL-CIPK signaling complexes and their involvement in cold response in tea plant. Plant Physiol Biochem. 2020;154:195–203. https://doi.org/10.1016/j.plaphy.2020.06.005.
Article
CAS
PubMed
Google Scholar
Ding C, Lei L, Yao L, Wang L, Hao X, Li N, Wang Y, Yin P, Guo G, Yang Y, et al. The involvements of calcium-dependent protein kinases and catechins in tea plant [Camellia sinensis (L.) O. Kuntze] cold responses. Plant Physiol Biochem. 2019;143:190–202. https://doi.org/10.1016/j.plaphy.2019.09.005.
Article
CAS
PubMed
Google Scholar
Liu H, Wang YX, Li H, Teng RM, Wang Y, Zhuang J. Genome-Wide identification and expression analysis of calcineurin b-like protein and calcineurin b-like protein-interacting protein kinase family genes in tea plant. DNA Cell Biol. 2019;38(8):824–39. https://doi.org/10.1089/dna.2019.4697.
Article
CAS
PubMed
Google Scholar
Wang H, Ding Z, Gou M, Hu J, Wang Y, Wang L, Wang Y, Di T, Zhang X, Hao X, et al. Genome-wide identification, characterization, and expression analysis of tea plant autophagy-related genes (CsARGs) demonstrates that they play diverse roles during development and under abiotic stress. BMC Genomics. 2021;22(1):121. https://doi.org/10.1186/s12864-021-07419-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang L, Yao LN, Hao XY, Li NN, Wang YC, Ding CQ, Lei L, Qian WJ, Zeng JM, Yang YJ, et al. Transcriptional and physiological analyses reveal the association of ROS metabolism with cold tolerance in tea plant. Environ Exp Bot. 2019;160:45–58. https://doi.org/10.1016/j.envexpbot.2018.11.011.
Article
CAS
Google Scholar
Qian W, Xiao B, Wang L, Hao X, Yue C, Cao H, Wang Y, Li N, Yu Y, Zeng J, et al. CsINV5, a tea vacuolar invertase gene enhances cold tolerance in transgenic Arabidopsis. BMC Plant Biol. 2018;18(1):228. https://doi.org/10.1186/s12870-018-1456-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA, Sonnhammer ELL, Tosatto SCE, Paladin L, Raj S, Richardson LJ, et al. Pfam: The protein families database in 2021. Nucleic Acids Res. 2021;49(D1):D412–9. https://doi.org/10.1093/nar/gkaa913.
Article
CAS
PubMed
Google Scholar
Wei C, Yang H, Wang S, Zhao J, Liu C, Gao L, Xia E, Lu Y, Tai Y, She G, et al. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality. Proc Natl Acad Sci U S A. 2018;115(18):E4151–8. https://doi.org/10.1073/pnas.1719622115.
Article
CAS
PubMed
PubMed Central
Google Scholar
Letunic I, Khedkar S, Bork P. SMART: recent updates, new developments and status in 2020. Nucleic Acids Res. 2021;49(D1):D458–60. https://doi.org/10.1093/nar/gkaa937.
Article
CAS
PubMed
Google Scholar
Lu S, Wang J, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Marchler GH, Song JS, et al. CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Res. 2020;48(D1):D265–8. https://doi.org/10.1093/nar/gkz991.
Article
CAS
PubMed
Google Scholar
Wilkins MR, Gasteiger E, Bairoch A, Sanchez JC, Williams KL, Appel RD, Hochstrasser DF. Protein identification and analysis tools in the ExPASy server. Methods in molecular biology (Clifton, NJ). 1999;112:531–52. https://doi.org/10.1385/1-59259-584-7:531.
Article
CAS
Google Scholar
Almagro Armenteros JJ, Tsirigos KD, Sonderby CK, Petersen TN, Winther O, Brunak S, von Heijne G, Nielsen H. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol. 2019;37(4):420–3. https://doi.org/10.1038/s41587-019-0036-z.
Article
CAS
PubMed
Google Scholar
Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001;305(3):567–80. https://doi.org/10.1006/jmbi.2000.4315.
Article
CAS
PubMed
Google Scholar
Chou KC, Shen HB. Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS ONE. 2010;5(6): e11335. https://doi.org/10.1371/journal.pone.0011335.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870–4. https://doi.org/10.1093/molbev/msw054.
Article
CAS
PubMed
PubMed Central
Google Scholar
Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49(W1):W293–6. https://doi.org/10.1093/nar/gkab301.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant. 2020;13(8):1194–202. https://doi.org/10.1016/j.molp.2020.06.009.
Article
CAS
PubMed
Google Scholar
Xue YB, Bao YM, Zhang Z, Zhao WM, Xiao JF, He SM, Zhang GQ, Li Y, Zhao GP, Chen RS, et al. Database resources of the national genomics data center, China National Center for Bioinformation in 2022. Nucleic Acids Res. 2022; 50(1):27–38. https://doi.org/10.1093/nar/gkab951.
Wang P, Yu J, Jin S, Chen S, Yue C, Wang W, Gao S, Cao H, Zheng Y, Gu M, et al. Genetic basis of high aroma and stress tolerance in the oolong tea cultivar genome. Horticulture Research. 2021;8(1):107. https://doi.org/10.1038/s41438-021-00542-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang X, Chen S, Shi L, Gong D, Zhang S, Zhao Q, Zhan D, Vasseur L, Wang Y, Yu J, et al. Haplotype-resolved genome assembly provides insights into evolutionary history of the tea plant Camellia sinensis. Nat Genet. 2021;53(8):1250–9. https://doi.org/10.1038/s41588-021-00895-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu B, Jin J, Guo AY, Zhang H, Luo J, Gao G. GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics. 2015;31(8):1296–7. https://doi.org/10.1093/bioinformatics/btu817.
Article
PubMed
Google Scholar
Blum M, Chang HY, Chuguransky S, Grego T, Kandasaamy S, Mitchell A, Nuka G, Paysan-Lafosse T, Qureshi M, Raj S, et al. The InterPro protein families and domains database: 20 years on. Nucleic Acids Res. 2021;49(D1):D344–54. https://doi.org/10.1093/nar/gkaa977.
Article
CAS
PubMed
Google Scholar
Duvaud S, Gabella C, Lisacek F, Stockinger H, Ioannidis V, Durinx C. Expasy, the Swiss Bioinformatics Resource Portal, as designed by its users. Nucleic Acids Res. 2021;49(W1):W216–27. https://doi.org/10.1093/nar/gkab225.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Peer YVD, Rouzé P, Rombauts S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002;30(1):325–7. https://doi.org/10.1093/nar/30.1.325.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu W, Xie Y, Ma J, Luo X, Nie P, Zuo Z, Lahrmann U, Zhao Q, Zheng Y, Zhao Y, et al. IBS: an illustrator for the presentation and visualization of biological sequences. Bioinformatics. 2015;31(20):3359–61. https://doi.org/10.1093/bioinformatics/btv362.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hao X, Horvath DP, Chao WS, Yang Y, Wang X, Xiao B. Identification and evaluation of reliable reference genes for quantitative real-time PCR analysis in tea plant (Camellia sinensis (L.) O. Kuntze). Int J Mol Sci. 2014;15(12):22155–72. https://doi.org/10.3390/ijms151222155.
Article
CAS
PubMed
PubMed Central
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods. 2001;25(4):402–8. https://doi.org/10.1006/meth.2001.1262.
Article
CAS
PubMed
Google Scholar
Doherty CJ, Van Buskirk HA, Myers SJ, Thomashow MF. Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. Plant Cell. 2009;21(3):972–84. https://doi.org/10.1105/tpc.108.063958.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leng XP, Han J, Wang XM, Zhao MZ, Sun X, Wang C, Fang JG. Characterization of a calmodulin-binding transcription factor from strawberry (Fragaria × ananassa). The Plant Genome. 2015;8(2):1–12. https://doi.org/10.3835/plantgenome2014.08.0039.
Iqbal Z, Iqbal MS, Sangpong L, Khaksar G, Sirikantaramas S, Buaboocha T. Comprehensive genome-wide analysis of calmodulin-binding transcription activator (CAMTA) in durio zibethinus and identification of fruit ripening-associated DzCAMTAs. BMC Genomics. 2021;22(1):743. https://doi.org/10.1186/s12864-021-08022-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schilling S, Kennedy A, Pan S, Jermiin LS, Melzer R. Genome-wide analysis of MIKC-type MADS-box genes in wheat: pervasive duplications, functional conservation and putative neofunctionalization. New Phytol. 2020;225(1):511–29. https://doi.org/10.1111/nph.16122.
Article
CAS
PubMed
Google Scholar
Liu M, Ma Z, Sun W, Huang L, Wu Q, Tang Z, Bu T, Li C, Chen H. Genome-wide analysis of the NAC transcription factor family in Tartary buckwheat (Fagopyrum tataricum). BMC Genomics. 2019;20(1):113. https://doi.org/10.1186/s12864-019-5500-0.
Article
PubMed
PubMed Central
Google Scholar
Chen X, Wang P, Gu M, Lin X, Hou B, Zheng Y, Sun Y, Jin S, Ye N. R2R3-MYB transcription factor family in tea plant (Camellia sinensis): Genome-wide characterization, phylogeny, chromosome location, structure and expression patterns. Genomics. 2021;113(3):1565–78. https://doi.org/10.1016/j.ygeno.2021.03.033.
Article
CAS
PubMed
Google Scholar
Sun LF, Nasrullah, Ke FZ, Nie ZP, Xu JG, Huang X, Sun JH, Wang P. Genome-wide identification and transcript analysis during fruit ripening of ACS gene family in sweet orange (Citrus sinensis). Scientia Horticulturae. 2022;294:110786. https://doi.org/10.1016/j.scienta.2021.110786.
Liu M, Huang Q, Sun W, Ma Z, Huang L, Wu Q, Tang Z, Bu T, Li C, Chen H. Genome-wide investigation of the heat shock transcription factor (Hsf) gene family in Tartary buckwheat (Fagopyrum tataricum). BMC Genomics. 2019;20(1):871. https://doi.org/10.1186/s12864-019-6205-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang T, Poovaiah BW. An early ethylene up-regulated gene encoding a calmodulin-binding protein involved in plant senescence and death. J Biol Chem. 2000;275(49):38467–73. https://doi.org/10.1074/jbc.M003566200.
Article
CAS
PubMed
Google Scholar
Yuan J, Shen C, Chen B, Shen A, Li X. Genome-Wide characterization and expression analysis of CAMTA gene family under salt stress in cucurbita moschata and cucurbita maxima. Front Genet. 2021;12: 647339. https://doi.org/10.3389/fgene.2021.647339.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang T, Peng H, Bauchan GR. Functional analysis of tomato calmodulin gene family during fruit development and ripening. Hortic Res. 2014;1:14057. https://doi.org/10.1038/hortres.2014.57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ma Q, Zhou Q, Chen C, Cui Q, Zhao Y, Wang K, Arkorful E, Chen X, Sun K, Li X. Isolation and expression analysis of CsCML genes in response to abiotic stresses in the tea plant (Camellia sinensis). Sci Rep. 2019;9(1):8211. https://doi.org/10.1038/s41598-019-44681-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim YS, An C, Park S, Gilmour SJ, Wang L, Renna L, Brandizzi F, Grumet R, Thomashow MF. CAMTA-mediated regulation of salicylic acid immunity pathway genes in Arabidopsis exposed to low temperature and pathogen infection. Plant Cell. 2017;29(10):2465–77. https://doi.org/10.1105/tpc.16.00865.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shkolnik D, Finkler A, Pasmanik-Chor M, Fromm H. Calmodulin-binding transcription activator 6: a key regulator of Na(+) homeostasis during germination. Plant Physiol. 2019;180(2):1101–18. https://doi.org/10.1104/pp.19.00119.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu J, Whalley HJ, Knight MR. Combining modelling and experimental approaches to explain how calcium signatures are decoded by calmodulin-binding transcription activators (CAMTAs) to produce specific gene expression responses. New Phytol. 2015;208(1):174–87. https://doi.org/10.1111/nph.13428.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao C, Zhang Z, Xie S, Si T, Li Y, Zhu JK. Mutational evidence for the critical role of CBF transcription factors in cold acclimation in Arabidopsis. Plant Physiol. 2016;171(4):2744–59. https://doi.org/10.1104/pp.16.00533.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kidokoro S, Yoneda K, Takasaki H, Takahashi F, Shinozaki K, Yamaguchi-Shinozaki K. Different cold-signaling pathways function in the responses to rapid and gradual decreases in temperature. Plant Cell. 2017;29(4):760–74. https://doi.org/10.1105/tpc.16.00669.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu Z, Ban Q, Hao J, Zhu X, Cheng Y, Mao J, Lin M, Xia E, Li Y. Genome-Wide characterization of the C-repeat binding factor (CBF) gene family involved in the response to abiotic stresses in tea plant (Camellia sinensis). Front Plant Sci. 2020;11:921. https://doi.org/10.3389/fpls.2020.00921.
Article
PubMed
PubMed Central
Google Scholar
Noman M, Jameel A, Qiang WD, Ahmad N, Li HY. Overexpression of GmCAMTA12 enhanced drought tolerance in Arabidopsis and soybean. Int J Mol Sci. 2019;20(19):4849. https://doi.org/10.3390/ijms20194849.
Article
CAS
PubMed Central
Google Scholar
Gai Z, Wang Y, Ding Y, Qian W, Qiu C, Xie H, Sun L, Jiang Z, Ma Q, Wang L, et al. Exogenous abscisic acid induces the lipid and flavonoid metabolism of tea plants under drought stress. Sci Rep. 2020;10(1):12275. https://doi.org/10.1038/s41598-020-69080-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu X, Liao J, Xia X, Xiong F, Li Y, Shen J, Wen B, Ma Y, Wang Y, Fang W. Physiological and iTRAQ-based proteomic analyses reveal the function of exogenous gamma-aminobutyric acid (GABA) in improving tea plant (Camellia sinensis L.) tolerance at cold temperature. BMC Plant Biology. 2019;19(1):43. https://doi.org/10.1186/s12870-019-1646-9.
Article
PubMed
PubMed Central
Google Scholar
Liu SC, Jin JQ, Ma JQ, Yao MZ, Ma CL, Li CF, Ding ZT, Chen L. Transcriptomic analysis of tea plant responding to drought stress and recovery. PLoS ONE. 2016;11(1): e0147306. https://doi.org/10.1371/journal.pone.0147306.
Article
CAS
PubMed
PubMed Central
Google Scholar
Prasad K, Abdel-Hameed AAE, Xing D, Reddy ASN. Global gene expression analysis using RNA-seq uncovered a new role for SR1/CAMTA3 transcription factor in salt stress. Sci Rep. 2016;6:27021. https://doi.org/10.1038/srep27021.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wan SQ, Wang WD, Zhou TS, Zhang YH, Chen JF, Xiao B, Yang YJ, Yu YB. Transcriptomic analysis reveals the molecular mechanisms of Camellia sinensis in response to salt stress. Plant Growth Regul. 2018;84(3):481–92. https://doi.org/10.1007/s10725-017-0354-4.
Article
CAS
Google Scholar