Arahal DR, Castillo AM, Ludwig W, Schleifer KH, Ventosa A. Proposal of cobetia marina gen. nov., comb. nov., within the family halomonadaceae, to include the species halomonas marina. Syst Appl Microbiol. 2002;25(2):207–11.
PubMed
Google Scholar
Noskova Y, Likhatskaya G, Terentieva N, Son O, Tekutyeva L, Balabanova L. A novel alkaline Phosphatase/Phosphodiesterase, CamPhoD, from Marine Bacterium Cobetia amphilecti KMM 296. Mar Drugs. 2019;17(12):657.
Article
CAS
PubMed Central
Google Scholar
Golotin V, Balabanova L, Likhatskaya G, Rasskazov V. Recombinant production and characterization of a highly active alkaline phosphatase from marine bacterium Cobetia marina. Mar Biotechnol (NY). 2015;17(2):130–43.
Article
CAS
Google Scholar
Lang Y, Ren Y, Bai L, Zhang L: [Hydroxyectoine synthesis and release under osmotic shock in Cobetia marina CICC10367]. Wei sheng wu xue bao = Acta microbiologica Sinica 2009, 49(12):1590–1595.
Trentin DS, Gorziza DF, Abraham WR, Antunes AL, Lerner C, Mothes B, Termignoni C, Macedo AJ. Antibiofilm activity of Cobetia marina filtrate upon Staphylococcus epidermidis catheter-related isolates. Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology]. 2011;42(4):1329–33.
Article
CAS
Google Scholar
Noskova Y, Seitkalieva A, Nedashkovskaya O, Shevchenko L, Balabanova L. Are the closely related cobetia strains of different species? Molecules. 2021;26(3):690.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen Q, Zhang LH, Liu YY, Lang YJ: Expression of the Genes Encoding Ectoine Synthases from Cobetia marina CICC10367 in E. coli BL21. Advanced Materials Research 2012, 573–574:1112–1116.
Farahat MG, Amr D, Galal A. Molecular cloning, structural modeling and characterization of a novel glutaminase-free L-asparaginase from Cobetia amphilecti AMI6. Int J Biol Macromol. 2020;143:685–95.
Article
CAS
PubMed
Google Scholar
Nasu E, Ichiyanagi A, Gomi K. Cloning and expression of a highly active recombinant alkaline phosphatase from psychrotrophic Cobetia marina. Biotech Lett. 2012;34(2):321–8.
Article
CAS
Google Scholar
Lv N, Pan L, Zhang J, Li Y, Zhang M. A novel micro-organism for removing excess ammonia-N in seawater ponds and the effect of Cobetia amphilecti on the growth and immune parameters of Litopenaeus vannamei. J World Aquaculture Soc. 2019;50(2):448–59.
Article
CAS
Google Scholar
Vreeland R, Litchfield C, Martin E, Elliot E. Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria. Int J Syst Bacteriol. 1980;30:485–95.
Article
CAS
Google Scholar
DOBSON SJ, FRANZMANN PD: Unification of the Genera Deleya (Baumann et al. 1983), Halomonas (Vreeland et al. 1980), and Halovibrio (Fendrich 1988) and the Species Paracoccus halodenitrificans (Robinson and Gibbons 1952) into a Single Genus, Halomonas, and Placement of the Genus Zymobacter in the Family Halomonadaceae. International journal of systematic and evolutionary microbiology 1996, 46(2):550–558.
Lu H, Xing P, Zhai L, Li H, Wu Q. Halomonas montanilacus sp. nov., isolated from hypersaline Lake Pengyanco on the Tibetan Plateau. Int J Syst Evol Microbiol. 2020;70(4):2859–66.
Article
CAS
PubMed
Google Scholar
Zhao H, Wang C, Tian Y, Zhang Y, Wu Y, Zhang Y, Du Z, Li B, Ji X. Halomonas marinisediminis sp. nov., a moderately Halophilic Bacterium Isolated from the Bohai Gulf. Curr Microbiol. 2020;77(11):3773–9.
Article
CAS
PubMed
Google Scholar
Pandiyan K, Kushwaha P, Bagul SY, Chakdar H, Madhaiyan M, Krishnamurthi S, Kumar P, Karthikeyan N, Singh A, Kumar M et al: Halomonas icarae sp. nov., a moderately halophilic bacterium isolated from beach soil in India. Int J Syst Evol Microbiol. 2021, 71(1).
Khan SA, Zununi Vahed S, Forouhandeh H, Tarhriz V, Chaparzadeh N, Hejazi MA, Jeon CO, Hejazi MS. Halomonas urmiana sp. nov., a moderately halophilic bacterium isolated from Urmia Lake in Iran. Int J Syst Evol Microbiol. 2020;70(4):2254–60.
Article
CAS
PubMed
Google Scholar
Xiao Z, Shen J, Wang Z, Dong F, Zhao JY. Halomonas bachuensis sp. nov., Isolated from Gobi Soil. Curr Microbiol. 2021;78(1):397–402.
Article
CAS
PubMed
Google Scholar
Ming H, Ji WL, Li M, Zhao ZL, Cheng LJ, Niu MM, Zhang LY, Wang Y, Nie GX. Halomonas lactosivorans sp. nov.,isolated from salt-lake sediment. Int J Syst Evol Microbiol. 2020;70(5):3504–12.
Article
CAS
PubMed
Google Scholar
Chen C, Anwar N, Wu C, Fu G, Wang R, Zhang C, Wu Y, Sun C, Wu M. Halomonas endophytica sp. nov., isolated from liquid in the stems of populus euphratica. Int J Syst Evol Microbiol. 2018;68(5):1633–8.
Article
CAS
PubMed
Google Scholar
Kämpfer P, Rekha PD, Busse HJ, Arun AB, Priyanka P, Glaeser SP. Halomonas malpeensis sp. nov., isolated from rhizosphere sand of a coastal sand dune plant. Int J Syst Evol Microbiol. 2018;68(4):1037–46.
Article
PubMed
Google Scholar
Chen X, Yu L, Qiao G, Chen GQ. Reprogramming Halomonas for industrial production of chemicals. J Ind Microbiol Biotechnol. 2018;45(7):545–54.
Article
CAS
PubMed
Google Scholar
Du H, Zhao Y, Wu F, Ouyang P, Chen J, Jiang X, Ye J, Chen GQ. Engineering Halomonas bluephagenesis for L-Threonine production. Metab Eng. 2020;60:119–27.
Article
CAS
PubMed
Google Scholar
Lin Y, Guan Y, Dong X, Ma Y, Wang X, Leng Y, Wu F, Ye JW, Chen GQ. Engineering Halomonas bluephagenesis as a chassis for bioproduction from starch. Metab Eng. 2021;64:134–45.
Article
CAS
PubMed
Google Scholar
Jiang XR, Yan X, Yu LP, Liu XY, Chen GQ. Hyperproduction of 3-hydroxypropionate by Halomonas bluephagenesis. Nat Commun. 2021;12(1):1513.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu LP, Yan X, Zhang X, Chen XB, Wu Q, Jiang XR, Chen GQ. Biosynthesis of functional polyhydroxyalkanoates by engineered Halomonas bluephagenesis. Metab Eng. 2020;59:119–30.
Article
CAS
PubMed
Google Scholar
Ma H, Zhao Y, Huang W, Zhang L, Wu F, Ye J, Chen GQ. Rational flux-tuning of Halomonas bluephagenesis for co-production of bioplastic PHB and ectoine. Nat Commun. 2020;11(1):3313.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rajeev M, Sushmitha TJ, Toleti SR, Pandian SK. Culture dependent and independent analysis and appraisal of early stage biofilm-forming bacterial community composition in the Southern coastal seawater of India. Sci Total Environ. 2019;666:308–20.
Article
CAS
PubMed
Google Scholar
Zhao S, Liu J, Banerjee S, Zhou N, Zhao Z, Zhang K, Hu M, Tian C. Biogeographical distribution of bacterial communities in saline agricultural soil. Geoderma. 2020;361: 114095.
Article
CAS
Google Scholar
Sun J, Zhou H, Cheng H, Chen Z, Wang Y: Temporal change of prokaryotic community in surface sediments of the Chukchi Sea. Ecohydrology & Hydrobiology 2022.
Newman DK, Banfield JF. Geomicrobiology: how molecular-scale interactions underpin biogeochemical Systems. Science. 2002;296(5570):1071–7.
Article
CAS
PubMed
Google Scholar
Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, Djahanschiri B, Zeller G, Mende DR, Alberti A, et al. Structure and function of the global ocean microbiome. Science. 2015;348(6237):1261359.
Article
PubMed
Google Scholar
Kasting James F, Siefert Janet L. Life and the evolution of earth’s Atmosphere. Science. 2002;296(5570):1066–8.
Article
CAS
PubMed
Google Scholar
Moran MA. The global ocean microbiome. Science. 2015;350(6266):aac8455.
Article
PubMed
Google Scholar
Hansell D, Carlson C, Repeta D, Schlitzer R. Dissolved organic matter in the ocean: a controversy stimulates new insights. Oceanography. 2009;22(4):202–11.
Article
Google Scholar
Falkowski Paul G, Barber Richard T, Smetacek V. Biogeochemical controls and feedbacks on ocean primary production. Science. 1998;281(5374):200–6.
Article
Google Scholar
Swan BK, Martinez-Garcia M, Preston CM, Sczyrba A, Woyke T, Lamy D, Reinthaler T, Poulton NJ, Masland EDP, Gomez ML, et al. Potential for chemolithoautotrophy among ubiquitous bacteria lineages in the dark ocean. Science. 2011;333(6047):1296–300.
Article
CAS
PubMed
Google Scholar
Arístegui J, Gasol JM, Duarte CM, Herndld GJ. Microbial oceanography of the dark ocean’s pelagic realm. Limnol Oceanogr. 2009;54(5):1501–29.
Article
Google Scholar
Reinthaler T, van Aken HM, Herndl GJ. Major contribution of autotrophy to microbial carbon cycling in the deep North Atlantic’s interior. Deep Sea Res Part II. 2010;57(16):1572–80.
Article
CAS
Google Scholar
Karner MB, DeLong EF, Karl DM. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature. 2001;409(6819):507–10.
Article
CAS
PubMed
Google Scholar
Meador TB, Schoffelen N, Ferdelman TG, Rebello O, Khachikyan A, Könneke M. Carbon recycling efficiency and phosphate turnover by marine nitrifying archaea. Sci Adv. 2020;6(19):1799.
Article
Google Scholar
Daims H, Nielsen JL, Nielsen PH, Schleifer KH, Wagner M. In situ characterization of Nitrospira-like nitrite-oxidizing bacteria active in wastewater treatment plants. Appl Environ Microbiol. 2001;67(11):5273–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Watson SW, Bock E, Valois FW, Schlosser WU. Nitrospira marina gen . nov. sp. nov.: a chemolithotrophic nitrite-oxidizing bacterium. Arch Microbiol. 1986;144:1–7.
Google Scholar
Redfield AC. The biological control of chemical factors in the environment. Sci Prog. 1960;11:150–70.
CAS
PubMed
Google Scholar
Yan W, Jiapeng W, Yiguo H. Microbial nitrification coupled to the hemoautotrophic carbon fixation in the deep ocean. Chinese Journal of Nature. 2016;38(02):109–15.
CAS
Google Scholar
Fennel K, Follows M, Falkowski PG. The co-evolution of the nitrogen, carbon and oxygen cycles in the Proterozoic ocean. Am J Sci. 2005;305(6–8):526–45.
Article
CAS
Google Scholar
Canfield DE, Glazer AN, Falkowski PG. The evolution and future of Earth’s nitrogen cycle. Science (New York, NY). 2010;330(6001):192–6.
Article
CAS
Google Scholar
Zhang Y, Qin W, Hou L, Zakem EJ, Wan X, Zhao Z, Liu L, Hunt KA, Jiao N, Kao SJ, et al. Nitrifier adaptation to low energy flux controls inventory of reduced nitrogen in the dark ocean. Proc Natl Acad Sci USA. 2020;117(9):4823–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zehr JP, Capone DG. Changing perspectives in marine nitrogen fixation. Science. 2020;368(6492):eaay9514.
Article
CAS
PubMed
Google Scholar
Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M: KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic acids research 2007, 35(Web Server issue):W182–185.
Simon-Colin C, Raguénès G, Cozien J, Guezennec JG. Halomonas profundus sp. nov., a new PHA-producing bacterium isolated from a deep-sea hydrothermal vent shrimp. J Appl Microbiol. 2008;104(5):1425–32.
CAS
PubMed
Google Scholar
Guo Y, Zhou X, Li Y, Li K, Wang C, Liu J, Yan D, Liu Y, Yang D, Xing J. Heterotrophic nitrification and aerobic denitrification by a novel Halomonas campisalis. Biotech Lett. 2013;35(12):2045–9.
Article
CAS
Google Scholar
T Wang J Li LH Zhang Y Yu YM Zhu 2017 Simultaneous heterotrophic nitrification and aerobic denitrification at high concentrations of NaCl and ammonia nitrogen by Halomonas bacteria Water science and technology : a journal of the International Association on Water Pollution Research 76 2 386 395.
Li X, Gan L, Hu M, Wang S, Tian Y, Shi B. Halomonas pellis sp. nov., a moderately halophilic bacterium isolated from wetsalted hides. Int J Syst Evol Microbiol. 2020;70(10):5417–24.
Article
CAS
PubMed
Google Scholar
Kushwaha B, Jadhav I, Jadhav K. Halomonas sambharensis sp. nov., a moderately halophilic bacterium isolated from the saltern crystallizer ponds of the sambhar salt lake in India. Curr Microbiol. 2020;77(6):1125–34.
CAS
PubMed
Google Scholar
Zhang Q, Chen X, Zhang Z, Luo W, Wu H, Zhang L, Zhang X, Zhao T. Performance and microbial ecology of a novel moving bed biofilm reactor process inoculated with heterotrophic nitrification-aerobic denitrification bacteria for high ammonia nitrogen wastewater treatment. Biores Technol. 2020;315: 123813.
Article
CAS
Google Scholar
Hu J, Yan J, Wu L, Bao Y, Yu D, Li J. Simultaneous nitrification and denitrification of hypersaline wastewater by a robust bacterium Halomonas salifodinae from a repeated-batch acclimation. Biores Technol. 2021;341: 125818.
Article
CAS
Google Scholar
Balabanova L, Podvolotskaya A, Slepchenko L, Eliseikina M, Noskova Y, Nedashkovskaya O, Son O, Tekutyeva L, Rasskazov V. Nucleolytic enzymes from the marine bacterium Cobetia amphilecti KMM 296 with antibiofilm activity and biopreservative effect on meat products. Food Control. 2017;78:270–8.
Article
CAS
Google Scholar
Lv N, Pan L, Zhang J, Li Y, Zhang M: A novel micro-organism for removing excess ammonia‐N in seawater ponds and the effect of Cobetia amphilecti on the growth and immune parameters of Litopenaeus vannamei. Journal of the World Aquaculture Society 2019, 50(2).
Farahat MG, Amr D, Galal A: Molecular cloning, structural modeling and characterization of a novel glutaminase-free L-asparaginase from Cobetia amphilecti AMI6. International Journal of Biological Macromolecules 2020, 143.
L Balabanova A Podvolotskaya L Slepchenko M Eliseikina Y Noskova O Nedashkovskaya O Son L Tekutyeva 2017 Valery, Rasskazov VA: Nucleolytic enzymes from the marine bacterium Cobetia amphilecti KMM 296 with antibiofilm activity and biopreservative effect on meat products Food Control 78 270 278.
VV Mikhailov BG Andryukov IN Lyapun 2019 Search and Selection of Bacteriocin-Producing Strains of Marine Bacteria in the Aquatic Ecosystems of the Sea of Japan Molecular Genetics, Microbiology and Virology: Molekulyarnaya Genetika, Mikrobiologiya i Virusologiya 34 4 216 219
Balabanova L, Nedashkovskaya O, Podvolotskaya A, Slepchenko L, Golotin V, Belik A, Shevchenko L, Son O, Rasskazov V. Data supporting functional diversity of the marine bacterium Cobetia amphilecti KMM 296. Data Brief. 2016;8:726–32.
Article
PubMed
PubMed Central
Google Scholar
Stevens CJ. Nitrogen in the environment. Science (New York, NY). 2019;363(6427):578–80.
Article
CAS
Google Scholar
Torres MES, Morales AR, Peralta AS, Kroneck PMH: 2. Sulfur, the Versatile Non-metal. In: Transition Metals and Sulfur – A Strong Relationship for Life. Edited by Martha Sosa T, Peter K: De Gruyter; 2020: 19–50.
Saito K: Sulfur assimilatory metabolism. The long and smelling road. Plant physiology 2004, 136(1):2443–2450.
Bardou P, Mariette J, Escudié F, Djemiel C, Klopp C. jvenn: an interactive Venn diagram viewer. BMC Bioinformatics. 2014;15(1):293.
Article
PubMed
PubMed Central
Google Scholar