Baena-González E, Rolland F, Thevelein JM, Sheen J. A central integrator of transcription networks in plant stress and energy signalling. Nature. 2007;448(7156):938–42. https://doi.org/10.1038/nature06069.
Article
CAS
PubMed
Google Scholar
Lin Z, Li Y, Zhang Z, Liu X, Hsu CC, Du Y, et al. A RAF-SnRK2 kinase cascade mediates early osmotic stress signaling in higher plants. Nat Commun. 2020;11(1):613. https://doi.org/10.1038/s41467-020-14477-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takahashi Y, Zhang J, Hsu PK, Ceciliato PHO, Zhang L, Dubeaux G, et al. MAP3Kinase-dependent SnRK2-kinase activation is required for abscisic acid signal transduction and rapid osmotic stress response. Nat Commun. 2020;11:12.
Article
CAS
Google Scholar
Lin Z, Li Y, Wang Y, Liu X, Ma L, Zhang Z, et al. Initiation and amplification of SnRK2 activation in abscisic acid signaling. Nat Commun. 2021;12(1):2456. https://doi.org/10.1038/s41467-021-22812-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hrabak EM, Chan CW, Gribskov M, Harper JF, Choi JH, Halford N, et al. The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol. 2003;132:666–80.
Article
CAS
Google Scholar
Hofmann K, Bucher P. The UBA domain: a sequence motif present in multiple enzyme classes of the ubiquitination pathway. Trends Biochem Sci. 1996;21:172–3.
Article
CAS
Google Scholar
Bhalerao RP, Salchert K, Bakó L, Okrész L, Szabados L, Muranaka T, et al. Regulatory interaction of PRL1 WD protein with Arabidopsis SNF1-like protein kinases. Proc Natl Acad Sci U S A. 1999;96(9):5322–7. https://doi.org/10.1073/pnas.96.9.5322.
Article
CAS
PubMed
PubMed Central
Google Scholar
Farra's R, Ferrando A, Ja'sik J, Kleinow T, Okre'sz L, Tiburcio A, et al. SKP1-SnRK protein kinase interactions mediate proteasomal binding of a plant SCF ubiquitin ligase. EMBO J. 2001;20:2742–56.
Article
CAS
Google Scholar
Rodrigues A, Adamo M, Crozet P, Margalha L, Confraria A, Martinho C, et al. ABI1 and PP2CA phosphatases are negative regulators of Snf1-related protein kinase1 signaling in Arabidopsis. Plant Cell. 2013;25:3871–84.
Article
CAS
Google Scholar
Jamsheer KM, Jindal S, Laxmi A. Evolution of TOR-SnRK dynamics in green plants and its integration with phytohormone signaling networks. J Exp Bot. 2019;70(8):2239–59. https://doi.org/10.1093/jxb/erz107.
Article
CAS
Google Scholar
Kulik A, Wawer I, Krzywinska E, et al. SnRK2 protein kinases—key regulators of plant response to abiotic stresses. OMICS. 2011;15(12):859–72.
Article
CAS
Google Scholar
Kobayashia Y, Yamamotoa S, Minamia H, et al. Differential activation of the rice sucrose nonfermenting1-related protein kinase 2 family by hyperosmotic stress and abscisic acid. Plant Cell. 2004;16:1163–77.
Article
Google Scholar
Yoshida R, Umezawa T, Mizoguchi T, Takahashi S, Takahashi F, Shinozaki K. The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in Arabidopsis. J Biol Chem. 2006;281:5310–8.
Article
CAS
Google Scholar
Albrecht V, Ritz O, Linder S, Harter K, Kudla J. The NAF domain defines a novel protein-protein interaction module conserved in Ca2+−regulated kinases. EMBO. 2001;J20(5):1051–63.
Article
Google Scholar
Ohta M, Guo Y, Halfter U, Zhu JK. A novel domain in the protein kinase SOS2 mediates interaction with the protein phosphatase 2C ABI2. Proc Natl Acad Sci U S A. 2003;100(20):11771–6.
Article
CAS
Google Scholar
Halford NG, Hardie DG. SNF1-related protein kinases: global regulators of carbon metabolism in plants? Plant Mol Biol. 1998;37(5):735–48.
Article
CAS
Google Scholar
Bai Y, Meng Y, Huang D, et al. Origin and evolutionary analysis of the plant-specific TIFY transcription factor family. Genomics. 2011;98(2):128–36.
Article
CAS
Google Scholar
Henninger M, Pedrotti L, Krischke M, Draken J, Wildenhain T, Fekete A, et al. The evolutionarily conserved kinase SnRK1 orchestrates resource mobilization during Arabidopsis seedling establishment. Plant Cell. 2022;34(1):616–32. https://doi.org/10.1093/plcell/koab270.
Article
PubMed
Google Scholar
Muralidhara P, Weiste C, Collani S, Krischke M, Kreisz P, Draken J, et al. Perturbations in plant energy homeostasis prime lateral root initiation via SnRK1-bZIP63-ARF19 signaling. Proc Natl Acad Sci U S A. 2021;118(37):e2106961118. https://doi.org/10.1073/pnas.2106961118.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang H, Zhao Y, Zhu JK. Thriving under stress: how plants balance growth and the stress response. Dev Cell. 2020;55(5):529–43. https://doi.org/10.1016/j.devcel.2020.10.012.
Article
CAS
PubMed
Google Scholar
Han C, Liu Y, Shi W, Qiao Y, Wang L, Tian Y, et al. KIN10 promotes stomatal development through stabilization of the SPEECHLESS transcription factor. Nat Commun. 2020;11(1):4214. https://doi.org/10.1038/s41467-020-18048-w.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boudsocq M, Barbier-Brygoo H, Laurière C. Identification of nine sucrose non-fermenting 1-related protein kinases 2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana. J Biol Chem. 2004;279(40):41758–66. https://doi.org/10.1074/jbc.M405259200.
Article
CAS
PubMed
Google Scholar
Fujii H, Chinnusamy V, Rodrigues A, Rubio S, Antoni R, Park SY, et al. In vitro reconstitution of an abscisic acid signalling pathway. Nature. 2009;462:660–4.
Article
CAS
Google Scholar
Soma F, Takahashi F, Suzuki T, Shinozaki K, Yamaguchi-Shinozaki K. Plant Raf-like kinases regulate the mRNA population upstream of ABA-unresponsive SnRK2 kinases under drought stress. Nat Commun. 2020;11(1):1373. https://doi.org/10.1038/s41467-020-15239-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen Q, Hu T, Li X, Song CP, Zhu JK, Chen L, et al. Phosphorylation of SWEET sucrose transporters regulates plant root: shoot ratio under drought. Nat Plants. 2021. https://doi.org/10.1038/s41477-021-01040-7.
Kim KN, Lee JS, Han H, Choi SA, Go SJ, Yoon IS. Isolation and characterization of a novel rice Ca2+−regulated protein kinase gene involved in responses to diverse signals including cold, light, cytokinins, sugars, and salts. Plant Mol Biol. 2003;52:1191–202.
Article
CAS
Google Scholar
Liu J, Ishitani M, Halfter U, Kim CS, Zhu JK. The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc Natl Acad Sci U S A. 2000. https://doi.org/10.1073/pnas.97.7.3730.
Guo Y, Xiong L, Song CP, Gong D, Halfter U, Zhu JK. A calcium sensor and its interacting protein kinase are global regulators of abscisic acid signaling in Arabidopsis. Dev Cell. 2002;3:233–44.
Article
CAS
Google Scholar
Xu J, Li HD, Chen LQ, Wang Y, Liu LL, He L, et al. A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 inArabidopsis. Cell. 2006;125:1347–60. https://doi.org/10.1016/j.cell.2006.06.011.
Article
CAS
PubMed
Google Scholar
Li LG, Kim BG, Cheong YH, Pandey GK, Luan S. A Ca2+ signaling pathway regulates a K+ channel for low-K response in Arabidopsis. Proc Natl Acad Sci U S A. 2006;103:12625–30.
Article
CAS
Google Scholar
Ragel P, et al. The CBL-interacting protein kinase CIPK23 regulates HAK5-mediated high-affinity K+ uptake in Arabidopsis roots. Plant Physiol. 2015;169:2863–73.
CAS
PubMed
PubMed Central
Google Scholar
Scherzer S, et al. Calcium sensor kinase activates potassium uptake systems in gland cells of Venus flytraps. Proc Natl Acad Sci U S A. 2015;112:7309–14.
Article
CAS
Google Scholar
Tang RJ, Zhao FG, Yang Y, Wang C, Li K, Kleist TJ, et al. A calcium signalling network activates vacuolar K+ remobilization to enable plant adaptation to low-K environments. Nat Plants. 2020;6(4):384–93. https://doi.org/10.1038/s41477-020-0621-7.
Article
CAS
PubMed
Google Scholar
Ma QJ, Sun MH, Kang H, Lu J, You CX, Hao YJ. A CIPK protein kinase targets sucrose transporter MdSUT2.2 at Ser254 for phosphorylation to enhance salt tolerance. Plant Cell Environ. 2019a;42(3):918–30. https://doi.org/10.1111/pce.13349.
Article
CAS
PubMed
Google Scholar
Ma QJ, Sun MH, Lu J, Kang H, You CX, Hao YJ. An apple sucrose transporter MdSUT2.2 is a phosphorylation target for protein kinase MdCIPK22 in response to drought. Plant Biotechnol J. 2019b;17(3):625–37. https://doi.org/10.1111/pbi.13003.
Article
CAS
PubMed
Google Scholar
Yan J, Niu F, Liu WZ, Zhang H, Wang B, Lan W, et al. Arabidopsis CIPK14 positively regulates glucose response. Biochem Biophys Res Commun. 2014;450(4):1679–83. https://doi.org/10.1016/j.bbrc.2014.07.064.
Article
CAS
PubMed
Google Scholar
Barajas-Lopez JD, Moreno JR, Gamez-Arjona FM, Pardo JM, Punkkinen M, Zhu JK, et al. Upstream kinases of plant SnRKs are involved in salt stress tolerance. Plant J. 2018;93(1):107–18. https://doi.org/10.1111/tpj.13761.
Article
CAS
PubMed
Google Scholar
Zhao W, Cheng YH, Zhang C, Shen XJ, You QB, Guo W, et al. Genome-wide identification and characterization of the GmSnRK2 family in soybean. Int J Mol Sci. 2017;18(9):1834. https://doi.org/10.3390/ijms18091834.
Article
CAS
PubMed Central
Google Scholar
Zhang YH, Wan SQ, Wang WD, Chen JF, Huang LL, Duan MS, et al. Genome-wide identification and characterization of the CsSnRK2 family in Camellia sinensis. Plant Physiol Biochem. 2018;132:287–96. https://doi.org/10.1016/j.plaphy.2018.09.021.
Article
CAS
PubMed
Google Scholar
Zhu W, Wu D, Jiang L, Ye L. Genome-wide identification and characterization of SnRK family genes in Brassica napus. BMC Plant Biol. 2020;20(1):287. https://doi.org/10.1186/s12870-020-02484-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cao Y, Feng J, Hwarari D, Ahmad B, Wu H, Chen J, et al. Alterations in population distribution of Liriodendron chinense (Hemsl.) Sarg. And Liriodendron tulipifera Linn. Caused by Climate Change. Forests. 2022;13(3):488. https://doi.org/10.3390/f13030488.
Article
Google Scholar
Collins RL, Brand H, Karczewski KJ, Zhao X, Alföldi J, Francioli LC, et al. A structural variation reference for medical and population genetics. Nature. 2020;581(7809):444–51. https://doi.org/10.1038/s41586-020-2287-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Halford NG, Hey SJ. Snf1-related protein kinases (SnRKs) act within an intricate network that links metabolic and stress signalling in plants. Biochem J. 2009;419(2):247–59. https://doi.org/10.1042/BJ20082408.
Article
CAS
PubMed
Google Scholar
Colina F, Amaral J, Carbó M, et al. Genome-wide identification and characterization of CKIN/SnRK gene family in Chlamydomonas reinhardtii. Sci Rep. 2019;9:350. https://doi.org/10.1038/s41598-018-35625-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cui F, Brosché M, Lehtonen MT, Amiryousefi A, Xu E, Punkkinen M, et al. Dissecting abscisic acid signaling pathways involved in cuticle formation. Mol Plant. 2016;9(6):926–38. https://doi.org/10.1016/j.molp.2016.04.001.
Article
CAS
PubMed
Google Scholar
Wang W, Lu Y, Li J, Zhang X, Hu F, Zhao Y, et al. SnRK1 stimulates the histone H3K27me3 demethylase JMJ705 to regulate a transcriptional switch to control energy homeostasis. Plant Cell. 2021;33(12):3721–42. https://doi.org/10.1093/plcell/koab224.
Article
PubMed
PubMed Central
Google Scholar
Kamiyama Y, Hirotani M, Ishikawa S, Minegishi F, Katagiri S, Rogan CJ, et al. Arabidopsis group C Raf-like protein kinases negatively regulate abscisic acid signaling and are direct substrates of SnRK2. Proc Natl Acad Sci U S A. 2021;118(30):e2100073118. https://doi.org/10.1073/pnas.2100073118.
Article
CAS
PubMed
PubMed Central
Google Scholar
Belin C, de Franco PO, Bourbousse C, Chaignepain S, Schmitter JM, Vavasseur A, et al. Identification of features regulating OST1 kinase activity and OST1 function in guard cells. Plant Physiol. 2006;141(4):1316–27. https://doi.org/10.1104/pp.106.079327.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boudsocq M, Droillard MJ, Barbier-Brygoo H, Laurière C. Different phosphorylation mechanisms are involved in the activation of sucrose non-fermenting 1 related protein kinases 2 by osmotic stresses and abscisic acid. Plant Mol Biol. 2007;63:491–503.
Article
CAS
Google Scholar
Ng LM, Soon FF, Zhou XE, West GM, Kovach A, Suino-Powell KM, et al. Structural basis for basal activity and autoactivation of abscisic acid (ABA) signaling SnRK2 kinases. Proc Natl Acad Sci U S A. 2011;108(52):21259–64. https://doi.org/10.1073/pnas.1118651109.
Article
PubMed
PubMed Central
Google Scholar
Chaves-Sanjuán A, Sánchez-Barrena MJ, González-Rubio JM, Albert A. Preliminary crystallographic analysis of the ankyrin-repeat domain of Arabidopsis thaliana AKT1: identification of the domain boundaries for protein crystallization. Acta Crystallogr F Struct Biol Commun. 2014;70(Pt 4):509–12. https://doi.org/10.1107/S2053230X14005093.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jo BS, Choi SS. Introns: the functional benefits of introns in genomes. Genomics Inform. 2015;13(4):112–8. https://doi.org/10.5808/GI.2015.13.4.112.
Article
PubMed
PubMed Central
Google Scholar
Tang RJ, Zhao FG, Garcia VJ, Kleist TJ, Yang L, Zhang HX, et al. Tonoplast CBL-CIPK calcium signaling network regulates magnesium homeostasis in Arabidopsis. Proc Natl Acad Sci U S A. 2015;112:3134–9. https://doi.org/10.1073/pnas.1420944112.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu JK. Abiotic stress signaling and responses in plants. Cell. 2016;167(2):313–24. https://doi.org/10.1016/j.cell.2016.08.029.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jeffares DC, Penkett CJ, Bähler J. Rapidly regulated genes are intron poor. Trends Genet. 2008;24:375–8.
Article
CAS
Google Scholar
Liu D, Zhao H, Xiao Y, Zhang G, Cao S, Yin W, et al. A cryptic inhibitor of cytokinin phosphorelay controls rice grain size. Mol Plant. 2021. https://doi.org/10.1016/j.molp.2021.09.010.
Mehan MR, Freimer NB, Ophoff RA. A genome-wide survey of segmental duplications that mediate common human genetic variation of chromosomal architecture. Hum Genomics. 2004;1(5):335–44.
Article
CAS
Google Scholar
Lynch M, Conery JS. The evolutionary fate and consequences of duplicate genes. Science. 2000;290:1151–5. https://doi.org/10.1126/science.290.5494.1151.
Article
CAS
PubMed
Google Scholar
Cannon S, Mitra A, Baumgarten A, Young N, May G. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol. 2004;4(1):1–21.
Article
Google Scholar
Hu CH, Wei XY, Yuan B, Yao LB, Ma TT, Zhang PP, et al. Genome-wide identification and functional analysis of NADPH oxidase family genes in wheat during development and environmental stress responses. Front Plant Sci. 2018;9:906. https://doi.org/10.3389/fpls.2018.00906.
Article
PubMed
PubMed Central
Google Scholar
Zhao Y, Zhou M, Xu K, Li J, Li S, Zhang S, et al. Integrated transcriptomics and metabolomics analyses provide insights into cold stress response in wheat. Crop. 2019;J.7:857–66. https://doi.org/10.1016/j.cj.2019.09.002.
Article
Google Scholar
Zhong RL, Wang YX, Gai RN, et al. Rice SnRK protein kinase OsSAPK8 acts as a positive regulator in abiotic stress responses. Plant Sci. 2020;292:110373. https://doi.org/10.1016/j.plantsci.2019.110373.
Article
CAS
PubMed
Google Scholar
Xiang DJ, Man LL, Cao S, et al. Heterologous expression of an Agropyron cristatum SnRK2 protein kinase gene (AcSnRK2.11) increases freezing tolerance in transgenic yeast and tobacco. 3. Biotech. 2020;10(5):209. https://doi.org/10.1007/s13205-020-02203-7.
Article
Google Scholar
Huang C, Ding S, Zhang H, Du H, An L. CIPK7 is involved in cold response by interacting with CBL1 in Arabidopsis thaliana. Plant Sci. 2011;181(1):57–64. https://doi.org/10.1016/j.plantsci.2011.03.011.
Article
CAS
PubMed
Google Scholar
Aslam M, Greaves JG, Jakada BH, Fakher B, Wang X, Qin Y. AcCIPK5, a pineapple CBL-interacting protein kinase, confers salt, osmotic and cold stress tolerance in transgenic Arabidopsis. Plant Sci. 2022;320:111284, ISSN 0168-9452. https://doi.org/10.1016/j.plantsci.2022.111284.
Article
CAS
PubMed
Google Scholar
Mustilli AC, Merlot S, Vavasseur A, Fenzi F, Giraudat J. Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell. 2002;14:3089–99.
Article
CAS
Google Scholar
Held K, Pascaud F, Eckert C, Gajdanowicz P, Hashimoto K, Corratge-Faillie C, et al. Calcium-dependent modulation and plasma membrane targeting of the AKT2 potassium channel by the CBL4/CIPK6 calcium sensor/protein kinase complex. Cell Res. 2011;21:1116–30.
Article
CAS
Google Scholar
Baena-González E, Sheen J. Convergent energy and stress signaling. Trends Plant Sci. 2008;13(9):474–82. https://doi.org/10.1016/j.tplants.2008.06.006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smeekens S, Ma J, Hanson J, Rolland F. Sugar signals and molecular networks controlling plant growth. Curr Opin Plant Biol. 2010;13:274–9.
Article
CAS
Google Scholar
Yin P, Fan H, Hao Q, Yuan X, Wu D, Pang Y, et al. Structural insights into the mechanism of abscisic acid signaling by PYL proteins. Nat Struct Mol Biol. 2009;16:1230–6.
Article
CAS
Google Scholar
Ding Y, Li H, Zhang X, Xie Q, Gong Z, Yang S. OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis. Dev Cell. 2015;32(3):278–89. https://doi.org/10.1016/j.devcel.2014.12.023.
Article
CAS
PubMed
Google Scholar
Liu J, Zhu JK. A calcium sensor homolog required for plant salt tolerance. Science. 1998;280:1943–5.
Article
CAS
Google Scholar
Halfter U, Ishitani M, Zhu JK. The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proc Natl Acad Sci U S A. 2000;97:3735–40.
Article
CAS
Google Scholar
Chen J, Hao Z, Guang X, Zhao C, Wang P, Xue L, et al. Liriodendron genome sheds light on angiosperm phylogeny and species-pair differentiation. Nat Plants. 2019;5(1):18–25. https://doi.org/10.1038/s41477-018-0323-6.
Article
CAS
PubMed
Google Scholar
Lamesch P, Berardini TZ, Li D, Swarbreck D, Wilks C, Sasidharan R, et al. The Arabidopsis information resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res. 2012;40:D1202–10. https://doi.org/10.1093/nar/gkr1090.
Article
CAS
PubMed
Google Scholar
Sakai H, Lee SS, Tanaka T, Numa H, Kim J, Kawahara Y, et al. Rice annotation project database (RAP-DB): an integrative and interactive database for rice genomics. Plant Cell Physiol. 2013;54:e6. https://doi.org/10.1093/pcp/pcs183.
Article
CAS
PubMed
PubMed Central
Google Scholar
Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 2016;44(D1):D279–85. https://doi.org/10.1093/nar/gkv1344.
Article
CAS
PubMed
Google Scholar
Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, de Castro E, et al. ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res. 2012;40(Web Server issue):W597–603. https://doi.org/10.1093/nar/gks400.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chou KC, Shen HB. Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS One. 2010;5(6):e11335. https://doi.org/10.1371/journal.pone.0011335.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–4.
Article
CAS
Google Scholar
Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, et al. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol Plant. 2020;13(8):1194–202. https://doi.org/10.1016/j.molp.2020.06.009.
Article
CAS
PubMed
Google Scholar
Wang Y, Tang H, DeBarry JD, Tan X, Li J, Wang X, et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012;40:49.
Article
Google Scholar
Voorrips RE. MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered. 2002;93:77–8.
CAS
PubMed
Google Scholar
Wang D, Zhang Y, Zhang Z, Zhu J, Yu J. KaKs_Calculator 2.0: a toolkit incorporating gamma-series methods and sliding window strategies. Genomics Proteomics Bioinformatics. 2010;8(1):77–80. https://doi.org/10.1016/S1672-0229(10)60008-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Yves VDP, et al. Plantcare, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002;30:325–7.
Article
CAS
Google Scholar
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504. https://doi.org/10.1101/gr.1239303.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guan YL, Liu SQ, Wu WH, Hong KY, Li RX, Zhu LM, et al. Genome-wide identification and cold stress-induced expression analysis of the CBF gene family in Liriodendron chinense. J For Res. 2021;32. https://doi.org/10.1007/s11676-020-01275-8.
Li R, Ahmad B, Hwarari D, Li D, Lu Y, Gao M, et al. Genomic survey and cold-induced expression patterns of bHLH transcription factors in Liriodendron chinense (Hemsl) Sarg. Forests. 2022;13(4):518. https://doi.org/10.3390/f13040518.
Article
Google Scholar
Wu W, Zhu S, Xu L, Zhu L, Wang D, Liu Y, et al. Genome-wide identification of the Liriodendron chinense WRKY gene family and its diverse roles in response to multiple abiotic stress. BMC Plant Biol. 2022;22(1):25. https://doi.org/10.1186/s12870-021-03371-1.
Article
CAS
PubMed
PubMed Central
Google Scholar