Stewart SM, Lauridsen T, Toft H, Pethick DW, Gardner GE, McGilchrist P, et al. Objective grading of eye muscle area, intramuscular fat and marbling in Australian beef and lamb. Meat Sci. 2021;181:108358. https://doi.org/10.1016/j.meatsci.2020.108358.
Article
CAS
PubMed
Google Scholar
Stewart SM, Gardner GE, McGilchrist P, Pethick DW, Polkinghorne R, Thompson JM, et al. Prediction of consumer palatability in beef using visual marbling scores and chemical intramuscular fat percentage. Meat Sci. 2021;181:108322. https://doi.org/10.1016/j.meatsci.2020.108322.
Article
CAS
PubMed
Google Scholar
Fortin A, Robertson WM, Tong AK. The eating quality of Canadian pork and its relationship with intramuscular fat. Meat Sci. 2005;69(2):297–305. https://doi.org/10.1016/j.meatsci.2004.07.011.
Article
CAS
PubMed
Google Scholar
Joo ST, Hwang YH, Frank D. Characteristics of Hanwoo cattle and health implications of consuming highly marbled Hanwoo beef. Meat Sci. 2017;132:45–51. https://doi.org/10.1016/j.meatsci.2017.04.262.
Article
CAS
PubMed
Google Scholar
Baik M, Kang HJ, Park SJ, Na SW, Piao M, Kim SY, et al. Triennial growth and development symposium: molecular mechanisms related to bovine intramuscular fat deposition in the longissimus muscle. J Anim Sci. 2017;95(5):2284–303. https://doi.org/10.2527/jas.2016.1160.
Article
CAS
PubMed
Google Scholar
Taga H, Bonnet M, Picard B, Zingaretti MC, Cassar-Malek I, Cinti S, et al. Adipocyte metabolism and cellularity are related to differences in adipose tissue maturity between Holstein and Charolais or blond d'Aquitaine fetuses. J Anim Sci. 2011;89(3):711–21. https://doi.org/10.2527/jas.2010-3234.
Article
CAS
PubMed
Google Scholar
Keogh K, Kelly AK, Kenny DA. Effect of plane of nutrition in early life on the transcriptome of visceral adipose tissue in Angus heifer calves. Sci Rep. 2021;11(1):9716. https://doi.org/10.1038/s41598-021-89252-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Du M, Huang Y, Das AK, Yang Q, Duarte MS, Dodson MV, et al. Meat science and muscle biology symposium: manipulating mesenchymal progenitor cell differentiation to optimize performance and carcass value of beef cattle. J Anim Sci. 2013;91(3):1419–27. https://doi.org/10.2527/jas.2012-5670.
Article
CAS
PubMed
Google Scholar
Fu YY, Chen KL, Li HX, Zhou GH. The adipokine Chemerin induces lipolysis and adipogenesis in bovine intramuscular adipocytes. Mol Cell Biochem. 2016;418(1-2):39–48. https://doi.org/10.1007/s11010-016-2731-0.
Article
CAS
PubMed
Google Scholar
Tong B, Gao GQ, Muramatsu Y, Ohta T, Kose H, Li GP, et al. Association of the expression levels in the longissimus muscle and a SNP in the CDC10 gene with marbling in Japanese black beef cattle. Meat Sci. 2015;108:28–31. https://doi.org/10.1016/j.meatsci.2015.05.017.
Article
CAS
PubMed
Google Scholar
Adelman K, Egan E. Non-coding RNA: more uses for genomic junk. Nature. 2017;543(7644):183–5. https://doi.org/10.1038/543183a.
Article
CAS
PubMed
Google Scholar
Boivin V, Reulet G, Boisvert O, Couture S, Elela SA, Scott MS. Reducing the structure bias of RNA-Seq reveals a large number of non-annotated non-coding RNA. Nucleic Acids Res. 2020;48(5):2271–86. https://doi.org/10.1093/nar/gkaa028.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun L, Goff LA, Trapnell C, Alexander R, Lo KA, Hacisuleyman E, et al. Long noncoding RNAs regulate adipogenesis. Proc Natl Acad Sci U S A. 2013;110(9):3387–92. https://doi.org/10.1073/pnas.1222643110.
Article
PubMed
PubMed Central
Google Scholar
Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97. https://doi.org/10.1016/s0092-8674(04)00045-5.
Article
CAS
PubMed
Google Scholar
Chen X, Raza SHA, Ma X, Wang J, Wang X, Liang C, et al. Bovine pre-adipocyte Adipogenesis is regulated by bta-miR-150 through mTOR signaling. Front Genet. 2021;12:636550. https://doi.org/10.3389/fgene.2021.636550.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen X, Raza SHA, Cheng G, Ma X, Wang J, Zan L. Bta-miR-376a targeting KLF15 interferes with Adipogenesis signaling pathway to promote differentiation of Qinchuan beef cattle Preadipocytes. Animals (Basel). 2020;10(12). https://doi.org/10.3390/ani10122362.
Jiang R, Li H, Yang J, Shen X, Song C, Yang Z, et al. circRNA profiling reveals an abundant circFUT10 that promotes adipocyte proliferation and inhibits adipocyte differentiation via sponging let-7. Mol Ther Nucleic Acids. 2020;20:491–501. https://doi.org/10.1016/j.omtn.2020.03.011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shen X, Tang J, Ru W, Zhang X, Huang Y, Lei C, et al. CircINSR regulates fetal bovine muscle and fat development. Front Cell Dev Biol. 2020;8:615638. https://doi.org/10.3389/fcell.2020.615638.
Article
PubMed
Google Scholar
Zhang S, Kang Z, Cai H, Jiang E, Pan C, Dang R, et al. Identification of novel alternative splicing of bovine lncRNA lncFAM200B and its effects on preadipocyte proliferation. J Cell Physiol. 2021;236(1):601–11. https://doi.org/10.1002/jcp.29887.
Article
CAS
PubMed
Google Scholar
Cai H, Li M, Jian W, Song C, Huang Y, Lan X, et al. A novel lncRNA BADLNCR1 inhibits bovine adipogenesis by repressing GLRX5 expression. J Cell Mol Med. 2020;24(13):7175–86. https://doi.org/10.1111/jcmm.15181.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu X, Liu K, Shan B, Wei S, Li D, Han H, et al. A genome-wide landscape of mRNAs, lncRNAs, and circRNAs during subcutaneous adipogenesis in pigs. J Anim Sci Biotechnol. 2018;9:76. https://doi.org/10.1186/s40104-018-0292-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang J, Ren Q, Hua L, Chen J, Zhang J, Bai H, et al. Comprehensive analysis of differentially expressed mRNA, lncRNA and circRNA and their ceRNA networks in the Longissimus Dorsi muscle of two different pig breeds. Int J Mol Sci. 2019;20(5). https://doi.org/10.3390/ijms20051107.
Lin W, Zhao J, Yan M, Li X, Yang K, Wei W, et al. SESN3 inhibited SMAD3 to relieve its suppression for MiR-124, thus regulating pre-adipocyte Adipogenesis. Genes (Basel). 2021;12(12). https://doi.org/10.3390/genes12121852.
Ioannilli L, Ciccarone F, Ciriolo MR. Adipose tissue and FoxO1: bridging physiology and mechanisms. Cells. 2020;9(4). https://doi.org/10.3390/cells9040849.
Yu H, Zhao Z, Yu X, Li J, Lu C, Yang R. Bovine lipid metabolism related gene GPAM: molecular characterization, function identification, and association analysis with fat deposition traits. Gene. 2017;609:9–18. https://doi.org/10.1016/j.gene.2017.01.031.
Article
CAS
PubMed
Google Scholar
Karbiener M, Fischer C, Nowitsch S, Opriessnig P, Papak C, Ailhaud G, et al. microRNA miR-27b impairs human adipocyte differentiation and targets PPARgamma. Biochem Biophys Res Commun. 2009;390(2):247–51. https://doi.org/10.1016/j.bbrc.2009.09.098.
Article
CAS
PubMed
Google Scholar
Ghaben AL, Scherer PE. Adipogenesis and metabolic health. Nat Rev Mol Cell Biol. 2019;20(4):242–58. https://doi.org/10.1038/s41580-018-0093-z.
Article
CAS
PubMed
Google Scholar
Rinn JL, Chang HY. Long noncoding RNAs: molecular modalities to organismal functions. Annu Rev Biochem. 2020;89:283–308. https://doi.org/10.1146/annurev-biochem-062917-012708.
Article
CAS
PubMed
Google Scholar
Kang Z, Zhang S, Jiang E, Wang X, Wang Z, Chen H, et al. circFLT1 and lncCCPG1 sponges miR-93 to regulate the proliferation and differentiation of adipocytes by promoting lncSLC30A9 expression. Mol Ther Nucleic Acids. 2020;22:484–99. https://doi.org/10.1016/j.omtn.2020.09.011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen M, Wei X, Song M, Jiang R, Huang K, Deng Y, et al. Circular RNA circMYBPC1 promotes skeletal muscle differentiation by targeting MyHC. Mol Ther Nucleic Acids. 2021;24:352–68. https://doi.org/10.1016/j.omtn.2021.03.004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yan XM, Zhang Z, Meng Y, Li HB, Gao L, Luo D, et al. Genome-wide identification and analysis of circular RNAs differentially expressed in the longissimus dorsi between Kazakh cattle and Xinjiang brown cattle. PeerJ. 2020;8:e8646. https://doi.org/10.7717/peerj.8646.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bao G, Zhao F, Wang J, Liu X, Hu J, Shi B, et al. Characterization of the circRNA-miRNA-mRNA network to reveal the potential functional ceRNAs associated with dynamic changes in the meat quality of the Longissimus Thoracis muscle in Tibetan sheep at different growth stages. Front Vet Sci. 2022;9:803758. https://doi.org/10.3389/fvets.2022.803758.
Article
PubMed
PubMed Central
Google Scholar
La Y, He X, Zhang L, Di R, Wang X, Gan S, et al. Comprehensive analysis of differentially expressed profiles of mRNA, lncRNA, and circRNA in the uterus of seasonal reproduction sheep. Genes (Basel). 2020;11(3). https://doi.org/10.3390/genes11030301.
Jin L, Tang Q, Hu S, Chen Z, Zhou X, Zeng B, et al. A pig BodyMap transcriptome reveals diverse tissue physiologies and evolutionary dynamics of transcription. Nat Commun. 2021;12(1):3715. https://doi.org/10.1038/s41467-021-23560-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cignarelli A, Genchi VA, Perrini S, Natalicchio A, Laviola L, Giorgino F. Insulin and insulin receptors in adipose tissue development. Int J Mol Sci. 2019;20(3). https://doi.org/10.3390/ijms20030759.
Xiao F, Tang CY, Tang HN, Wu HX, Hu N, Li L, et al. Long non-coding RNA 332443 inhibits Preadipocyte differentiation by targeting Runx1 and p38-MAPK and ERK1/2-MAPK signaling pathways. Front Cell Dev Biol. 2021;9:663959. https://doi.org/10.3389/fcell.2021.663959.
Article
PubMed
PubMed Central
Google Scholar
Yang JT, Chen YJ, Huang CW, Wang YC, Mersmann HJ, Wang PH, et al. Docosahexaenoic acid suppresses expression of Adipogenic Tetranectin through sterol regulatory element-binding protein and Forkhead box O protein in pigs. Nutrients. 2021;13(7). https://doi.org/10.3390/nu13072315.
Zhao Z, Deng X, Jia J, Zhao L, Wang C, Cai Z, et al. Angiopoietin-like protein 8 (betatrophin) inhibits hepatic gluconeogenesis through PI3K/Akt signaling pathway in diabetic mice. Metabolism. 2022;126:154921. https://doi.org/10.1016/j.metabol.2021.154921.
Article
CAS
PubMed
Google Scholar
Zhao C, Chen X, Wu W, Wang W, Pang W, Yang G. MAT2B promotes adipogenesis by modulating SAMe levels and activating AKT/ERK pathway during porcine intramuscular preadipocyte differentiation. Exp Cell Res. 2016;344(1):11–21. https://doi.org/10.1016/j.yexcr.2016.02.019.
Article
CAS
PubMed
Google Scholar
Poleti MD, Regitano LCA, Souza G, Cesar ASM, Simas RC, Silva-Vignato B, et al. Longissimus dorsi muscle label-free quantitative proteomic reveals biological mechanisms associated with intramuscular fat deposition. J Proteome. 2018;179:30–41. https://doi.org/10.1016/j.jprot.2018.02.028.
Article
CAS
Google Scholar
Shi B, Shi X, Zuo Z, Zhao S, Zhao Z, Wang J, et al. Identification of differentially expressed genes at different post-natal development stages of longissimus dorsi muscle in Tianzhu white yak. Gene. 2022;823:146356. https://doi.org/10.1016/j.gene.2022.146356.
Article
CAS
PubMed
Google Scholar
Xiong Y, Wang Y, Xu Q, Li A, Yue Y, Ma Y, et al. LKB1 regulates goat intramuscular Adipogenesis through focal adhesion pathway. Front Physiol. 2021;12:755598. https://doi.org/10.3389/fphys.2021.755598.
Article
PubMed
PubMed Central
Google Scholar
Luo N, Shu J, Yuan X, Jin Y, Cui H, Zhao G, et al. Differential regulation of intramuscular fat and abdominal fat deposition in chickens. BMC Genomics. 2022;23(1):308. https://doi.org/10.1186/s12864-022-08538-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
San J, Du Y, Wu G, Xu R, Yang J, Hu J. Transcriptome analysis identifies signaling pathways related to meat quality in broiler chickens - the extracellular matrix (ECM) receptor interaction signaling pathway. Poult Sci. 2021;100(6):101135. https://doi.org/10.1016/j.psj.2021.101135.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang Y, Jin C, Zheng Y, Li X, Zhang S, Zhang Y, et al. Knockdown of lncRNA MIR31HG inhibits adipocyte differentiation of human adipose-derived stem cells via histone modification of FABP4. Sci Rep. 2017;7(1):8080. https://doi.org/10.1038/s41598-017-08131-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiao T, Liu L, Li H, Sun Y, Luo H, Li T, et al. Long noncoding RNA ADINR regulates Adipogenesis by transcriptionally activating C/EBPalpha. Stem Cell Reports. 2015;5(5):856–65. https://doi.org/10.1016/j.stemcr.2015.09.007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yan M, Niu L, Liu J, Yao Y, Li H. circEVI5 acts as a miR-4793-3p sponge to suppress the proliferation of gastric cancer. Cell Death Dis. 2021;12(8):774. https://doi.org/10.1038/s41419-021-04061-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun C, Luan S, Zhang G, Wang N, Shao H, Luan C. CEBPA-mediated upregulation of the lncRNA PLIN2 promotes the development of chronic myelogenous leukemia via the GSK3 and Wnt/beta-catenin signaling pathways. Am J Cancer Res. 2017;7(5):1054–67.
CAS
PubMed
PubMed Central
Google Scholar
Raza SHA, Khan R, Gui L, Schreurs NM, Wang X, Mei C, et al. Bioinformatics analysis and genetic polymorphisms in genomic region of the bovine SH2B2 gene and their associations with molecular breeding for body size traits in qinchuan beef cattle. Biosci Rep. 2020;40(3):10.1042/BSR20192113.
Article
Google Scholar
Yamamura S, Imai-Sumida M, Tanaka Y, Dahiya R. Interaction and cross-talk between non-coding RNAs. Cell Mol Life Sci. 2018;75(3):467–84. https://doi.org/10.1007/s00018-017-2626-6.
Article
CAS
PubMed
Google Scholar
Karbiener M, Neuhold C, Opriessnig P, Prokesch A, Bogner-Strauss JG, Scheideler M. MicroRNA-30c promotes human adipocyte differentiation and co-represses PAI-1 and ALK2. RNA Biol. 2011;8(5):850–60. https://doi.org/10.4161/rna.8.5.16153.
Article
CAS
PubMed
Google Scholar
Zhang F, Xiong Q, Tao H, Liu Y, Zhang N, Li XF, et al. ACOX1, regulated by C/EBPalpha and miR-25-3p, promotes bovine preadipocyte adipogenesis. J Mol Endocrinol. 2021;66(3):195–205. https://doi.org/10.1530/JME-20-0250.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Zhang Y, Su X, Wang H, Yang W, Zan L. Cooperative and independent functions of the miR-23a~27a~24-2 cluster in bovine adipocyte Adipogenesis. Int J Mol Sci. 2018;19(12). https://doi.org/10.3390/ijms19123957.
Li S, Yang S, Qiu C, Sun D. LncRNA MSC-AS1 facilitates lung adenocarcinoma through sponging miR-33b-5p to up-regulate GPAM. Biochem Cell Biol. 2021;99(2):241–8. https://doi.org/10.1139/bcb-2020-0239.
Article
CAS
PubMed
Google Scholar
Yang L, Yang F, Zhao H, Wang M, Zhang Y. Circular RNA circCHFR facilitates the proliferation and migration of vascular smooth muscle via miR-370/FOXO1/Cyclin D1 pathway. Mol Ther Nucleic Acids. 2019;16:434–41. https://doi.org/10.1016/j.omtn.2019.02.028.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li F, Li D, Zhang M, Sun J, Li W, Jiang R, et al. miRNA-223 targets the GPAM gene and regulates the differentiation of intramuscular adipocytes. Gene. 2019;685:106–13. https://doi.org/10.1016/j.gene.2018.10.054.
Article
CAS
PubMed
Google Scholar
You Q, Wang J, Jia D, Jiang L, Chang Y, Li W. MiR-802 alleviates lipopolysaccharide-induced acute lung injury by targeting Peli2. Inflamm Res. 2020;69(1):75–85. https://doi.org/10.1007/s00011-019-01295-z.
Article
CAS
PubMed
Google Scholar
Lin W, Tang Y, Zhao Y, Zhao J, Zhang L, Wei W, et al. MiR-144-3p targets FoxO1 to reduce its regulation of Adiponectin and promote Adipogenesis. Front Genet. 2020;11:603144. https://doi.org/10.3389/fgene.2020.603144.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang W, Tang K, Wang Y, Zhang Y, Zan L. Melatonin promotes triacylglycerol accumulation via MT2 receptor during differentiation in bovine intramuscular preadipocytes. Sci Rep. 2017;7(1):15080. https://doi.org/10.1038/s41598-017-12780-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20. https://doi.org/10.1093/bioinformatics/btu170.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10(3):R25. https://doi.org/10.1186/gb-2009-10-3-r25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12(4):357–60. https://doi.org/10.1038/nmeth.3317.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang XO, Dong R, Zhang Y, Zhang JL, Luo Z, Zhang J, et al. Diverse alternative back-splicing and alternative splicing landscape of circular RNAs. Genome Res. 2016;26(9):1277–87. https://doi.org/10.1101/gr.202895.115.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang XO, Wang HB, Zhang Y, Lu X, Chen LL, Yang L. Complementary sequence-mediated exon circularization. Cell. 2014;159(1):134–47. https://doi.org/10.1016/j.cell.2014.09.001.
Article
CAS
PubMed
Google Scholar
Gao Y, Wang J, Zhao F. CIRI: an efficient and unbiased algorithm for de novo circular RNA identification. Genome Biol. 2015;16:4. https://doi.org/10.1186/s13059-014-0571-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kong L, Zhang Y, Ye ZQ, Liu XQ, Zhao SQ, Wei L, et al. CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res. 2007;35(Web Server issue):W345–9. https://doi.org/10.1093/nar/gkm391.
Article
PubMed
PubMed Central
Google Scholar
Sun L, Luo H, Bu D, Zhao G, Yu K, Zhang C, et al. Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts. Nucleic Acids Res. 2013;41(17):e166. https://doi.org/10.1093/nar/gkt646.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: from microRNA sequences to function. Nucleic Acids Res. 2019;47(D1):D155–62. https://doi.org/10.1093/nar/gky1141.
Article
CAS
PubMed
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40. https://doi.org/10.1093/bioinformatics/btp616.
Article
CAS
PubMed
Google Scholar
McGeary SE, Lin KS, Shi CY, Pham TM, Bisaria N, Kelley GM, et al. The biochemical basis of microRNA targeting efficacy. Science. 2019;366(6472). https://doi.org/10.1126/science.aav1741.
Betel D, Koppal A, Agius P, Sander C, Leslie C. Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol. 2010;11(8):R90. https://doi.org/10.1186/gb-2010-11-8-r90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sherman BT, Hao M, Qiu J, Jiao X, Baseler MW, Lane HC, et al. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022. https://doi.org/10.1093/nar/gkac194.
Kanehisa M, Furumichi M, Sato Y, Ishiguro-Watanabe M, Tanabe M. KEGG: integrating viruses and cellular organisms. Nucleic Acids Res. 2021;49(D1):D545–51. https://doi.org/10.1093/nar/gkaa970.
Article
CAS
PubMed
Google Scholar
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559. https://doi.org/10.1186/1471-2105-9-559.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504. https://doi.org/10.1101/gr.1239303.
Article
CAS
PubMed
PubMed Central
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 2001;25(4):402–8. https://doi.org/10.1006/meth.2001.1262.
Article
CAS
PubMed
Google Scholar
Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. PLoS Biol. 2020;18(7):e3000410. https://doi.org/10.1371/journal.pbio.3000410.
Article
CAS
PubMed
PubMed Central
Google Scholar