Singh SP, Editor. Common bean improvement in the twenty-first century (Vol. 7). Berlin, Germany: Springer Science & Business Media. 2013. ISBN-13: 978–0792358879.
De Ron, A. et al. Common Bean. In: De Ron, A. (eds) Grain Legumes. Handbook of Plant Breeding, vol 10. Springer, New York, NY. 2015. https://doi.org/10.1007/978-1-4939-2797-5_1.
FAOSTAT. Food and Agriculture Organization of the United Nations, FAOSTAT database, available at http://faostat.fao.org/. 2022.
Osdaghi E, Young AJ, Harveson RM. Bacterial wilt of dry beans caused by Curtobacterium flaccumfaciens pv. flaccumfaciens: a new threat from an old enemy. Mol Plant Pathol. 2020;21(5):605–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schwartz HF, Steadman JR, Hall R, Forster RL. Compendium of bean diseases (No. Ed. 2). Saint Paul, Minnesota, United States: American Phytopathological Society (APS Press); 2005.
Osdaghi E, Taghavi SM, Hamzehzarghani H, Fazliarab A, Harveson RM, Lamichhane JR. Occurrence and characterization of a new red-pigmented variant of Curtobacterium flaccumfaciens, the causal agent of bacterial wilt of edible dry beans in Iran. Eur J Plant Pathol. 2016;146(1):129–45.
Article
Google Scholar
Osdaghi E, Taghavi SM, Calamai S, Biancalani C, Cerboneschi M, Tegli S, Harveson RM. Phenotypic and Molecular-Phylogenetic Analysis Provide Novel Insights into the Diversity of Curtobacterium flaccumfaciens. Phytopathology. 2018;108:1154–64.
Article
CAS
PubMed
Google Scholar
Chen G, Khojasteh M, Taheri-Dehkordi A, Taghavi SM, Rahimi T, Osdaghi E. Complete genome sequencing provides novel insight into the virulence repertories and phylogenetic position of dry beans pathogen Curtobacterium flaccumfaciens pv. flaccumfaciens. Phytopathology. 2021;111(2):268–80.
Article
CAS
PubMed
Google Scholar
Lamichhane JR, Osdaghi E, Behlau F, Köhl J, Jones JB, Aubertot JN. Thirteen decades of anti-microbial copper compounds applied in agriculture. A review. Agron Sustain Dev. 2018;38:28.
Article
Google Scholar
Osdaghi E, Shams-Bakhsh M, Alizadeh A, Lak MR. Study on common bean seed lots for contamination with Xanthomonas axonopodis pv. phaseoli by BIO-PCR technique. J Agric Technol. 2010;6(3):503–13.
Google Scholar
Osdaghi E, Lak MR. A source of resistance to bacterial wilt in the common bean (Phaseolus vulgaris) in Iran. Crop Prot. 2015;74:37–41.
Article
Google Scholar
Pilet-Nayel ML, Moury B, Caffier V, Montarry J, Kerlan MC, Fournet S, Durel CE, Delourme R. Quantitative resistance to plant pathogens in pyramiding strategies for durable crop protection. Front Plant Sci. 2017;8:1838.
Article
PubMed
PubMed Central
Google Scholar
Vasconcellos RC, Oraguzie OB, Soler A, Arkwazee H, Myers JR, Ferreira JJ, Song Q, McClean P, Miklas PN. Meta-QTL for resistance to white mold in common bean. PLoS One. 2017;12(2):e0171685.
Article
PubMed
PubMed Central
Google Scholar
Trabanco N, Asensio-Manzanera MC, Pérez-Vega E, Ibeas A, Campa A, Ferreira JJ. Identification of quantitative trait loci involved in the response of common bean to Pseudomonas syringae pv. phaseolicola. Mol Breed. 2014;33(3):577–88.
Article
CAS
Google Scholar
Osdaghi E, Alizadeh A, Shams-Bakhsh M, Lak MR. Evaluation of common bean lines for their reaction to the common bacterial blight pathogen. Phytopathol Mediterr. 2009;48:461–8.
Google Scholar
Said JI, Lin Z, Zhang X, Song M, Zhang J. A comprehensive meta QTL analysis for fiber quality, yield, yield related and morphological traits, drought tolerance, and disease resistance in tetraploid cotton. BMC Genomics. 2013;14(1):1–22.
Article
Google Scholar
Zhang X, Shabala S, Koutoulis A, Shabala L, Zhou M. Meta-analysis of major QTL for abiotic stress tolerance in barley and implications for barley breeding. Planta. 2017;245(2):283–95.
Article
CAS
PubMed
Google Scholar
Zhang LY, Liu DC, Guo XL, Yang WL, Sun JZ, Wang DW, Zhang A. Genomic distribution of quantitative trait loci for yield and yield-related traits in common wheat. J Integr Plant Biol. 2010;52(11):996–100.
Article
PubMed
Google Scholar
Tyagi S, Mir RR, Balyan HS, Gupta PK. Interval mapping and meta-QTL analysis of grain traits in common wheat (Triticum aestivum L.). Euphytica. 2015;201(3):367–80.
Article
CAS
Google Scholar
Shafi S, Saini DK, Khan MA, Bawa V, Choudhary N, Dar WA, Mir RR. Delineating meta-quantitative trait loci for anthracnose resistance in common bean (Phaseolus vulgaris L.). Front Plant Sci. 2022;13:966339.
Article
PubMed
PubMed Central
Google Scholar
Hanocq E, Laperche A, Jaminon O, Lainé AL, Le Gouis J. Most significant genome regions involved in the control of earliness traits in bread wheat, as revealed by QTL meta-analysis. Theor Appl Genet. 2007;114(3):569–84.
Article
CAS
PubMed
Google Scholar
Laperche A, Brancourt-Hulmel M, Heumez E, Gardet O, Hanocq E, Devienne-Barret F, Le Gouis J. Using genotype× nitrogen interaction variables to evaluate the QTL involved in wheat tolerance to nitrogen constraints. Theor Appl Genet. 2007;115(3):399–415.
Article
CAS
PubMed
Google Scholar
Goffinet B, Gerber S. Quantitative trait loci: a meta-analysis. Genetics. 2000;155(1):463–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Veyrieras JB, Goffinet B, Charcosset A. MetaQTL: a package of new computational methods for the meta-analysis of QTL mapping experiments. BMC Bioinformatics. 2007;8(1):1–16.
Article
Google Scholar
Courtois B, Ahmadi N, Khowaja F, Price AH, Rami JF, Frouin J, Hamelin C, Ruiz M. Rice root genetic architecture: meta-analysis from a drought QTL database. Rice. 2009;2(2):115–28.
Article
Google Scholar
Khahani B, Tavakol E, Shariati V. Genome-wide meta-analysis on yield and yield-related QTLs in barley (Hordeum vulgare L.). Mol Breed. 2019;39(4):1–16.
Article
CAS
Google Scholar
Khahani B, Tavakol E, Shariati V, Fornara F. Genome wide screening and comparative genome analysis for Meta-QTLs, ortho-MQTLs and candidate genes controlling yield and yield-related traits in rice. BMC Genomics. 2020;21(1):1–24.
Article
Google Scholar
Khahani B, Tavakol E, Shariati V, Rossini L. Meta-QTL and ortho-MQTL analyses identified genomic regions controlling rice yield, yield-related traits and root architecture under water deficit conditions. Sci Rep. 2021;11(1):1–18.
Article
Google Scholar
Liu S, Hall MD, Griffey CA, McKendry AL. Meta-analysis of QTL associated with Fusarium head blight resistance in wheat. Crop Sci. 2009;49(6):1955–68.
Article
CAS
Google Scholar
Lanaud C, Fouet O, Clément D, Boccara M, Risterucci AM, Surujdeo-Maharaj S, Legavre T, Argout X. A meta–QTL analysis of disease resistance traits of Theobroma cacao L. Mol Breeding. 2009;24(4):361–74.
Article
Google Scholar
Guo B, Sleper DA, Lu P, Shannon JG, Nguyen HT, Arelli PR. QTLs associated with resistance to soybean cyst nematode in soybean: meta-analysis of QTL locations. Crop Sci. 2006;46(2):595–602.
Article
Google Scholar
Pal N, Jan I, Saini DK, Kumar K, Kumar A, Sharma PK, Gupta PK. Meta-QTLs for multiple disease resistance involving three rusts in common wheat (Triticum aestivum L.). Theor Appl Genet. 2022. (https://link.springer.com/article/10.1007/s00122-022-04119-7).
Saini DK, Chahal A, Pal N, Srivastava P, Gupta PK. Meta-analysis reveals consensus genomic regions associated with multiple disease resistance in wheat (Triticum aestivum L.). Mol Breed. 2022;42(3):1–23.
Article
Google Scholar
Ali F, Pan Q, Chen G, Zahid KR, Yan J. Evidence of multiple disease resistance (MDR) and implication of meta-analysis in marker assisted selection. PLoS One. 2013;8(7):e68150.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schweizer P, Stein N. Large-scale data integration reveals colocalization of gene functional groups with meta-QTL for multiple disease resistance in barley. Mol Plant Microbe Interact. 2011;24(12):1492–501.
Article
CAS
PubMed
Google Scholar
Kumar IS, Nadarajah K. A meta-analysis of quantitative trait loci associated with multiple disease resistance in rice (Oryza sativa L.). Plants. 2020;9(11):1491.
Article
CAS
PubMed Central
Google Scholar
Miklas PN, Delorme R, Stone V, Daly MJ, Stavely JR, Steadman JR, Bassett MJ, Beaver JS. Bacterial, fungal, and viral disease resistance loci mapped in a recombinant inbred common bean population (Dorado’/XAN 176). J Am Soc Hortic Sci. 2000;125(4):476–81.
Article
CAS
Google Scholar
Tar’An B, Michaels TE, Pauls KP. Mapping genetic factors affecting the reaction to Xanthomonas axonopodis pv. phaseoli in Phaseolus vulgaris L. under field conditions. Genome. 2001;44(6):1046–56.
Article
Google Scholar
Yu K, Park SJ, Zhang B, Haffner M, Poysa V. An SSR marker in the nitrate reductase gene of common bean is tightly linked to a major gene conferring resistance to common bacterial blight. Euphytica. 2004;138(1):89–95.
Article
CAS
Google Scholar
Papa R, Acosta J, Delgado-Salinas A, Gepts P. A genome-wide analysis of differentiation between wild and domesticated Phaseolus vulgaris from Mesoamerica. Theor Appl Genet. 2005;111(6):1147–58.
Article
CAS
PubMed
Google Scholar
Liu S, Yu K, Park SJ. Development of STS markers and QTL validation for common bacterial blight resistance in common bean. Plant Breeding. 2008;127(1):62–8.
CAS
Google Scholar
Liu SY, Yu K, Huffner M, Park SJ, Banik M, Pauls KP, Crosby W. Construction of a BAC library and a physical map of a major QTL for CBB resistance of common bean (Phaseolus vulgaris L.). Genetica. 2010;138(7):709–16.
Article
CAS
PubMed
Google Scholar
Durham KM. Evaluation of Common Bacterial Blight Resistance in a Resistant Inter-Cross Population of Common Bean. Guelph, Canada: M.Sc. thesis; University of Guelph. 2011.
Zhu J, Wu J, Wang L, Blair MW, Zhu Z, Wang S. QTL and candidate genes associated with common bacterial blight resistance in the common bean cultivar Longyundou 5 from China. Crop J. 2016;4(5):344–52.
Article
Google Scholar
Xie W, Khanal R, McClymont S, Stonehouse R, Bett K, Yu K, Pauls KP, Navabi A. Interaction of quantitative trait loci for resistance to common bacterial blight and pathogen isolates in Phaseolus vulgaris L. Mol Breeding. 2017;37(4):55.
Article
Google Scholar
Yaish MW, Sosa D, Vences FJ, Vaquero F. Genetic mapping of quantitative resistance to race 5 of Pseudomonas syringae pv. phaseolicola in common bean. Euphytica. 2006;152(3):397–404.
Article
CAS
Google Scholar
Miklas PN, Fourie D, Wagner J, Larsen RC, Mienie CM. Tagging and Mapping Pse-1 Gene for Resistance to Halo Blight in Common Bean Differential Cultivar UI-3. Crop Sci. 2009;49(1):41–8.
Article
CAS
Google Scholar
Miklas PN, Fourie D, Trapp J, Larsen RC, Chavarro C, Blair MW, Gepts P. Genetic characterization and molecular mapping Pse-2 gene for resistance to halo blight in common bean. Crop Sci. 2011;51(6):2439–48.
Article
CAS
Google Scholar
Miklas PN, Fourie D, Trapp J, Davis J, Myers JR. New loci including Pse-6 conferring resistance to halo bacterial blight on chromosome Pv04 in common bean. Crop Sci. 2014;54(5):2099–2108.
González AM, Yuste-Lisbona FJ, Godoy L, Fernández-Lozano A, Rodiño AP, De Ron AM, Lozano R, Santalla M. Exploring the quantitative resistance to Pseudomonas syringae pv. phaseolicola in common bean (Phaseolus vulgaris L.). Mol Breed. 2016;36(12):1–20.
Article
Google Scholar
González AM, Godoy L, Santalla M. Dissection of resistance genes to Pseudomonas syringae pv. phaseolicola in UI3 common bean cultivar. Int J Mol Sci. 2017;18(12):2503.
Article
PubMed Central
Google Scholar
Kolkman JM, Kelly JD. QTL conferring resistance and avoidance to white mold in common bean. Crop Sci. 2003;43(2):539–48.
Article
CAS
Google Scholar
Ender M, Kelly JD. Identification of QTL associated with white mold resistance in common bean. Crop Sci. 2005;45(6):2482–90.
Article
CAS
Google Scholar
Miklas PN, Larsen KM, Terpstra K, Hauf DC, Grafton KF, Kelly JD. QTL analysis of ICA Bunsi-derived resistance to white mold in a pinto × navy bean cross. Crop Sci. 2007;47:174–9.
Article
CAS
Google Scholar
Maxwell JJ, Brick MA, Byrne PF, Schwartz HF, Shan X, Ogg JB, Hensen RA. Quantitative trait loci linked to white mold resistance in common bean. Crop Sci. 2007;47(6):2285–94.
Article
Google Scholar
Mkwaila WE. Quantitative Trait Loci Analysis of Resistance to White Mold (Sclerotinia sclerotiorum) in Common Bean (Phaseolus vulgaris). East Lansing, Michigan, USA: Doctoral dissertation. Michigan State University. 2013.
Pérez-Vega E, Pascual A, Campa A, Giraldez R, Miklas PN, Ferreira JJ. Mapping quantitative trait loci conferring partial physiological resistance to white mold in the common bean RIL population Xana× Cornell 49242. Mol Breeding. 2012;29(1):31–41.
Article
Google Scholar
Hoyos-Villegas V, Mkwaila W, Cregan PB, Kelly JD. Quantitative trait loci analysis of white mold avoidance in pinto bean. Crop Sci. 2015;55(5):2116–29.
Article
CAS
Google Scholar
Hagerty CH. Mapping QTL for root rot resistance, root traits, and morphological trait in a common bean recombinant inbred population. Corvallis, Oregon USA: Master of Science thesis; Oregon State University. 2013.
Nakedde T, Ibarra-Perez FJ, Mukankusi C, Waines JG, Kelly JD. Mapping of QTL associated with Fusarium root rot resistance and root architecture traits in black beans. Euphytica. 2016;212(1):51–63.
Article
CAS
Google Scholar
Wang W. QTL analysis and candidate genes identification associated with fusarium root rot resistance in common beans (Phaseolus vulgaris). Michigan State University. East Lansing, Michigan, USA 2016.
Geffroy V, Sévignac M, De Oliveira JC, Fouilloux G, Skroch P, Thoquet P, Gepts P, Langin T, Dron M. Inheritance of partial resistance against Colletotrichum lindemuthianum in Phaseolus vulgaris and co-localization of quantitative trait loci with genes involved in specific resistance. Mol Plant Microbe Interact. 2000;13(3):287–96.
Article
CAS
PubMed
Google Scholar
López CE, Acosta IF, Jara C, Pedraza F, Gaitán-Solís E, Gallego G, Beebe S, Tohme J. Identifying resistance gene analogs associated with resistances to different pathogens in common bean. Phytopathology. 2003;93(1):88–95.
Article
PubMed
Google Scholar
Oblessuc PR, Baroni RM, da Silva Pereira G, Chiorato AF, Carbonell SAM, Brinez B, Luciano Da Costa ES, Garcia AAF, Camargo LEA, Kelly JD, Benchimol-Reis LL. Quantitative analysis of race-specific resistance to Colletotrichum lindemuthianum in common bean. Mol Breed. 2014;34(3):1313–29.
Article
CAS
Google Scholar
Garzon LN, Blair MW. Development and mapping of SSR markers linked to resistance-gene homologue clusters in common bean. Crop J. 2014;2(4):183–94.
Article
Google Scholar
González AM, Yuste-Lisbona FJ, Rodiño AP, De Ron AM, Capel C, García-Alcázar M, Lozano R, Santalla M. Uncovering the genetic architecture of Colletotrichum lindemuthianum resistance through QTL mapping and epistatic interaction analysis in common bean. Front Plant Sci. 2015;6:141.
Article
PubMed
PubMed Central
Google Scholar
Oblessuc PR, Perseguini JMKC, Baroni RM, Chiorato AF, Carbonell SAM, Mondego JMC, Vidal RO, Camargo LEA, Benchimol-Reis LL. Increasing the density of markers around a major QTL controlling resistance to angular leaf spot in common bean. Theor Appl Genet. 2013;126(10):2451–65.
Article
CAS
PubMed
Google Scholar
Kanehisa M, Furumichi M, Sato Y, Ishiguro-Watanabe M, Tanabe M. KEGG: integrating viruses and cellular organisms. Nucleic Acids Res. 2021;49:D545–51.
Article
CAS
PubMed
Google Scholar
Galeano CH, Fernandez AC, Franco-Herrera N, Cichy KA, McClean PE, Vanderleyden J, Blair MW. Saturation of an intra-gene pool linkage map: towards a unified consensus linkage map for fine mapping and synteny analysis in common bean. PLoS One. 2011;6(12):e28135.
Article
CAS
PubMed
PubMed Central
Google Scholar
Song Q, Jia G, Hyten DL, Jenkins J, Hwang EY, Schroeder SG, Osorno JM, Schmutz J, Jackson SA, McClean PE, Cregan PB. SNP assay development for linkage map construction, anchoring whole-genome sequence, and other genetic and genomic applications in common bean. G3. 2015;5(11):2285–90.
Article
PubMed
PubMed Central
Google Scholar
Darvasi A, Soller M. A simple method to calculate resolving power and confidence interval of QTL map location. Behav Genet. 1997;27(2):125–32.
Article
CAS
PubMed
Google Scholar
Arcade A, Labourdette A, Falque M, Mangin B, Chardon F, Charcosset A, Joets J. BioMercator: integrating genetic maps and QTL towards discovery of candidate genes. Bioinformatics. 2004;20(14):2324–6.
Article
CAS
PubMed
Google Scholar
Sosnowski O, Charcosset A, Joets J. BioMercator V3: an upgrade of genetic map compilation and quantitative trait loci meta-analysis algorithms. Bioinformatics. 2012;28(15):2082–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Diaz-Garcia L, Covarrubias-Pazaran G, Schlautman B, Zalapa J. SOFIA: an R package for enhancing genetic visualization with Circos. J Hered. 2017;108(4):443–8.
Article
CAS
Google Scholar
Hao Z, Lv D, Ge Y, Shi J, Weijers D, Yu G, Chen J. RIdeogram: drawing SVG graphics to visualize and map genome-wide data on the idiograms. PeerJ Comput Sci. 2020;6:e251.
Article
PubMed
PubMed Central
Google Scholar
Kolde R. pheatmap: Pretty Heatmaps. R package version 0.7. 7. 2013.
Google Scholar
Anand L, Rodriguez Lopez CM. ChromoMap: an R package for interactive visualization of multi-omics data and annotation of chromosomes. BMC Bioinformatics. 2022;23(1):1–9.
Article
Google Scholar
Perseguini JMKC, Oblessuc PR, Rosa JRBF, Gomes KA, Chiorato AF, Carbonell SAM, Benchimol-Reis LL. Genome-wide association studies of anthracnose and angular leaf spot resistance in common bean (Phaseolus vulgaris L.). PLoS One. 2016;11(3):e0150506.
Article
PubMed
PubMed Central
Google Scholar
Wu J, Zhu J, Wang L, Wang S. Genome-wide association study identifies NBS-LRR-encoding genes related with anthracnose and common bacterial blight in the common bean. Front Plant Sci. 2017;8:1398.
Article
PubMed
PubMed Central
Google Scholar
Fritsche-Neto R, Souza TLPOD, Pereira HS, Faria LCD, Melo LC, Novaes E, Jannink JL. Association mapping in common bean revealed regions associated with anthracnose and angular leaf spot resistance. Scientia Agricola. 2019;76:321–7.
Article
CAS
Google Scholar
Campa A, García-Fernández C, Ferreira JJ. Genome-wide association study (GWAS) for resistance to Sclerotinia sclerotiorum in common bean. Genes. 2020;11(12):1496.
Article
CAS
PubMed Central
Google Scholar
Vaz Bisneta M, Gonçalves-Vidigal MC. Integration of anthracnose resistance loci and RLK and NBS-LRR-encoding genes in the Phaseolus vulgaris L. genome. Crop Sci. 2020;60(6):2901–18.
Article
CAS
Google Scholar
Vidigal Filho PS, Gonçalves-Vidigal MC, Vaz Bisneta M, Souza VB, Gilio TA, Calvi AA, Melotto M. Genome-wide association study of resistance to anthracnose and angular leaf spot in Brazilian Mesoamerican and Andean common bean cultivars. Crop Sci. 2020;60(6):2931–50.
Article
CAS
Google Scholar
Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Marra MA. Circos: an information aesthetic for comparative genomics. Genome Res. 2009;19(9):1639–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S, Kong L, Gao G, Li CY, Wei L. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 2011;39(suppl_2):W316–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wickham H, Chang W, Wickham MH. Package ‘ggplot2’. Create Elegant Data Visualisations Using the Grammar of Graphics. Version. 2016;2(1):1–189.
Google Scholar
Meziadi C, Richard MM, Derquennes A, Thareau V, Blanchet S, Gratias A, Geffroy V. Development of molecular markers linked to disease resistance genes in common bean based on whole genome sequence. Plant Sci. 2016;242:351–7.
Article
CAS
PubMed
Google Scholar
Voorrips R. MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered. 2002;93(1):77–8.
Article
CAS
PubMed
Google Scholar
Cooper B, Campbell KB, Beard HS, Garrett WM, Ferreira ME. The proteomics of resistance to halo blight in common bean. Mol Plant Microbe Interact. 2020;33(9):1161–75.
Article
CAS
PubMed
Google Scholar
Padder BA, Kamfwa K, Awale HE, Kelly JD. Transcriptome profiling of the Phaseolus vulgaris-Colletotrichum lindemuthianum pathosystem. PLoS One. 2016;11(11):e0165823.
Article
PubMed
PubMed Central
Google Scholar
Oliveira MB, de Andrade RV, Grossi-de-Sá MF, Petrofeza S. Analysis of genes that are differentially expressed during the Sclerotinia sclerotiorum–Phaseolus vulgaris interaction. Front Microbiol. 2015;6:1162.
Article
PubMed
PubMed Central
Google Scholar
Wang H, Jia J, Cai Z, Duan M, Jiang Z, Xia Q, Nian H. Identification of quantitative trait loci (QTLs) and candidate genes of seed Iron and zinc content in soybean [Glycine max (L.) Merr.]. BMC Genomics. 2022;23(1):1–14.
PubMed
PubMed Central
Google Scholar
Jin J, Liu D, Qi Y, Ma J, Zhen W. Major QTL for seven yield-related traits in common wheat (Triticum aestivum L.). Front Genet. 2020;11:1012.
Article
PubMed
PubMed Central
Google Scholar
Osdaghi E, Shams-Bakhsh M, Alizadeh A, Lak MR, Maleki HH. Induction of resistance in common bean by Rhizobium leguminosarum bv. phaseoli and decrease of common bacterial blight. Phytopathologia Mediterranea. 2011;50(1):45–54.
Google Scholar
Izquierdo P, Astudillo C, Blair MW, Iqbal AM, Raatz B, Cichy KA. Meta-QTL analysis of seed iron and zinc concentration and content in common bean (Phaseolus vulgaris L.). Theor Appl Genet. 2018;131(8):1645–58.
Article
CAS
PubMed
Google Scholar
Martinez AK, Soriano JM, Tuberosa R, Koumproglou R, Jahrmann T, Salvi S. Yield QTLome distribution correlates with gene density in maize. Plant Sci. 2016;242:300–9.
Article
CAS
PubMed
Google Scholar
Venske E, Dos Santos RS, Farias DDR, Rother V, da Maia LC, Pegoraro C, Costa de Oliveira A. Meta-analysis of the QTLome of Fusarium head blight resistance in bread wheat: refining the current puzzle. Front Plant Sci. 2019;10:727.
Article
PubMed
PubMed Central
Google Scholar
Liu Y, Salsman E, Wang R, Galagedara N, Zhang Q, Fiedler JD, Liu Z, Xu S, Faris JD, Li X. Meta-QTL analysis of tan spot resistance in wheat. Theor Appl Genet. 2020;133:2363–75.
Article
CAS
PubMed
Google Scholar
Zheng T, Hua C, Li L, Sun Z, Yuan M, Bai G, Humphreys G, Li T. Integration of meta-QTL discovery with omics: Towards a molecular breeding platform for improving wheat resistance to Fusarium head blight. Crop J. 2021;9(4):739–49.
Article
Google Scholar
Yang Y, Amo A, Wei D, Chai Y, Zheng J, Qiao P, et al. Large-scale integration of meta-QTL and genome-wide association study discovers the genomic regions and candidate genes for yield and yieldrelated traits in bread wheat. Theor Appl Genet. 2021;134(9):3083–3109.
Zhang J, Li W, Xiang T, Liu Z, Laluk K, Ding X, Zou Y, Gao M, Zhang X, Chen S, Mengiste T. Receptor-like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by a Pseudomonas syringae effector. Cell Host Microbe. 2010;7(4):290–301.
Article
CAS
PubMed
Google Scholar
Guy E, Lautier M, Chabannes M, Roux B, Lauber E, Arlat M, Noël LD. XopAC-triggered immunity against Xanthomonas depends on Arabidopsis receptor-like cytoplasmic kinase genes PBL2 and RIPK. PLoS One. 2013;8(8):e73469.
Article
CAS
PubMed
PubMed Central
Google Scholar
Khojasteh M, Khahani B, Taghavi M, Tavakol E. Identification and characterization of responsive genes in rice during compatible interactions with pathogenic pathovars of Xanthomonas oryzae. Eur J Plant Pathol. 2018;151(1):141–53.
CAS
Google Scholar
Lai Z, Vinod KM, Zheng Z, Fan B, Chen Z. Roles of Arabidopsis WRKY3 and WRKY4 transcription factors in plant responses to pathogens. BMC Plant Biol. 2008;8(1):1–13.
Article
Google Scholar
Saucet SB, Ma Y, Sarris PF, Furzer OJ, Sohn KH, Jones JD. Two linked pairs of Arabidopsis TNL resistance genes independently confer recognition of bacterial effector AvrRps4. Nat Commun. 2015;6(1):1–12.
Article
Google Scholar
Sharma P, Gangola MP, Huang C, Kutcher HR, Ganeshan S, Chibbar RN. Single nucleotide polymorphisms in B-genome specific UDP-glucosyl transferases associated with Fusarium Head Blight resistance and reduced deoxynivalenol accumulation in wheat grain. Phytopathology. 2018;108(1):124–32.
Article
CAS
PubMed
Google Scholar
Zamioudis C, Hanson J, Pieterse CM. β-Glucosidase BGLU 42 is a MYB 72-dependent key regulator of rhizobacteria-induced systemic resistance and modulates iron deficiency responses in Arabidopsis roots. New Phytol. 2014;204(2):368–79.
Article
CAS
PubMed
Google Scholar
Lu H, Rate DN, Song JT, Greenberg JT. ACD6, a novel ankyrin protein, is a regulator and an effector of salicylic acid signaling in the Arabidopsis defense response. Plant Cell. 2003;15(10):2408–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang LP, Fang YY, An CP, Dong L, Zhang ZH, Chen H, Xie Q, Guo HS. C 2-mediated decrease in DNA methylation, accumulation of si RNAs, and increase in expression for genes involved in defense pathways in plants infected with beet severe curly top virus. Plant J. 2013;73(6):910–7.
Article
CAS
PubMed
Google Scholar
Noble TJ, Young AJ, Douglas CA, Williams B, Mundree S. Diagnosis and management of halo blight in Australian mungbeans: a review. Crop Pasture Sci. 2019;70(3):195–203.
Article
Google Scholar
Zhang Z, Shrestha J, Tateda C, Greenberg JT. Salicylic acid signaling controls the maturation and localization of the Arabidopsis defense protein Accelerated Cell Death 6. Mol Plant. 2014;7(8):1365–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zeilmaker T, Ludwig NR, Elberse J, Seidl MF, Berke L, Van Doorn A, Schuurink RC, Snel B, Van den Ackerveken G. Downy mildew resistant 6 and DMR 6-like oxygenase 1 are partially redundant but distinct suppressors of immunity in Arabidopsis. Plant J. 2015;81(2):210–22.
Article
CAS
PubMed
Google Scholar
Kolomiets MV, Chen H, Gladon RJ, Braun EJ, Hannapel DJ. A leaf lipoxygenase of potato induced specifically by pathogen infection. Plant Physiol. 2000;124(3):1121–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Akram A, Ongena M, Duby F, Dommes J, Thonart P. Systemic resistance and lipoxygenase-related defense response induced in tomato by Pseudomonas putidastrain BTP1. BMC Plant Biol. 2008;8(1):113–24.
Article
PubMed
PubMed Central
Google Scholar
Porta H, Figueroa-Balderas RE, Rocha-Sosa M. Wounding and pathogen infection induce a chloroplast-targeted lipoxygenase in the common bean (Phaseolus vulgaris L.). Planta. 2008;227(2):363–73.
Article
CAS
PubMed
Google Scholar
Wiermer M, Cheng YT, Imkampe J, Li M, Wang D, Lipka V, Li X. Putative members of the Arabidopsis Nup107-160 nuclear pore sub-complex contribute to pathogen defense. Plant J. 2012;70(5):796–808.
Article
CAS
PubMed
Google Scholar
Sheikh AH, Eschen-Lippold L, Pecher P, Hoehenwarter W, Sinha AK, Scheel D, Lee J. Regulation of WRKY46 transcription factor function by mitogen-activated protein kinases in Arabidopsis thaliana. Front Plant Sci. 2016;7:61.
Article
PubMed
PubMed Central
Google Scholar
Hu M, Qi J, Bi G, Zhou JM. Bacterial effectors induce oligomerization of immune receptor ZAR1 in vivo. Mol Plant. 2020;13(5):793–801.
Article
CAS
PubMed
Google Scholar
Lewis JD, Lee AHY, Hassan JA, Wan J, Hurley B, Jhingree JR, Wang PW, Lo T, Youn JY, Guttman DS, Desveaux D. The Arabidopsis ZED1 pseudokinase is required for ZAR1-mediated immunity induced by the Pseudomonas syringae type III effector HopZ1a. Proc Natl Acad Sci. 2013;110(46):18722–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li J, Zhong R, Palva ET. WRKY70 and its homolog WRKY54 negatively modulate the cell wall-associated defenses to necrotrophic pathogens in Arabidopsis. PLoS One. 2017;12(8):e0183731.
Article
PubMed
PubMed Central
Google Scholar
Melotto M, Balardin RS, Kelly JD. Host-pathogen interaction and variability of Colletotrichum lindemuthianum. Colletotrichum host specificity, pathology, host–pathogen interaction. St. Paul, MN: APS press; 2000. p. 346–61.
Google Scholar
Liu X, Liu H, He J, Zhang S, Han H, Wang Z, Liu WC, Liang YK, Gao Z. RIN13-mediated disease resistance depends on the SNC1–EDS1/PAD4 signaling pathway in Arabidopsis. J Exp Bot. 2020;71(22):7393–404.
Article
CAS
PubMed
Google Scholar
Hawamda AI, Zahoor A, Abbas A, Ali MA, Bohlmann H. The Arabidopsis RboHB encoded by At1g09090 is important for resistance against nematodes. Int J Mol Sci. 2020;21(15):5556.
Article
CAS
PubMed Central
Google Scholar
Singh JS, Koushal S, Kumar A, Vimal SR, Gupta VK. Book review: microbial inoculants in sustainable agricultural productivity-Vol. II: functional application. Front Microbiol. 2016;7:2105.
Article
PubMed Central
Google Scholar
Arthikala MK, Montiel J, Sánchez-López R, Nava N, Cárdenas L, Quinto C. Respiratory burst oxidase homolog gene is crucial for rhizobium infection and nodule maturation and function in common bean. Front Plant Sci. 2017;8:2003.
Article
PubMed
PubMed Central
Google Scholar