Jermy T. Insect—Host-plant Relationship—Co-evolution or Sequential Evolution? In: Jermy T, editor. The host-plant in relation to insect behaviour and reproduction. Boston, MA: Springer; 1976. p. 109–13.
Chapter
Google Scholar
Jermy T. Evolution of insect/host plant relationships. Am Nat. 1984;124(5):609–30.
Article
Google Scholar
Scheirs J, De Bruyn L. Integrating optimal foraging and optimal oviposition theory in plant-insect research. Oikos. 2000;96(1):187–91.
Article
Google Scholar
Futuyma DJ, Agrawal AA. Macroevolution and the biological diversity of plants and herbivores. Proc Natl Acad Sci USA. 2009;106(43):18054–61.
Article
CAS
Google Scholar
Bernays E, Grahm M. On the evolution of host specificity in phytophagous arthropods. Ecol. 2013;69(4):886–92.
Article
Google Scholar
Giron D, Dubreuil G, Bennett A, Dedeine F, Dicke M, Dyer LA, Erb M, Harris MO, Huguet E, Kaloshian I, Kawakita A. Promises and challenges in insect–plant interactions. Entomol Exp Appl. 2018;166(5):319–43.
Article
Google Scholar
Thompson JN. Evolutionary ecology of the relationship between oviposition preference and performance of offspring in phytophagous insects. Entomol Exper Appl. 1988;47(1):3–14.
Article
Google Scholar
Craig TP, Itami JK, Price PW. A strong relationship between oviposition preference and larval performance in a shoot-galling sawfly. Ecol. 1989;70(6):1691–9.
Article
Google Scholar
Johnson SN, Birch NE, Gregory PJ, Murray PJ. The “mother knows best” principle: should soil insects be included in the preference–performance debate? Ecol Entomol. 2006;31(4):395–401.
Article
Google Scholar
Gripenberg S, Mayhew PJ, Parnell M, Roslin T. A meta‐analysis of preference–performance relationships in phytophagous insects. Ecol Letts. 2010;13(3):383–93.
Article
Google Scholar
Scheirs J, Bruyn LD, Verhagen R. Optimization of adult performance determines host choice in a grass miner. Proc R Soc London B: Biol Sci. 2000;267(1457):2065–9.
Article
CAS
Google Scholar
Janz N. The relationship between habitat selection and preference for adult and larval food resources in the polyphagous butterfly Vanessa cardui (Lepidoptera: Nymphalidae). J Insect Behav. 2005;18(6):767–80.
Article
Google Scholar
Mayhew PJ. Herbivore host choice and optimal bad motherhood. Trends Ecol Evol. 2001;16(4):165–7.
Article
Google Scholar
Salgado AL, DiLeo MF, Saastamoinen M. Narrow oviposition preference of an insect herbivore risks survival under conditions of severe drought. Funct Ecol. 2020;34(7):1358–69.
Article
Google Scholar
Simon JC, d’Alencon E, Guy E, Jacquin-Joly E, Jaquiery J, Nouhaud P, Peccoud J, Sugio A, Streiff R. Genomics of adaptation to host-plants in herbivorous insects. Brief Funct Genomics. 2015;14(6):413–23.
Article
CAS
Google Scholar
Gray ME, Sappington TW, Miller NJ, Moeser J, Bohn MO. Adaptation and invasiveness of western corn rootworm: Intensifying research on a worsening pest. Ann Rev Entomol. 2009;54:303–21.
Article
CAS
Google Scholar
Bernal JS, Medina RF. Agriculture sows pests: How crop domestication, host shifts, and agricultural intensification can create insect pests from herbivores. Curr Opin Insect Sci. 2018;26:76–81.
Article
Google Scholar
Lombaert E, Ciosi M, Miller NJ, Sappington TW, Blin A, Guillemaud T. Colonization history of the western corn rootworm (Diabrotica virgifera virgifera) in North America: insights from random forest ABC using microsatellite data. Biol Invasions. 2018;20(3):665–77.
Miller NJ, Estoup A, Toepfer S, Bourguet D, Lapchin L, Derridj S, Kim KS, Reynaud P, Furlan L, Guillemaud T. Multiple transatlantic introductions of the western corn rootworm. Science. 2005;310(5750):992.
Article
CAS
Google Scholar
Ciosi M, Miller NJ, Kim KS, Giordano R, Estoup A, Guillemaud T. Invasion of Europe by the western corn rootworm, Diabrotica virgifera virgifera: multiple transatlantic introductions with various reductions of genetic diversity. Mol Ecol. 2008;17(16):3614–27.
Meinke LJ, Sappington TW, Onstad DW, Guillemaud T, Miller NJ, Komáromi J, Levay N, Furlan L, Kiss J, Toth F. Western corn rootworm (Diabrotica virgifera virgifera LeConte) population dynamics. Agric For Entomol. 2009;11:29–46.
Branson TF, Ortman EE. Host range of larvae of the western corn rootworm. J Econ Entomol. 1967;60(1):201–3.
Article
Google Scholar
Branson TF, Ortman EE. The host range of larvae of the western corn rootworm: further studies. J Econ Entomol. 1970;63(3):800–3.
Article
Google Scholar
Clark TL, Hibbard BE. A comparison of non-maize hosts to support western corn rootworm (Coleoptera: Chrysomelidae) larval biology. Environ Entomol. 2004;33(3):681–9.
Article
Google Scholar
Oyediran IO, Hibbard BE, Clark TL. Prairie grasses as hosts of the western corn rootworm (Coleoptera: Chrysomelidae). Environ Entomol. 2004;33(3):740–7.
Article
Google Scholar
Prasifka JR, Spencer JL, Tinsley NA, Estes RE, Gray ME. Adult activity and oviposition of corn rootworms, Diabrotica spp. (Coleoptera: Chrysomelidae), in Miscanthus, corn and switchgrass. J Appl Entomol. 2013;137(7):481–7.
Toepfer S, Zellner M, Kuhlmann U. Food and oviposition preferences of Diabrotica v. virgifera in multiple-choice crop habitat situations. Entomologia. 2013;1(1):e8.
Siegfried BD, Mullin CA. Effects of alternative host plants on longevity, oviposition, and emergence of western and northern corn rootworms (Coleoptera: Chrysomelidae). Environ Entomol. 1990;19(3):474–80.
Article
Google Scholar
Tinsley NA, Estes RE, Gray ME. Validation of a nested error component model to estimate damage caused by corn rootworm larvae. J Appl Entomol. 2013;137(3):161–9.
Article
Google Scholar
Grant RH, Seevers KP. Local and long-range movement of adult western corn rootworm (Coleoptera: Chrysomelidae) as evidenced by washup along southern Lake Michigan shores. Environ Entomol. 1989;18(2):266–72.
Article
Google Scholar
Isard SA, Spencer JL, Mabry TR, Levine E. Influence of atmospheric conditions on high-elevation flight of western corn rootworm (Coleoptera: Chrysomelidae). Environ Entomol. 2004;33:650–6.
Article
Google Scholar
Spencer JL, Hibbard BE, Moeser J, Onstad DW. Behaviour and ecology of the western corn rootworm (Diabrotica virgifera virgifera LeConte) (Coleoptera: Chrysomelidae). Agric For Entomol. 2009;11:9–27.
Hughson SA, Spencer JL. Emergence and abundance of western corn rootworm (Coleoptera: Chrysomelidae) in Bt cornfields with structured and seed blend refuges. J Econ Entomol. 2015;108(1):114–25.
Article
CAS
Google Scholar
Spencer JL. Getting high with the beetles. Am Entomol. 2020;66(4):28–32.
Article
Google Scholar
Jensen SG. Laboratory transmission of maize chlorotic mottle virus by three species of corn rootworms. Plant Dis. 1985;69(10):864–8.
Article
Google Scholar
Gilbertson RL, Brown WM, Ruppel EG, Capinera JL. Association of corn stalk rot Fusarium spp. and western com rootworm beetles in Colorado. Phytopathol. 1986;76(12):1309–14.
Article
Google Scholar
Meinke LJ, Souza D, Siegfried BD. The use of insecticides to manage the western corn rootworm, Diabrotica virgifera virgifera, LeConte: History, field-evolved resistance, and associated mechanisms. Insects. 2021;12(2):112.
Cullen EM, Gray ME, Gassmann AJ, Hibbard BE. Resistance to Bt corn by western corn rootworm (Coleoptera: Chrysomelidae) in the U.S. Corn Belt. J Integr Pest Manag. 2013;4(3):D1–6.
Article
Google Scholar
Gassmann AJ. Resistance to Bt maize by western corn rootworm: Effects of pest biology, the pest–crop interaction and the agricultural landscape on resistance. Insects. 2021;12(2):136.
Article
Google Scholar
Levine E, Spencer JL, Isard SA, Onstad DW, Gray ME. Adaptation of the western corn rootworm to crop rotation: evolution of a new strain in response to a management practice. Am. Entomol. 2002;94–107.
Shaw JT, Paullus JH, Luckmann WH. Corn rootworm oviposition in soybeans. J Econ Entomol. 1978;71(2):189–91.
Article
Google Scholar
Sammons AE, Edwards CR, Bledsoe LW, Boeve PJ, Stuart JJ. Behavioral and feeding assays reveal a western corn rootworm (Coleoptera: Chyromelidae) variant that is attracted to soybean. Environ Entomol. 1997;26(6):1336–42.
Article
Google Scholar
Levine E, Oloumi-Sadeghi H. Western corn rootworm (Coleoptera: Chrysomelidae) larval injury to corn grown for seed production following soybeans grown for seed production. J Econ Entomol. 1996;89:1010–6.
Article
Google Scholar
Mabry TR, Spencer JL. Survival and oviposition of a western corn rootworm variant feeding on soybean. Entomol Exp Appl. 2003;109(2):113–21.
Article
Google Scholar
Miller NJ, Guillemaud T, Giordano R, Siegfried BD, Gray ME, Meinke LJ, Sappington TW. Genes, gene flow and adaptation of Diabrotica virgifera virgifera. Agric For Entomol. 2009;11:47–60.
Spencer JL, Raghu S. Refuge or reservoir? The potential impacts of the biofuel crop Miscanthus x giganteus on a major pest of maize. PLoS ONE. 2009;4(12):e8336.
Article
Google Scholar
Curzi MJ, Zavala JA, Spencer JL, Seufferheld MJ. Abnormally high digestive enzyme activity and gene expression explain the contemporary evolution of a Diabrotica biotype able to feed on soybeans. Ecol Evol. 2012;2(8):2005–17.
Chu CC, Spencer JL, Curzi MJ, Zavala JA, Seufferheld MJ. Gut bacteria facilitate adaptation to crop rotation in the western corn rootworm. Proc Natl Acad Sci USA. 2013;110(29):11917–22.
Article
CAS
Google Scholar
O’Neal ME, Landis DA, Miller JR, DiFonzo CD. Corn phenology influences Diabrotica virgifera virgifera emigration and visitation to soybean in laboratory assays. Environ Entomol. 2004;33(1):35–44.
Pierce CM, Gray ME. Seasonal oviposition of a western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), variant in east central Illinois commercial maize and soybean fields. Environ Entomol. 2006;35(3):676–83.
Mabry TR, Spencer JL, Levine E, Isard SA. Western corn rootworm (Coleoptera: Chrysomelidae) behavior is affected by alternating diets of corn and soybean. Environ Entomol. 2004;33(4):860–71.
Article
Google Scholar
Knolhoff LM, Onstad DW, Spencer JL, Levine E. Behavioral differences between rotation-resistant and wild-type Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae). Environ Entomol. 2006;35:1049–57.
Knolhoff LM, Glas JJ, Spencer JL, Berenbaum MR. Oviposition behaviors in relation to rotation resistance in the western corn rootworm. Environ Entomol. 2010;39(6):1922–8.
Article
CAS
Google Scholar
War AR, Taggar GK, Hussain B, Taggar MS, Nair RM, Sharma HC. Plant defense against herbivory and insect adaptations. AoB Plants 2018;10(4):ply037.
Dermauw W, Pym A, Bass C, Van Leeuwen T, Feyereisen R. Does host plant adaptation lead to pesticide resistance in generalist herbivores? Cur Opin Insect Sci. 2018;26:25–33.
Article
Google Scholar
Crossley MS, Snyder WE, Hardy NB. Insect–plant relationships predict the speed of insecticide adaptation. Evol Appl. 2021;14(2):290–6.
Article
Google Scholar
Oshlack A, Wakefield MJ. Transcript length bias in RNA-seq data confounds systems biology. Biol Direct. 2009;4(1):14.
Article
Google Scholar
Veenstra KH, Pashley DP, Ottea JA. Host-plant adaptation in fall armyworm host strains: comparison of food consumption, utilization, and detoxication enzyme activities. Ann Entomol Soc Am. 1995;88(1):80–91.
Article
CAS
Google Scholar
Kirsch R, Vogel H, Muck A, Reichwald K, Pasteels JM, Boland W. Host plant shifts affect a major defense enzyme in Chrysomela lapponica. Proc Nat Acad Sci. 2011;108(12):4897–901.
Hafeez M, Li XW, Zhang JM, Zhang ZJ, Huang J, Wang LK, Khan MM, Shah S, Fernández-Grandon GM, Lu YB. Role of digestive protease enzymes and related genes in host plant adaptation of a polyphagous pest, Spodoptera frugiperda. Insect Science. 2021;28(3):611–26.
Wang H, Eyun SI, Arora K, Tan SY, Gandra P, Moriyama E, Khajuria C, Jurzenski J, Li H, Donahue M, Narva K. Patterns of gene expression in western corn rootworm (Diabrotica virgifera virgifera) neonates, challenged with Cry34Ab1, Cry35Ab1 and Cry34/35Ab1, based on next-generation sequencing. Toxins. 2017;9(4):124.
Rault LC, Siegfried BD, Gassmann AJ, Wang H, Brewer GJ, Miller NJ. Investigation of Cry3Bb1 resistance and intoxication in western corn rootworm by RNA sequencing. J Appl Entomol. 2018;142(10):921–36.
Article
CAS
Google Scholar
Zhao Z, Meihls LN, Hibbard BE, Ji T, Elsik CG, Shelby KS. Differential gene expression in response to eCry3.1Ab ingestion in an unselected and eCry3.1Ab-selected western corn rootworm (Diabrotica virgifera virgifera LeConte) population. Sci Rep. 2019;9(1):4896.
Coates BS, Delury E, Gassmann AJ, Hibbard B, Meinke L, Miller NJ, Petzold-Maxwell J, French BW, Sappington TW, Siegfried BD, Guillimaud T. Up-regulation of apoptotic- and cell survival-related gene pathways following exposures of western corn rootworm to Bacillus thuringiensis crystalline pesticidal proteins in transgenic maize roots. BMC Genomics. 2021;22(1):639.
Coates BS, Alvez A, Wang H, Zhou Z, Nowastski T, Chen H, Rangasamy M, Robertson HM, Whitfield CW, Walden KK, Kachman SD, French BW, Meinke LJ, Hawthorne D, Abel CA, Sappington TW, Siegfried BD, Miller NJ. Quantitative trait locus mapping and functional genomics of an organophosphate resistance trait in the western corn rootworm, Diabrotica virgifera virgifera. Insect Mol Biol. 2016;25(1):1–15.
Souza D, Jiménez AV, Sarath G, Meinke LJ, Miller NJ, Siegfried BD. Enhanced metabolism and selection of pyrethroid-resistant western corn rootworms (Diabrotica virgifera virgifera LeConte). Pest Biochem Physiol. 2020;164:165–72.
Knolhoff LM, Walden KKO, Ratcliffe ST, Onstad DW, Robertson HM. Microarray analysis yields candidate markers for rotation resistance in the western corn rootworm beetle, Diabrotica virgifera virgifera. Evol Appl. 2010;3(1):17–27.
Miller NJ, Richards S, Sappington TW. The prospects for sequencing the western corn rootworm genome. J Appl Entomol. 2010;134(5):420–8.
Article
Google Scholar
Coates BS, Alves AP, Wang H, Walden KK, French BW, Miller NJ, Abel CA, Robertson HM, Sappington TW, Siegfried BD. Distribution of genes and repetitive elements in the Diabrotica virgifera virgifera genome estimated using BAC sequencing. J Biomed Biotechnol. 2012;604076.
Xue W, Li JT, Zhu YP, Hou GY, Kong XF, Kuang YY, Sun XW. L_RNA_scaffolder: scaffolding genomes with transcripts. BMC Genomics. 2013;14(1):604.
Article
Google Scholar
Andersson MN, Keeling CI, Mitchell RF. Genomic content of chemosensory genes correlates with host range in wood-boring beetles (Dendroctonus ponderosae, Agrilus planipennis, and Anoplophora glabripennis). BMC Genomics. 2019;20(1):1–8.
Ramsdell KM. Discovery and phylogeny of the odorant binding and chemosensory proteins of Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae) and Rhagoletis (Diptera: Tephritidae). Ph.D Dissertation, University of Illinois at Urbana-Champaign ProQuest Dissertations Publishing, 2004. 3131011.
Mitchell RF, Schneider TM, Schwartz AM, Andersson MN, McKenna DD. The diversity and evolution of odorant receptors in beetles (Coleoptera). Insect Mol Biol. 2020;29(1):77–91.
Article
CAS
Google Scholar
Yuvaraj JK, Andersson MN, Zhang DD, Löfstedt C. Antennal transcriptome analysis of the chemosensory gene families from Trichoptera and basal Lepidoptera. Front Physiol. 2018;9:1365.
Article
Google Scholar
Coates BS. Initial set of gene ontology (GO) terms for the D. v. virgifera GCF_003013835.1 RefSeq protein models. 2022; Ag Data Commons. https://doi.org/10.15482/USDA.ADC/1524777. Accessed 24 Mar 2022.
Wechsler S, Smith D. Has resistance taken root in US corn fields? Demand for insect control. Am J Agric Econ. 2018;100(4):1136–50.
Article
Google Scholar
Hanrahan SJ, Johnston JS. New genome size estimates of 134 species of arthropods. Chr Res. 2011;19(6):809–23.
Article
CAS
Google Scholar
Petitpierre E, Segarra C, Juan C. Genome size and chromosomal evolution in leaf beetles (Coleoptera, Chrysomelidae). Hereditas. 1993;119(1):1–6.
Article
Google Scholar
Collins A. The Challenge of Genome Sequence Assembly. Open Bioinformatics J. 2018;11(1):231–9.
Article
Google Scholar
Coates BS, Fraser LM, French BW, Sappington TW. Proliferation and copy number variation among BEL/Pao LTR retrotransposons within the genome of Diabrotica virgifera virgifera. Gene. 2014;534:362–70.
Lata D, Coates BS, Walden KO, Robertson HM, Miller NJ. Genome size evolution in the beetle genus Diabrotica. G3. 2021;14(4):jkac052 https://doi.org/10.1093/g3journal/jkac052.
Tørresen OK, Star B, Mier P, Andrade-Navarro MA, Bateman A, Jarnot P, Gruca A, Grynberg M, Kajava AV, Promponas VJ, Anisimova M. Tandem repeats lead to sequence assembly errors and impose multi-level challenges for genome and protein databases. Nucl Acids Res. 2019;47(21):10994–1006.
Article
Google Scholar
Treangen TJ, Salzberg SL. Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat Rev Genet. 2012;13(1):36–46.
Article
CAS
Google Scholar
Zimin AV, Stevens KA, Crepeau, MW, Puiu D, Wegrzyn JL, Yorke JA, Langley CH, Neale DB, Salzberg SL. An improved assembly of the loblolly pine mega-genome using long-read single-molecule sequencing. Gigascience 2017;6(1):1–4.
Coates BS, Poelchau MF, Childers C, Evans JD, Handler AM, Guerrero F, Skoda SR, Hopper KR, Wintermantel WM, Ling K, Hunter WB, Oppert BS, Shoemaker DD. Arthropod genomics research in the United States Department of Agriculture-Agricultural Research Service: Current impacts and future prospects. Trends Entomol. 2015;11(12):12–27.
Gundersen-Rindal D, Adrianos S, Allen M, Becnel JJ, Chen YP, Choi MY, Estep A, Evans JD, Garczynski S, Beib SM, Ghosh SKB, Handler AM, Hasegawa DK, Heerman M, Jull J, Hunter W, Kaur N, Li J, Li W, Ling KS, Nayduch D, Oppert B, Perera OP, Perkin L, Sanscrainte N, Sim S, Sparks M, Temeyer K, Vander Meer R, Wintermantel WM, James R, Hackett K, Coates BS. Arthropod genomics research in the United States Department of Agriculture-Agricultural Research Service: Applications of RNA interference and gene editing in pest control. Trends Entomol. 2015;13:109–37.
Google Scholar
Darlington M, Reinders JD, Sethi A, Lu AL, Ramaseshadri P, Fischer JR, Boeckman CJ, Petrick JS, Roper JM, Narva KE, Vélez AM. RNAi for western corn rootworm management: Lessons learned, challenges, and future directions. Insects. 2022;13(1):57.
Article
Google Scholar
Bernklau EJ, Bjostad LB. Reinvestigation of host location by western corn rootworm larvae (Coleoptera: Chrysomelidae): CO2 is the only volatile attractant. J Econ Entomol. 1998;91(6):1331–40.
Article
Google Scholar
Arce CC, Theepan V, Schimmel BC, Jaffuel G, Erb M, Machado RA. Plant-associated CO2 mediates long-distance host location and foraging behaviour of a root herbivore. Elife. 2021;10: e65575.
Hammack L, Hibbard BE, Holyoke CW, Kline M, Leva DM. Behavioral response of corn rootworm adults to host plant volatiles perceived by western corn rootworm (Coleoptera: Chrysomelidae). Environ Entomol. 1999;28(6):961–7.
Article
CAS
Google Scholar
Metcalf RL, Lampman RL, Deem-Dickson L. Indole as an olfactory synergist for volatile kairomones for diabroticite beetles. J Chem Ecol. 1995;21:1149–62.
Article
CAS
Google Scholar
Ball HJ, Chaudhury MF. A sex attractant of the western corn root worm. J Econ Entomol. 1973;66(5):1051–4.
Article
CAS
Google Scholar
Guss PL, Tumlinson JH, Sonnet PE, Proveaux AT. Identification of a female-produced sex pheromone of the western corn rootworm. J Chem Ecol. 1982;8(2):545–56.
Article
CAS
Google Scholar
Leal WS. Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Annu Rev Entomol. 2013;58(1):373–91.
Article
CAS
Google Scholar
Larter NK, Sun JS, Carlson JR. Organization and function of Drosophila odorant binding proteins. eLife. 2016;5:e20242.
Sun JS, Xiao S, Carlson JR. The diverse small proteins called odorant-binding proteins. Open Biol. 2018;8(12):180208.
Article
CAS
Google Scholar
Rihani K, Fraichard S, Chauvel I, Poirier N, Delompré T, Neiers F, Tanimura T, Ferveur JF, Briand L. A conserved odorant binding protein is required for essential amino acid detection in Drosophila. Commun Biol. 2019;2(1):425.
Article
CAS
Google Scholar
Xiao S, Sun JS, Carlson JR. Robust olfactory responses in the absence of odorant binding proteins. Elife. 2019;8:e51040.
Article
CAS
Google Scholar
Benton R. On the ORigin of smell: odorant receptors in insects. Cell Mol Life Sci. 2006;63(14):1579–85.
Article
CAS
Google Scholar
Croset V, Rytz R, Cummins SF, Budd A, Brawand D, Kaessmann H, Gibson TJ, Benton R. Ancient protostome origin of chemosensory ionotropic glutamate receptors and the evolution of insect taste and olfaction. PLoS Genet. 2010;6(8):e1001064.
Article
Google Scholar
Hou XQ, Zhang DD, Powell D, Wang HL, Andersson MN, Löfstedt C. Ionotropic receptors in the turnip moth Agrotis segetum respond to repellent medium-chain fatty acids. BMC Biol. 2022;20(1):1–9.
Article
Google Scholar
Koh TW, He Z, Gorur-Shandilya S, Menuz K, Larter NK, Stewart S, Carlson JR. The Drosophila IR20a clade of ionotropic receptors are candidate taste and pheromone receptors. Neuron. 2014;83(4):850–65.
Sánchez-Alcañiz JA, Silbering AF, Croset V, Zappia G, Sivasubramaniam AK, Abuin L, Sahai SY, Münch D, Steck K, Auer TO, Cruchet S. An expression atlas of variant ionotropic glutamate receptors identifies a molecular basis of carbonation sensing. Nat Commun. 2018;9(1):1–4.
Article
Google Scholar
Xue HJ, Niu YW, Segraves KA, Nie RE, Hao YJ, Zhang LL, Cheng XC, Zhang XW, Li WZ, Chen RS, Yang XK. The draft genome of the specialist flea beetle Altica viridicyanea (Coleoptera: Chrysomelidae). BMC Genomics. 2021;22(1):243.
Vieira FG, Rozas J. Comparative genomics of the odorant-binding and chemosensory protein gene families across the Arthropoda: origin and evolutionary history of the chemosensory system. Genome Biol Evol. 2011;3:476–90.
Article
CAS
Google Scholar
Manoharan M, Ng Fuk Chong M, Vaïtinadapoulé A, Frumence E, Sowdhamini R, Offmann B. Comparative genomics of odorant binding proteins in Anopheles gambiae, Aedes aegypti, and Culex quinquefasciatus. Genome Biol Evol. 2013;5(1):163–80.
Ferguson ST, Park KY, Ruff AA, Bakis I, Zwiebel LJ. Odor coding of nestmate recognition in the eusocial ant. J Exp Biol. 2020;223(2):jeb215400.
Article
Google Scholar
Mitchell RF, Andersson M. Olfactory genomics of the Coleoptera. In: Blomquist G, Vogt R, editors. Insect Pheromone Biochemistry and Molecular Biology. Cambridge, MA, USA: Academic Press; 2021. p. 547–90.
Chapter
Google Scholar
Rihani K, Ferveur JF, Briand L. The 40-year mystery of insect odorant-binding proteins. Biomolecules. 2021;11(4):509.
Article
CAS
Google Scholar
Robertson HM, Baits RL, Walden KK, Wada-Katsumata A, Schal C. Enormous expansion of the chemosensory gene repertoire in the omnivorous German cockroach Blattella germanica. J Exp Zool B: Mol Devel Evol. 2018;330(5):265–78.
Vieira FG, Sanchez-Gracia A, Rozas J. Comparative genomic analysis of the odorant-binding protein family in Drosophila genomes: purifying selection and birth-and death evolution. Genome Biol. 2007;8(11):1–16.
Dippel S, Oberhofer G, Kahnt J, Gerischer L, Opitz L, Schachtner J, Stanke M, Schütz S, Wimmer EA, Angeli S. Tissue-specific transcriptomics, chromosomal localization, and phylogeny of chemosensory and odorant binding proteins from the red flour beetle Tribolium castaneum reveal subgroup specificities for olfaction or more general functions. BMC Genomics. 2014;15(1):1–4.
Schoville SD, Chen YH, Andersson MN, Benoit JB, Bhandari A, Bowsher JH, Brevik K, Cappelle K, Chen MJ, Childers AK, Childers C. A model species for agricultural pest genomics: the genome of the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Sci Rep. 2018;8(1):1–8.
Dermauw W, Van Leeuwen T. The ABC gene family in arthropods: Comparative genomics and role in insecticide transport and resistance. Insect Biochem Molec Biol. 2014;45:89–110.
Article
CAS
Google Scholar
Broehan G, Kroeger T, Lorenzen M, Merzendorfer H. Functional analysis of the ATP-binding cassette (ABC) transporter gene family of Tribolium castaneum. BMC Genomics. 2013;14:6.
Wu C, Chakrabarty S, Jin M, Liu K, Xiao Y. Insect ATP-binding cassette (ABC) transporters: roles in xenobiotic detoxification and Bt insecticidal activity. Internatl J Mol Sci. 2019;20(11):2829.
Article
CAS
Google Scholar
Adedipe F, Grubbs N, Coates BS, Wiegmman B, Lorenzen M. Structural and functional insights into the Diabrotica virgifera virgifera ATP-binding cassette transporter gene family. BMC Genomics. 2019;20(1):1–15.
Flagel LE, Swarup S, Chen M, Bauer C, Wanjugi H, Carroll M, Hill P, Tuscan M, Bansal R, Flannagan R, Clark TL. Genetic markers for western corn rootworm resistance to Bt toxin. G3: Genes, Genomes, Genetics. 2015;5(3):399–405.
Article
Google Scholar
Niu X, Kassa A, Hasler J, Griffin S, Perez-Ortega C, Procyk L, Zhang J, Kapka-Kitzman DM, Nelson ME, Lu A. Functional validation of DvABCB1 as a receptor of Cry3 toxins in western corn rootworm, Diabrotica virgifera virgifera. Sci Rep. 2020;10(1):1–3.
Kim JH, Gellatly KJ, Lueke B, Kohler M, Nauen R, Murenzi E, Yoon KS, Clark JM. Detoxification of ivermectin by ATP binding cassette transporter C4 and cytochrome P450 monooxygenase 6CJ1 in the human body louse, Pediculus humanus humanus. Insect Mol Biol. 2018;27(1):73–82.
Souza D, Siegfried BD, Meinke LJ, Miller NJ. Molecular characterization of western corn rootworm pyrethroid resistance. Pest Manage Sci. 2021;77(2):860–8.
Article
CAS
Google Scholar
Nauen R, Bass C, Feyereisen R, Vontas J. The role of cytochrome P450s in insect toxicology and resistance. Annual Review of Entomol. 2022;67:105–24.
Article
Google Scholar
Calla B, Noble K, Johnson RM, Walden KK, Schuler MA, Robertson HM, Berenbaum MR. Cytochrome P450 diversification and hostplant utilization patterns in specialist and generalist moths: Birth, death and adaptation. Mol Ecol. 2017;26(21):6021–35.
Article
CAS
Google Scholar
Orsucci M, Audiot P, Dorkeld F, Pommier A, Vabre M, Gschloessl B, Rialle S, Severac D, Bourguet D, Streiff R. Larval transcriptomic response to host plants in two related phytophagous lepidopteran species: implications for host specialization and species divergence. BMC Genomics. 2018;19(1):1–4.
Article
Google Scholar
Hasson E, De Panis D, Hurtado J, Mensch J. Host plant adaptation in cactophilic species of the Drosophila buzzatii cluster: fitness and transcriptomics. J Heredity. 2019;110(1):46–57.
Birnbaum SS, Abbot P. Gene expression and diet breadth in plant-feeding insects: summarizing trends. Trends Ecol Evol. 2020;35(3):259–77.
Article
Google Scholar
Aguirre-Rojas LM, Scully ED, Trick HN, Zhu KY, Smith CM. Comparative analyses of transcriptional responses of Dectes texanus LeConte (Coleoptera: Cerambycidae) larvae fed on three different host plants and artificial diet. Sci Rep. 2021;11(1):1–9.
Dermauw W, Van Leeuwen T, Feyereisen R. Diversity and evolution of the P450 family in arthropods. Insect Biochem Mol Biol. 2020;127:103490.
Article
CAS
Google Scholar
Vandenhole M, Dermauw W, Van Leeuwen T. Short term transcriptional responses of P450s to phytochemicals in insects and mites. Curr Opin Insect Sci. 2021;43:117–27.
Article
Google Scholar
Malhas A, Goulbourne C, Vaux DJ. The nucleoplasmic reticulum: form and function. Trends in Cell Biol. 2011;21(6):362–73.
Article
CAS
Google Scholar
Diekmann Y, Pereira-Leal JB. Evolution of intracellular compartmentalization. Biochem J. 2013;449(2):319–31.
Article
CAS
Google Scholar
Sasaki K, Yoshida H. Organelle autoregulation—stress responses in the ER, Golgi, mitochondria and lysosome. J Biochem. 2015;157(4):185–95.
Article
CAS
Google Scholar
Baumann K. How the proteasome adapts to stress. Nat Rev Mol Cell Biol. 2014;15(9):562–3.
Lőw P, Varga Á, Pircs K, Nagy P, Szatmári Z, Sass M, Juhász G. Impaired proteasomal degradation enhances autophagy via hypoxia signaling in Drosophila. BMC Cell Biol. 2013;14(1):1–3.
He L, Zhang J, Zhao J, Ma N, Kim SW, Qiao S, Ma X. Autophagy: The last defense against cellular nutritional stress. Adv Nutr. 2018;9(4):493–504.
Article
Google Scholar
Meineke T, Manisseri C, Voigt CA. Phylogeny in defining model plants for lignocellulosic ethanol production: A comparative study of Brachypodium distachyon, wheat, maize, and Miscanthus x giganteus leaf and stem biomass. PLoS ONE. 2014;9(8): e103580.
Becerra JX. Insects on plants: macroevolutionary chemical trends in host use. Science. 1997;276(5310):253–6.
Article
CAS
Google Scholar
Fuchs Y, Steller H. Programmed cell death in animal development and disease. Cell. 2011;147:742–58.
Article
CAS
Google Scholar
Fuchs E, Yang Y. Crossroads on cytoskeletal highways. Cell. 1999;98(5):547–50.
Article
CAS
Google Scholar
Xu L, Bretscher A. Rapid glucose depletion immobilizes active myosin-V on stabilized actin cables. Curr Biol. 2014;24(20):2471–9.
Article
CAS
Google Scholar
Ali JG, Agrawal AA. Specialist versus generalist insect herbivores and plant defense. Trends Plant Sci. 2012;17(5):293–302.
Article
CAS
Google Scholar
Vogel H, Musser RO, Celorio-Mancera MD. Transcriptome responses in herbivorous insects towards host plant and toxin feeding. Annu Plant Rev. 2014;47:197–233.
Article
CAS
Google Scholar
Celorio‐Mancera de la Paz M, Wheat CW, Vogel H, Söderlind L, Janz N, Nylin S. Mechanisms of macroevolution: polyphagous plasticity in butterfly larvae revealed by RNA‐Seq. Mol Ecol. 2013;22(19):4884–95.
Matsuoka Y, Vigouroux Y, Goodman MM, Sanchez J, Buckler E, Doebley J. A single domestication for maize shown by multilocus microsatellite genotyping. Proc Natl Acad Sci USA. 2002;99(9):6080–4.
Doebley JF, Gaut BS, Smith BD. The molecular genetics of crop domestication. Cell. 2006;127(7):1309–21.
Article
CAS
Google Scholar
Fontes-Puebla AA, Bernal JS. Resistance and tolerance to root herbivory in maize were mediated by domestication, spread, and breeding. Front Plant Sci. 2020;11:223.
Article
Google Scholar
Branson TF, Reyes J. The association of Diabrotica spp. with Zea diploperennis. J Kansas Entomol Soc. 1983;56(51):97–9.
Robert CA, Zhang X, Machado RA, Schirmer S, Lori M, Mateo P, Erb M, Gershenzon J. Sequestration and activation of plant toxins protect the western corn rootworm from enemies at multiple trophic levels. Elife. 2017;6:e29307.
Article
Google Scholar
Gordon HT. Nutritional factors in insect resistance to chemicals. Ann Rev Entomol. 1961;6(1):27–54.
Article
CAS
Google Scholar
Gould F, Carroll CR, Futuyma DJ. Cross-resistance to pesticides and plant defenses: A study of the two-spotted spider mite. Entomol Experi Appl. 1982;31(2–3):175–80.
Article
CAS
Google Scholar
Li X, Schuler MA, Berenbaum MR. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Ann Rev Entomol. 2007;52(1):231–53.
Article
Google Scholar
Dermauw W, Wybouw N, Rombauts S, Menten B, Vontas J, Grbić M, Clark RM, Feyereisen R, Van Leeuwen T. A link between host plant adaptation and pesticide resistance in the polyphagous spider mite Tetranychus urticae. Proc Natl Acad Sci USA. 2013;110(2):E113–22.
Byrne PF, Volk GM, Gardner C, Gore MA, Simon PW, Smith S. Sustaining the future of plant breeding: The critical role of the USDA‐ARS National Plant Germplasm System. Crop Sci. 2018;58(2):451–468.
Branson TF. The selection of a non-diapause strain of Diabrotica virgifera (Coleoptera: Chrysomelidae). Entomol Exp Appl. 1976;19(2):148–54.
Stevens NM. The chromosomes in Diabrotica vittata, Diabrotica soror and Diabrotica 12-punctata: A contribution to the literature on heterochromosomes and sex determination. J Exp Zool. 1908;5(4):453–70.
Ennis T. Meiosis in Diabrotica (Coleoptera: Chrysomelidae): chiasma frequency and variation. Can J Genet Cytol. 1972;14(1):113–28.
Article
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20.
Article
CAS
Google Scholar
Miller JR, Delcher AL, Koren S, Venter E, Walenz BP, Brownley A, Johnson J, Li K, Mobarry C, Sutton G. Aggressive assembly of pyrosequencing reads with mates. Bioinformatics. 2008;24(24):2818–24.
Article
CAS
Google Scholar
Ranallo-Benavidez TR, Jaron KS, Schatz MC. GenomeScope 2.0 and Smudgeplot for reference-free profiling of polyploid genomes. Nat Com. 2020;11(1):1432.
Article
CAS
Google Scholar
Kelley DR, Schatz MC, Salzberg SL. Quake: quality-aware detection and correction of sequencing errors. Genome Biol. 2010;11(11):1–3.
Article
Google Scholar
Li R, Li Y, Kristiansen K, Wang J. SOAP: short oligonucleotide alignment program. Bioinformatics. 2008;24(5):713–4.
Article
CAS
Google Scholar
Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y, Tang J. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience. 2012;1(1):2047-217X-1-18.
Article
Google Scholar
Kent WJ. BLAT—the BLAST-like alignment tool. Genome Res. 2002;12(4):656–64.
CAS
Google Scholar
Pryszcz LP, Gabaldón T. Redundans: an assembly pipeline for highly heterozygous genomes. Nucl Acids Res. 2016;44(12):e113–e113.
Article
Google Scholar
Laetsch DR, Blaxter ML. BlobTools Interrogation of genome assemblies. F1000Research. 2017;6(1287):1287.
Article
Google Scholar
Putnam NH, O’Connell BL, Stites JC, Rice BJ, Blanchette M, Calef R, Troll CJ, Fields A, Hartley PD, Sugnet CW, Haussler D. Chromosome-scale shotgun assembly using an in vitro method for long-range linkage. Genome Res. 2016;26(3):342–50.
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31(19):3210–2.
Article
Google Scholar
Seppey M, Manni M, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness. In: Gene prediction 2019 (pp. 227–245). Humana, New York, NY.
Manni M, Berkeley MR, Seppey M, Simão FA, Zdobnov EM. BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol Biol Evol. 2021;38(10):4647–54.
Article
CAS
Google Scholar
Souvorov A, Kapustin Y, Kiryutin B, Chetvernin V, Tatusova T, Lipman D. Gnomon–NCBI eukaryotic gene prediction tool. National Center for Biotechnology Information. 2010;1–24.
Thibaud-Nissen F, DiCuccio M, Hlavina W, Kimchi A, Kitts PA, Murphy TD, Pruitt KD, Souvorov A. P8008 the NCBI eukaryotic genome annotation pipeline. J Anim Sci. 2016;94(suppl_4):184
Emms DM, Kelly S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 2015;16(1):157.
Article
Google Scholar
Emms DM, Kelly S. OrthoFinder phylogenetic orthology inference for comparative genomics. Genome Biol. 2019;20(1):238.
Article
Google Scholar
Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12(1):59–60.
Article
CAS
Google Scholar
Lee E, Helt GA, Reese JT, Munoz-Torres MC, Childers CP, Buels RM, Stein L, Holmes IH, Elsik CG, Lewis SE. Web Apollo: a web-based genomic annotation editing platform. Genome Biol. 2013;14(8):R93.
Article
Google Scholar
Poelchau M, Childers C, Moore G, Tsavatapalli V, Evans J, Lee CY, Lin H, Lin JW, Hackett K. The i5k Workspace@ NAL—enabling genomic data access, visualization and curation of arthropod genomes. Nucl Acids Res. 2015;43(D1):D714–9.
Article
CAS
Google Scholar
McKenna DD, Scully ED, Pauchet Y, Hoover K, Kirsch R, Geib SM, Mitchell RF, Waterhouse RM, Ahn SJ, Arsala D, Benoit JB. Genome of the Asian longhorned beetle (Anoplophora glabripennis), a globally significant invasive species, reveals key functional and evolutionary innovations at the beetle–plant interface. Genome Biol. 2016;17(1):1–8.
Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics. 2004;5(1):113.
Article
Google Scholar
Katoh K, Standley DM. A simple method to control over-alignment in the MAFFT multiple sequence alignment program. Bioinformatics. 2016;32(13):1933–42.
Article
CAS
Google Scholar
Price MN, Dehal PS, Arkin AP. FastTree 2 – Approximately maximum-likelihood trees for large alignments. PLoS ONE. 2010;5(3):e9490.
Article
Google Scholar
Rambaut A. FigTree v1.4.4, a graphical viewer of phylogenetic trees. http://tree.bio.ed.ac.uk/software/figtree/. Accessed 20 Mar 2022.
Altschul SF, Gish W, Miller W, Myers EW, Lipman DL. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–10.
Article
CAS
Google Scholar
Kumar S, Nei M, Dudley J, Tamura K. MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinformatic. 2008;9(4):299–306.
Article
CAS
Google Scholar
Thompson JD, Gibson TJ, Higgins DG. Multiple sequence alignment using ClustalW and ClustalX. Curr Prot Bioinformatics. 2003;0(1):2–3.
Google Scholar
Le SQ, Gascuel O. An improved general amino acid replacement matrix. Mol Biol Evol. 2008;25(7):1307–20.
Article
CAS
Google Scholar
Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucl Acids Res. 2019;47(W1):W256–9.
Article
CAS
Google Scholar
UniProt Consortium. UniProt: a hub for protein information. Nucl Acids Res. 2015;43(D1):D204–12.
Article
Google Scholar
Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, Lopez R. InterProScan: protein domains identifier. Nucleic Acids Res. 2005;33(suppl_2):W116–20.
Article
CAS
Google Scholar
Feyereisen R. Insect CYP genes and P450 enzymes. In: Insect molecular biology and biochemistry. Cambridge: Academic Press. 2012. p. 236–316.
Simossis VA, Heringa J. PRALINE: a multiple sequence alignment toolbox that integrates homology-extended and secondary structure information. Nucl Acids Res. Nucl Acids Res. 2005;33(suppl_2):W289-294.
Article
CAS
Google Scholar
Pirovano W, Feenstra KA, Heringa J. PRALINE™: a strategy for improved multiple alignment of transmembrane proteins. Bioinformatics. 2008;24(4):492–7.
Article
CAS
Google Scholar
Jones DT. Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol. 1999;292(2):195–202.
Article
CAS
Google Scholar
Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983;22(12):2577–637.
Article
CAS
Google Scholar
Buchan DW, Jones DT. The PSIPRED protein analysis workbench: 20 years on. Nucl Acids Res. 2019;47(W1):W402–7.
Article
CAS
Google Scholar
Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001;305(3):567–80.
Article
CAS
Google Scholar
R Core Team. R: A language and environment for statistical computing. 2013; http://r.meteo.uni.wroc.pl/web/packages/dplR/vignettes/intro-dplR.pdf Accessed 20 March 2022
Charif D, Lobry JR. SeqinR 1.0–2: a contributed package to the R project for statistical computing devoted to biological sequences retrieval and analysis. In: Bastolla U, Porto M, Roman HE, Vendruscolo M, editors. Structural approaches to sequence evolution. Heidelberg: Springer. 2007. p. 207–232.
Andrews, S. FastQC a quality control tool for high throughput sequence data. 2010. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/. Accessed 20 March 2022.
Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016;34(5):525–7.
Article
CAS
Google Scholar
Pimentel H, Bray NL, Puente S, Melsted P, Pachter L. Differential analysis of RNA-seq incorporating quantification uncertainty. Nat Methods. 2017;14(7):687–90.
Article
CAS
Google Scholar
Wald A. Tests of statistical hypotheses concerning several parameters when the number of observations is large. Trans Am Math Soc. 1943;54(3):426–82.
Article
Google Scholar
McCarthy FM, Bridges SM, Wang N, Magee GB, Williams WP, Luthe DS, Burgess SC. AgBase: a unified resource for functional analysis in agriculture. Nucl Acids Res. 2017;35(suppl_1):D599-603.
Google Scholar
Young MD, Davidson N, Wakefield MJ, Smyth GK, Oshlack A. goseq: Gene ontology testing for RNA-seq datasets. R Bioconductor. 2010;8:1–26.
Google Scholar
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B (Methodological). 1995;57(1):289–300.
Google Scholar