Lim GH, Singhal R, Kachroo A, Kachroo P. Fatty acid- and lipid-mediated signaling in plant defense. Annu Rev Phytopathol. 2017;55:505–36.
Article
CAS
Google Scholar
Yang W, Devaiah SP, Pan X, Isaac G, Welti R, Wang X. AtPLAI is an acyl hydrolase involved in basal jasmonic acid production and Arabidopsis resistance to Botrytis cinerea. J Biol Chem. 2007;282(25):18116–28.
Article
CAS
Google Scholar
Yang WY, Zheng Y, Bahn SC, Pan XQ, Li MY, Vu HS, et al. The patatin-containing phospholipase a pPLAIIalpha modulates oxylipin formation and water loss in Arabidopsis thaliana. Mol Plant. 2012;5(2):452–60.
Article
CAS
Google Scholar
Scherer GF, Ryu SB, Wang X, Matos AR, Heitz T. Patatin-related phospholipase a: nomenclature, subfamilies and functions in plants. Trends Plant Sci. 2010;15(12):693–700.
Article
CAS
Google Scholar
Upchurch RG. Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnol Lett. 2008;30(6):967–77.
Article
CAS
Google Scholar
Jung HW, Tschaplinski TJ, Wang L, Glazebrook J, Greenberg JT. Priming in systemic plant immunity. Science. 2009;324(5923):89–91.
Article
Google Scholar
Spector AA, Kim HY. Discovery of essential fatty acids. J Lipid Res. 2015;56(1):11–21.
Article
CAS
Google Scholar
Perica MM, Delas I. Essential fatty acids and psychiatric disorders. Nutr Clin Pract. 2011;26(4):409–25.
Article
Google Scholar
Uauy R, Hoffman DR, Peirano P, Birch DG, Birch EE. Essential fatty acids in visual and brain development. Lipids. 2001;36(9):885–95.
Article
CAS
Google Scholar
Sinha D, Murugavelh S. Biodiesel production from waste cotton seed oil using low cost catalyst: engine performance and emission characteristics. Perspect Sci. 2016;8(C):237–40.
Bao J, Catucci G, Valetti F. Biofuels production from renewable resources. Biotechnol Appl Biochem. 2020;67(5):711–3.
Article
CAS
Google Scholar
Moser BR. Biodiesel from alternative oilseed feedstocks: camelina and field pennycress. Biofuels. 2014;3(2):193–209.
Article
Google Scholar
Kiczorowska B, Samolinska W, Andrejko D, Kiczorowski P, Antoszkiewicz Z, Zajac M, et al. Comparative analysis of selected bioactive components (fatty acids, tocopherols, xanthophyll, lycopene, phenols) and basic nutrients in raw and thermally processed camelina, sunflower, and flax seeds (Camelina sativa L. Crantz, Helianthus L., and Linum L.). J Food Sci Technol. 2019;56(9):4296–310.
Article
CAS
Google Scholar
Kurasiak-Popowska D, Ryńska B, Stuper-Szablewska K. Analysis of distribution of selected bioactive compounds in Camelina sativa from seeds to pomace and oil. Agronomy. 2019;9(4):168.
Bansal S, Durrett TP. Camelina sativa: an ideal platform for the metabolic engineering and field production of industrial lipids. Biochimie. 2016;120:9–16.
Article
CAS
Google Scholar
Vanhercke T, El Tahchy A, Shrestha P, Zhou XR, Singh SP, Petrie JR. Synergistic effect of WRI1 and DGAT1 coexpression on triacylglycerol biosynthesis in plants. FEBS Lett. 2013;587(4):364–9.
Article
CAS
Google Scholar
Zhu Y, Xie L, Chen GQ, Lee MY, Loque D, Scheller HV. A transgene design for enhancing oil content in Arabidopsis and Camelina seeds. Biotechnol Biofuels. 2018;11:46.
Article
Google Scholar
Kong Q, Yang Y, Guo L, Yuan L, Ma W. Molecular basis of plant oil biosynthesis: insights gained from studying the WRINKLED1 transcription factor. Front Plant Sci. 2020;11:24.
Article
Google Scholar
Roscoe TT, Guilleminot J, Bessoule JJ, Berger F, Devic M. Complementation of seed maturation phenotypes by ectopic expression of ABSCISIC ACID INSENSITIVE3, FUSCA3 and LEAFY COTYLEDON2 in Arabidopsis. Plant Cell Physiol. 2015;56(6):1215–28.
Article
CAS
Google Scholar
Baldoni E, Genga A, Cominelli E. Plant MYB transcription factors: their role in drought response mechanisms. Int J Mol Sci. 2015;16(7):15811–51.
Article
CAS
Google Scholar
Wang W, Qiu X, Yang Y, Kim HS, Jia X, Yu H, et al. Sweetpotato bZIP transcription factor IbABF4 confers tolerance to multiple abiotic stresses. Front Plant Sci. 2019;10:630.
Article
Google Scholar
Ibáñez-Salazar A, Rosales-Mendoza S, Rocha-Uribe A, Ramírez-Alonso JI, Lara-Hernández I, Hernández-Torres A, et al. Over-expression of Dof-type transcription factor increases lipid production in Chlamydomonas reinhardtii. J Biotechnol. 2014;184:27–38.
Article
Google Scholar
Wu J, Chen L, Chen M, Zhou W, Dong Q, et al. The DOF-domain transcription factor ZmDOF36 positively regulates starch synthesis in transgenic maize. Front Plant Sci. 2019;10:465.
Article
Google Scholar
Thirumalaikumar VP, Devkar V, Mehterov N, Ali S, Ozgur R, Turkan I, et al. NAC transcription factor JUNGBRUNNEN1 enhances drought tolerance in tomato. Plant Biotechnol J. 2018;16(2):354–66.
Article
CAS
Google Scholar
Shi WY, Du YT, Ma J, Min DH, Jin LG, Chen J, et al. The WRKY transcription factor GmWRKY12 confers drought and salt tolerance in soybean. Int J Mol Sci. 2018;19(12):4087.
Article
Google Scholar
Moreno-Risueno MA, Martinez M, Vicente-Carbajosa J, Carbonero P. The family of DOF transcription factors: from green unicellular algae to vascular plants. Mol Gen Genomics. 2007;277(4):379–90.
Article
CAS
Google Scholar
Lijavetzky D, Carbonero P, Vicente-Carbajosa J. Genome-wide comparative phylogenetic analysis of the rice and Arabidopsis Dof gene families. BMC Evol Biol. 2003;3:17.
Article
Google Scholar
Yanagisawa S. The Dof family of plant transcription factors. Trends Plant Sci. 2002;7(12):555–60.
Article
CAS
Google Scholar
Gaur VS, Singh US, Kumar A. Transcriptional profiling and in silico analysis of Dof transcription factor gene family for understanding their regulation during seed development of rice Oryza sativa L. Mol Biol Rep. 2011;38(4):2827–48.
Article
CAS
Google Scholar
Cai X, Zhang Y, Zhang C, Zhang T, Hu T, Ye J, et al. Genome-wide analysis of plant-specific Dof transcription factor family in tomato. J Integr Plant Biol. 2013;55(6):552–66.
Article
CAS
Google Scholar
Chattha WS, Atif RM, Iqbal M, Shafqat W, Farooq MA, Shakeel A. Genome-wide identification and evolution of Dof transcription factor family in cultivated and ancestral cotton species. Genomics. 2020;112(6):4155–70.
Article
CAS
Google Scholar
Le Hir R, Bellini C. The plant-specific Dof transcription factors family: new players involved in vascular system development and functioning in Arabidopsis. Front Plant Sci. 2013;4:164.
Google Scholar
Rojas-Gracia P, Roque E, Medina M, Lopez-Martin MJ, Canas LA, Beltran JP, et al. The DOF transcription factor SlDOF10 regulates vascular tissue formation during ovary development in tomato. Front Plant Sci. 2019;10:216.
Article
Google Scholar
Goralogia GS, Liu T-K, Zhao L, Panipinto PM, Groover ED, Bains YS, et al. CYCLING DOF FACTOR 1 represses transcription through the TOPLESS co-repressor to control photoperiodic flowering in Arabidopsis. Plant J. 2017;92(2):244–62.
Article
CAS
Google Scholar
Xu P, Chen H, Cai W. Transcription factor CDF4 promotes leaf senescence and floral organ abscission by regulating abscisic acid and reactive oxygen species pathways in Arabidopsis. EMBO Rep. 2020;21(7):e48967.
Article
CAS
Google Scholar
Washio K. Functional dissections between GAMYB and Dof transcription factors suggest a role for protein-protein associations in the gibberellin-mediated expression of the RAmy1A gene in the rice aleurone. Plant Physiol. 2003;133(2):850–63.
Article
CAS
Google Scholar
Rueda-Romero P, Barrero-Sicilia C, Gomez-Cadenas A, Carbonero P, Onate-Sanchez L. Arabidopsis thaliana DOF6 negatively affects germination in non-after-ripened seeds and interacts with TCP14. J Exp Bot. 2012;63(5):1937–49.
Article
CAS
Google Scholar
Isabel-LaMoneda I, Diaz I, Martinez M, Mena M, Carbonero P. SAD: a new DOF protein from barley that activates transcription of a cathepsin B-like thiol protease gene in the aleurone of germinating seeds. Plant J. 2003;33(22):329–40.
Article
CAS
Google Scholar
Jia B, Xie X, Wu M, Lin Z, Yin J, et al. Understanding the functions of endogenous DOF transcript factor in Chlamydomonas reinhardtii. Biotechnol Biofuels. 2019;12:67.
Article
Google Scholar
Wang HW, Zhang B, Hao YJ, Huang J, Tian AG, Liao Y, et al. The soybean Dof-type transcription factor genes, GmDof4 and GmDof11, enhance lipid content in the seeds of transgenic Arabidopsis plants. Plant J. 2007;52(4):716–29.
Article
CAS
Google Scholar
Zhang JH, Hao Q, Bai LL, Xu J, Yin WB, Song LY, et al. Overexpression of the soybean transcription factor GmDof4 significantly enhances the lipid content of Chlorella ellipsoidea. Biotechno Biofuels. 2014;7(1):128.
Google Scholar
Liu Y, Liu N, Deng X, Liu D, Li M, Cui D, et al. Genome-wide analysis of wheat DNA-binding with one finger (Dof) transcription factor genes: evolutionary characteristics and diverse abiotic stress responses. BMC Genomics. 2020;21(1):276.
Article
CAS
Google Scholar
He L, Su C, Wang Y, Wei Z. ATDOF5.8 protein is the upstream regulator of ANAC069 and is responsive to abiotic stress. Biochimie. 2015;110:17–24.
Article
CAS
Google Scholar
Heydarian Z, Yu M, Gruber M, Coutu C, Robinson SJ, Hegedus DD. Changes in gene expression in Camelina sativa roots and vegetative tissues in response to salinity stress. Sci Rep-Uk. 2018;8(1):9804.
Article
Google Scholar
Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant. 2020;13(8):1194–202.
Article
CAS
Google Scholar
Monke G, Altschmied L, Tewes A, Reidt W, Mock HP, Baumlein H, et al. Seed-specific transcription factors ABI3 and FUS3: molecular interaction with DNA. Planta. 2004;219(1):158–66.
Article
Google Scholar
Yanagisawa S, Schmidt RJ. Diversity and similarity among recognition sequences of Dof transcription factors. Plant J. 1999;17(2):209–14.
Article
CAS
Google Scholar
Magadum S, Banerjee U, Murugan P, Gangapur D, Ravikesavan R. Gene duplication as a major force in evolution. J Genet. 2013;92(1):155–61.
Article
Google Scholar
Panchy N, Lehti-Shiu M, Shiu SH. Evolution of gene duplication in plants. Plant Physiol. 2016;171(4):2294–316.
Article
CAS
Google Scholar
Qiao X, Li Q, Yin H, Qi K, Li L, Wang R, et al. Gene duplication and evolution in recurring polyploidization-diploidization cycles in plants. Genome Biol. 2019;20(1):38.
Article
Google Scholar
Kondrashov FA. Gene duplication as a mechanism of genomic adaptation to a changing environment. Proc Biol Sci. 2012;279(1749):5048–57.
Google Scholar
Lohani N, Babaei S, Singh MB, Bhalla PL. Genome-wide in silico identification and comparative analysis of Dof gene family in Brassica napus. Plants (Basel). 2021;10(4):709.
Article
CAS
Google Scholar
Kagale S, Koh C, Nixon J, Bollina V, Clarke WE, Tuteja R, et al. The emerging biofuel crop Camelina sativa retains a highly undifferentiated hexaploid genome structure. Nat Commun. 2014;5:3706.
Article
CAS
Google Scholar
Yang X, Tuskan GA, Cheng MZ. Divergence of the Dof gene families in poplar, Arabidopsis, and rice suggests multiple modes of gene evolution after duplication. Plant Physiol. 2006;142(3):820–30.
Article
CAS
Google Scholar
Akter A, Itabashi E, Kakizaki T, Okazaki K, Dennis ES, Fujimoto R. Genome triplication leads to transcriptional divergence of FLOWERING LOCUS C genes during vernalization in the genus brassica. Front Plant Sci. 2020;11:619417.
Article
Google Scholar
Fang L, Cheng F, Wu J, Wang X. The impact of genome triplication on tandem gene evolution in Brassica rapa. Front Plant Sci. 2012;3:261.
Article
CAS
Google Scholar
Zhang B, Chen W, Foley RC, Büttner M, Singh KB. Interactions between distinct types of DNA binding proteins enhance binding to ocs element promoter sequences. Plant Cell. 1995;7(12):2241–52.
CAS
Google Scholar
Schmidt RJ, Burr FA, Aukerman MJ, Burr B. Maize regulatory gene opaque-2 encodes a protein with a “leucine-zipper” motif that binds to zein DNA. Proc Natl Acad Sci U S A. 1990;87(1):46–50.
Article
CAS
Google Scholar
Shen B, Allen WB, Zheng P, Li C, Glassman K, Ranch J, et al. Expression of ZmLEC1 and ZmWRI1 increases seed oil production in maize. Plant Physiol. 2010;153(3):980–7.
Article
CAS
Google Scholar
Song J, Yang F, Xun M, Xu L, Tian X, Zhang W, et al. Genome-wide identification and characterization of vacuolar processing enzyme gene family and diverse expression under stress in apple (Malus x domestic). Front Plant Sci. 2020;11:626.
Article
Google Scholar
Li R, Zhu F, Duan D. Function analysis and stress-mediated cis-element identification in the promoter region of VqMYB15. Plant Signal Behav. 2020;15(7):1773664.
Article
Google Scholar
Yu Q, Li C, Zhang J, Tian Y, Wang H, Zhang Y, et al. Genome-wide identification and expression analysis of the Dof gene family under drought stress in tea (Camellia sinensis). PeerJ. 2020;8:e9269.
Article
Google Scholar
Qin H, Wang J, Chen X, Wang F, Peng P, Zhou Y, et al. Rice OsDOF15 contributes to ethylene-inhibited primary root elongation under salt stress. New Phytol. 2019;223(2):798–813.
Article
CAS
Google Scholar
Verma V, Ravindran P, Kumar PP. Plant hormone-mediated regulation of stress responses. BMC Plant Biol. 2016;16:86.
Article
Google Scholar
Guo Q, Liu L, Rupasinghe TWT, Roessner U, Barkla BJ. Salt stress alters membrane lipid content and lipid biosynthesis pathways in the plasma membrane and tonoplast. Plant Physiol. 2022;189(2):805–26.
Article
CAS
Google Scholar
Su Y, Liang W, Liu Z, Wang Y, Zhao Y, Ijaz B, et al. Overexpression of GhDof1 improved salt and cold tolerance and seed oil content in Gossypium hirsutum. J Plant Physiol. 2017;218:222–34.
Article
CAS
Google Scholar
Hua Z, Kao TH. Identification and characterization of components of a putative petunia S-locus F-box-containing E3 ligase complex involved in S-RNase-based self-incompatibility. Plant Cell. 2006;18(10):2531–53.
Article
CAS
Google Scholar
Tian Y, Dong Q, Ji Z, Chi F, Cong P, Zhou Z. Genome-wide identification and analysis of the MADS-box gene family in apple. Gene. 2015;555(2):277–90.
Article
CAS
Google Scholar
Marchler-Bauer A, Bryant SH. CD-search: protein domain annotations on the fly. Nucleic Acids Res. 2004;32:W327–31.
Article
CAS
Google Scholar
Song Y, Cui H, Shi Y, Xue J, Ji C, Zhang C, et al. Genome-wide identification and functional characterization of the Camelina sativa WRKY gene family in response to abiotic stress. BMC Genomics. 2020;21(1):786.
Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 2009;37:W202–8.
Article
CAS
Google Scholar
Wu P, Wang W, Duan W, Li Y, Hou X. Comprehensive analysis of the CDPK-SnRK superfamily genes in Chinese cabbage and its evolutionary implications in plants. Front Plant Sci. 2017;8:162.
Google Scholar
Chalhoub B, Denoeud F, Liu S, Parkin IA, Tang H, Wang X, et al. Plant genetics. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science. 2014;345(6199):950–3.
Article
CAS
Google Scholar
Rombauts S, Déhais P, Van Montagu M, Rouzé P. PlantCARE, a plant cis-acting regulatory element database. Nucleic Acids Res. 1999;27(1):295–6.
Article
CAS
Google Scholar
Kagale S, Nixon J, Khedikar Y, Pasha A, Provart NJ, Clarke WE, et al. The developmental transcriptome atlas of the biofuel crop Camelina sativa. Plant J. 2016;88(5):879–94.
Article
CAS
Google Scholar