Verdeil JL, Alemanno L, Niemenak N, Tranbarger TJ. Pluripotent versus totipotent plant stem cells: dependence versus autonomy? Trends Plant Sci. 2007;12:245–52.
Article
CAS
Google Scholar
Zeng F, Zhang X, Jin S, Cheng L, Liang S, Hu L, et al. Chromatin reorganization and endogenous auxin/cytokinin dynamic activity during somatic embryogenesis of cultured cotton cell. Plant Cell Tissue Organ Cult. 2007;90:63–70.
Article
CAS
Google Scholar
Ikeuchi M, Iwase A, Rymen B, Harashima H, Shibata M, Ohnuma M, et al. PRC2 represses dedifferentiation of mature somatic cells in Arabidopsis. Nature Plants. 2015;1:15089.
Article
CAS
Google Scholar
Reinert J. Morphogenese und ihre kontrolle an gewebekulturen aus carotten. Naturwissenschaften. 1958;45:344–5.
Article
CAS
Google Scholar
Steward FC, Mapes MO, Mears K. Growth and organized development of cultured cells. II. Organization in cultures grown from freely suspended cells. Am J Bot. 1958;45:705–8.
Article
Google Scholar
Novak FJ, Daskalov S, Brunner H, Nesticky M, Afza R, Dolezelova M, et al. Somatic embryogenesis in maize and comparison of genetic variability induced by gamma radiation and tissue culture techniques. Plant Breeding. 1988;101:66–79.
Article
Google Scholar
Gaj MD, Zhang S, Harada JJ, Lemaux PG. Leafy cotyledon genes are essential for induction of somatic embryogenesis of Arabidopsis. Planta. 2005;222:977–88.
Article
CAS
Google Scholar
Yang X, Zhang X, Yuan D, Jin F, Zhang Y, Xu J. Transcript profiling reveals complex auxin signalling pathway and transcription regulation involved in dedifferentiation and redifferentiation during somatic embryogenesis in cotton. BMC Plant Biol. 2012;12:110.
Article
CAS
Google Scholar
Maximova SN, Alemanno L, Young A, Ferriere N, Traore A, Guiltinan MJ. Efficiency, genotypic variability, and cellular origin of primary and secondary somatic embryogenesis of Theobroma cacao L. In Vitro Cell Dev Biol-Plant. 2002;38:252–9.
Article
Google Scholar
Etienne H. Somatic embryogenesis protocol: Coffee (Coffea arabica L. and C canephora P.). In: Jain SM, Gupta PK, editors. Protocols for somatic embryogenesis in woody plants. Dordrecht: Springer; 2005. p. 167–79.
Chapter
Google Scholar
Montalbán IA, De Diego N, Moncaleán P. Enhancing initiation and proliferation in radiata pine (Pinus radiata D. Don) somatic embryogenesis through seed family screening, zygotic embryo staging and media adjustments. Acta Physiol Plant. 2012;34:451–60.
Article
Google Scholar
Lelu-Walter MA, Thompson D, Harvengt L, Sanchez L, Toribio M, Pâques LE. Somatic embryogenesis in forestry with a focus on Europe: state-of-the-art, benefits, challenges and future direction. Tree Genet Genomes. 2013;9:883–99.
Article
Google Scholar
Corredoira E, Ballester A, Ibarra M, Vieitez AM. Induction of somatic embryogenesis in explants of shoot cultures established from adult Eucalyptus globulus and E. saligna × E. maidenii trees. Tree Physiol. 2015;35:678–90.
Article
CAS
Google Scholar
Corredoira E, Valladares S, Vieitez AM. Morphohistological analysis of the origin and development of somatic embryos from leaves of mature Quercus robur. In Vitro Cell Dev Biol-Plant. 2006;42:525–33.
Article
Google Scholar
Ribas AF, Dechamp E, Champion A, Bertrand B, Combes MC, Verdeil JL, et al. Agrobacterium-mediated genetic transformation of Coffea arabica (L.) is greatly enhanced by using established embryogenic callus cultures. BMC Plant Biol. 2011;11:92.
Article
CAS
Google Scholar
Ikeuchi M, Ogawa Y, Iwase A, Sugimoto K. Plant regeneration: cellular origins and molecular mechanisms. Development. 2016;143:1442–51.
Article
CAS
Google Scholar
Boutilier K, Angenent GC, Castan MS, Hui L. Haploid embryogenesis. 2016. https://patents.google.com/patent/US20160212956/en. Accessed 5 Sept 2021
Yang X, Zhang X. Regulation of somatic embryogenesis in higher plants. CRC Crit Rev Plant Sci. 2010;29:36–57.
Article
CAS
Google Scholar
Jayasankar S, Bondada BR, Li Z, Gray DJ. Comparative anatomy and morphology of Vitis vinifera (Vitaceae) somatic embryos from solid- and liquid-culture-derived proembryogenic masses. Am J Bot. 2003;90:973–9.
Article
CAS
Google Scholar
Raghavan V. Role of 2,4-dichlorophenoxyacetic acid (2,4-D) in somatic embryogenesis on cultured zygotic embryos of Arabidopsis: cell expansion, cell cycling, and morphogenesis during continuous exposure of embryos to 2,4-D. Am J Bot. 2004;91:1743–56.
Article
CAS
Google Scholar
Florez SL, Erwin RL, Maximova SN, Guiltinan MJ, Curtis WR. Enhanced somatic embryogenesis in Theobroma cacao using the homologous BABY BOOM transcription factor. BMC Plant Biol. 2015;15:121.
Article
Google Scholar
Campos NA, Panis B, Carpentier SC. Somatic embryogenesis in coffee: the evolution of biotechnology and the integration of omics technologies offer great opportunities. Front Plant Sci. 2017;8:1460.
Article
Google Scholar
Bonga JM, Klimaszewska KK, von Aderkas P. Recalcitrance in clonal propagation, in particular of conifers. Plant Cell Tissue Organ Cult. 2010;100:241–54.
Article
Google Scholar
Etienne H, Breton D, Breitler JC, Bertrand B, Déchamp E, Awada R, et al. Coffee somatic embryogenesis: how did research, experience gained and innovations promote the commercial propagation of elite clones from the two cultivated species? Front Plant Sci. 2018;9:1630.
Article
Google Scholar
Aguilar-Hernández V, Loyola-Vargas VM. Advanced proteomic approaches to elucidate somatic embryogenesis. Front Plant Sci. 2018;9:1658.
Article
Google Scholar
Pais MS. Somatic embryogenesis induction in woody species: the future after OMICs data assessment. Front Plant Sci. 2019;10:240.
Article
Google Scholar
Nejat N, Ramalingam A, Mantri N. Advances in transcriptomics of plants. Adv Biochem Eng Biotechnol. 2018;164:161–85.
CAS
Google Scholar
Hofmann F, Schon MA, Nodine MD. The embryonic transcriptome of Arabidopsis thaliana. Plant Reprod. 2019;32:77–91.
Article
CAS
Google Scholar
Cao A, Zheng Y, Yu Y, Wang X, Shao D, Sun J, Cui B. Comparative transcriptome analysis of SE initial dedifferentiation in cotton of different SE capability. Sci Rep. 2017;7:1–13.
Google Scholar
Indoliya Y, Tiwari P, Chauhan AS, Goel R, Shri M, Bag SK, Chakrabarty D. Decoding regulatory landscape of somatic embryogenesis reveals differential regulatory networks between japonica and indica rice subspecies. Sci Rep. 2016;6:23050.
Article
CAS
Google Scholar
Salvo SAGD, Hirsch CN, Buell CR, Kaeppler SM, Kaeppler HF. Whole transcriptome profiling of maize during early somatic embryogenesis reveals altered expression of stress factors and embryogenesis-related genes. PLoS ONE. 2014;9:e111407.
Article
Google Scholar
Gautier F, Label P, Eliášová K, Leplé JC, Motyka V, Boizot N, et al. Cytological, biochemical and molecular events of the embryogenic state in Douglas-fir (Pseudotsuga menziesii [Mirb.]). Front Plant Sci. 2019;10:118.
Article
Google Scholar
Chen Y, Xu X, Liu Z, Zhang Z, XuHan X, Lin Y, Lai Z. Global scale transcriptome analysis reveals differentially expressed genes involve in early somatic embryogenesis in Dimocarpus longan Lour. BMC Genomics. 2020;21:4.
Article
CAS
Google Scholar
Wang Y, Li HL, Zhou YK, Guo D, Zhu JH, Peng SQ. Transcriptomes analysis reveals novel insight into the molecular mechanisms of somatic embryogenesis in Hevea brasiliensis. BMC Genomics. 2021;22:183.
Article
CAS
Google Scholar
Qi S, Zhao R, Yan J, Fan Y, Huang C, Li H, et al. Global transcriptome and coexpression network analyses reveal new insights into somatic embryogenesis in hybrid sweetgum (Liquidambar styraciflua × Liquidambar formosana). Front Plant Sci. 2021;12:2607.
Article
Google Scholar
Bertrand B, Montagnon C, Georget F, Charmetant P, Etienne H. Création et diffusion de variétés de caféiers Arabica : quelles innovations variétales ? Cahiers Agricultures. 2012;21:77–88.
Google Scholar
Ducos JP, Labbe G, Lambot C, Pétiard V. Pilot scale process for the production of pre-germinated somatic embryos of selected robusta (Coffea canephora) clones. In Vitro Cell Dev Biol-Plant. 2007;43:652–9.
Article
Google Scholar
Etienne H, Bertrand B, Montagnon C, Landey RB, Dechamp E, Jourdan I, et al. Un exemple de transfert de technologie réussi dans le domaine de la micropropagation : la multiplication de Coffea arabica par embryogenèse somatique. Cahiers Agricultures. 2012;21:115–24.
Article
Google Scholar
Ducos JP, Alenton R, Reano JF, Kanchanomai C, Deshayes A, Pétiard V. Agronomic performance of Coffea canephora P. trees derived from large-scale somatic embryo production in liquid medium. Euphytica. 2003;131:215–23.
Article
CAS
Google Scholar
Landey RB, Cenci A, Georget F, Bertrand B, Camayo G, Dechamp E, et al. High genetic and epigenetic stability in Coffea arabica plants derived from embryogenic suspensions and secondary embryogenesis as revealed by AFLP, MSAP and the phenotypic variation rate. PLoS ONE. 2013;8:e56372.
Article
CAS
Google Scholar
Georget F, Courtel P, Garcia EM, Hidalgo M, Alpizar E, Breitler JC, et al. Somatic embryogenesis-derived coffee plantlets can be efficiently propagated by horticultural rooted mini-cuttings: A boost for somatic embryogenesis. Sci Hortic. 2017;216:177–85.
Article
CAS
Google Scholar
Lashermes P, Combes MC, Robert J, Trouslot P, D’Hont A, Anthony F, Charrier A. Molecular characterisation and origin of the Coffea arabica L. genome. Mol Gen Genet. 1999;261:259–66.
Article
CAS
Google Scholar
Shiota H, Satoh R, Watabe K, Harada H, Kamada H. C-ABI3, the carrot homologue of the Arabidopsis ABI3, is expressed during both zygotic and somatic embryogenesis and functions in the regulation of embryo-specific ABA-inducible genes. Plant Cell Physiol. 1998;39:1184–93.
Article
CAS
Google Scholar
Freitas NC, Barreto HG, Torres LF, Freire LL, Rodrigues LAZ, Diniz LEC, et al. In silico and in vivo analysis of ABI3 and VAL2 genes during somatic embryogenesis of Coffea arabica: competence acquisition and developmental marker genes. Plant Cell Tiss Organ Cult. 2019;137:599–611.
Article
CAS
Google Scholar
Thakare D, Tang W, Hill K, Perry SE. The MADS-domain transcriptional regulator AGAMOUS-LIKE15 promotes somatic embryo development in Arabidopsis and soybean. Plant Physiol. 2008;146:1663–72.
Article
CAS
Google Scholar
Zhai L, Xu L, Wang Y, Zhu X, Feng H, Li C, et al. Transcriptional identification and characterization of differentially expressed genes associated with embryogenesis in radish (Raphanus sativus L.). Sci Rep. 2016;6:1–13.
Article
CAS
Google Scholar
Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, Zhang L, et al. Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell. 2002;14:1737–49.
Article
CAS
Google Scholar
Freitas NC, Barreto HG, Fernandes-Brum CN, Moreira RO, Chalfun-Junior A, Paiva LV. Validation of reference genes for qPCR analysis of Coffea arabica L. somatic embryogenesis-related tissues. Plant Cell Tiss Organ Cult. 2017;128:663–78.
Article
CAS
Google Scholar
Lotan T, Ohto M, Yee KM, West MAL, Lo R, Kwong RW, et al. Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell. 1998;93:1195–205.
Article
CAS
Google Scholar
Braybrook SA, Harada JJ. LECs go crazy in embryo development. Trends Plant Sci. 2008;13:624–30.
Article
CAS
Google Scholar
Trontin JF, Klimaszewska K, Morel A, Hargreaves C, Lelu-Walter MA. Molecular aspects of conifer zygotic and somatic embryo development: a review of genome-wide approaches and recent insights. Methods Mol Biol. 2016;1359:167–207.
Article
CAS
Google Scholar
Méndez-Hernández HA, Ledezma-Rodríguez M, Avilez-Montalvo RN, Juárez-Gómez YL, Skeete A, Avilez-Montalvo J, et al. Signaling overview of plant somatic embryogenesis. Front Plant Sci. 2019;10:77.
Article
Google Scholar
Silva AT, Barduche D, do Livramento KG, Ligterink W, Paiva LV. Characterization of a putative Serk-like ortholog in embryogenic cell suspension cultures of Coffea arabica L. Plant Mol Biol Rep. 2014;32:176–84.
Article
CAS
Google Scholar
Pérez-Pascual D, Jiménez-Guillen D, Villanueva-Alonzo H, Souza-Perera R, Godoy-Hernández G, Zúñiga-Aguilar JJ. Ectopic expression of the Coffea canephora SERK1 homolog-induced differential transcription of genes involved in auxin metabolism and in the developmental control of embryogenesis. Physiol Plant. 2018;163:530–51.
Article
Google Scholar
Yadav RK, Perales M, Gruel J, Girke T, Jönsson H, Reddy GV. WUSCHEL protein movement mediates stem cell homeostasis in the Arabidopsis shoot apex. Genes Dev. 2011;25:2025–30.
Article
CAS
Google Scholar
Luerssen H, Kirik V, Herrmann P, Miséra S. FUSCA3 encodes a protein with a conserved VP1/AB13-like B3 domain which is of functional importance for the regulation of seed maturation in Arabidopsis thaliana. Plant J. 1998;15:755–64.
Article
CAS
Google Scholar
Vondrakova Z, Dobrev PI, Pesek B, Fischerova L, Vagner M, Motyka V. Profiles of endogenous phytohormones over the course of Norway spruce somatic embryogenesis. Front Plant Sci. 2018;9:1283.
Article
Google Scholar
Awada R, Campa C, Gibault E, Déchamp E, Georget F, Lepelley M, et al. Unravelling the metabolic and hormonal machinery during key steps of somatic embryogenesis: a case study in coffee. Int J Mol Sci. 2019;20:46–65.
Article
Google Scholar
Gliwicka M, Nowak K, Balazadeh S, Mueller-Roeber B, Gaj MD. Extensive modulation of the transcription factor transcriptome during somatic embryogenesis in Arabidopsis thaliana. PLoS ONE. 2013;8:e69261.
Article
CAS
Google Scholar
Zhao Y. Auxin biosynthesis: a simple two-step pathway converts tryptophan to indole-3-acetic acid in plants. Mol Plant. 2012;5:334–8.
Article
CAS
Google Scholar
Brenner WG, Ramireddy E, Heyl A, Schmülling T. Gene regulation by cytokinin in Arabidopsis. Front Plant Sci. 2012;3:8.
Article
CAS
Google Scholar
Zubo YO, Blakley IC, Yamburenko MV, Worthen JM, Street IH, Franco-Zorrilla JM, et al. Cytokinin induces genome-wide binding of the type-B response regulator ARR10 to regulate growth and development in Arabidopsis. Proc Natl Acad Sci U S A. 2017;114:E5995–6004.
Article
CAS
Google Scholar
Santiago J, Dupeux F, Round A, Antoni R, Park SY, Jamin M, et al. The abscisic acid receptor PYR1 in complex with abscisic acid. Nature. 2009;462:665–8.
Article
CAS
Google Scholar
Nowak K, Wójcikowska B, Gaj MD. ERF022 impacts the induction of somatic embryogenesis in Arabidopsis through the ethylene-related pathway. Planta. 2015;241:967–85.
Article
CAS
Google Scholar
Jiménez VM. Regulation of in vitro somatic embryogenesis with emphasis on to the role of endogenous hormones. Rev Bras Fisiol Veg. 2001;13:196–223.
Article
Google Scholar
Rose RJ, Nolan KE. Genetic regulation of somatic embryogenesis with particular reference to Arabidopsis thaliana and Medicago truncatula. In Vitro Cell Dev Biol-Plant. 2006;42:473–81.
Article
CAS
Google Scholar
Sugimoto K, Xu L, Paszkowski U, Hayashi M. Multifaceted cellular reprogramming at the crossroads between plant development and biotic interactions. Plant Cell Physiol. 2018;59:651–5.
Article
CAS
Google Scholar
Avilez-Montalvo JR, Quintana-Escobar AO, Méndez-Hernández HA, Aguilar-Hernández V, Brito-Argáez L, Galaz-Ávalos RM, et al. Auxin-cytokinin cross talk in somatic embryogenesis of Coffea canephora. Plants. 2022;11:2013.
Article
CAS
Google Scholar
Zimmerman JL. Somatic embryogenesis: a model for early development in higher plants. Plant Cell. 1993;5:1411–23.
Article
Google Scholar
Su YH, Liu YB, Zhang XS. Auxin–cytokinin interaction regulates meristem development. Mol Plant. 2011;4:616–25.
Article
CAS
Google Scholar
Wickramasuriya AM, Dunwell JM. Global scale transcriptome analysis of Arabidopsis embryogenesis in vitro. BMC Genomics. 2015;16:301.
Article
Google Scholar
Fan Y, Tang Z, Wei J, Yu X, Guo H, Li T, et al. Dynamic transcriptome analysis reveals complex regulatory pathway underlying induction and dose effect by different exogenous auxin IAA and 2,4-D during in vitro embryogenic redifferentiation in cotton. Front Plant Sci. 2022;13:931105.
Article
Google Scholar
Luo J, Zhou JJ, Zhang JZ. Aux/IAA gene family in plants: molecular structure, regulation, and function. Int J Mol Sci. 2018;19(1):259.
Article
Google Scholar
Wójcikowska B, Gaj MD. Expression profiling of AUXIN RESPONSE FACTOR genes during somatic embryogenesis induction in Arabidopsis. Plant Cell Rep. 2017;36:843–58.
Article
Google Scholar
Quintana-Escobar AO, Nic-Can GI, Galaz Avalos RM, Loyola-Vargas VM, Gongora-Castillo E. Transcriptome analysis of the induction of somatic embryogenesis in Coffea canephora and the participation of ARF and Aux/IAA genes. PeerJ. 2019;7:e7752.
Article
Google Scholar
von Aderkas P, Lelu MA, Label P. Plant growth regulator levels during maturation of larch somatic embryos. Plant Physiol Biochem. 2001;39:495–502.
Article
Google Scholar
Fischerova L, Fischer L, Vondrakova Z, Vagner M. Expression of the gene encoding transcription factor PaVP1 differs in Picea abies embryogenic lines depending on their ability to develop somatic embryos. Plant Cell Rep. 2008;27:435–41.
Article
CAS
Google Scholar
Iwase A, Mita K, Nonaka S, Ikeuchi M, Koizuka C, Ohnuma M, et al. WIND1-based acquisition of regeneration competency in Arabidopsis and rapeseed. J Plant Res. 2015;128:389–97.
Article
CAS
Google Scholar
Zhou T, Yang X, Guo K, Deng J, Xu J, Gao W, et al. ROS homeostasis regulates somatic embryogenesis via the regulation of auxin signaling in cotton. Mol Cell Proteomics. 2016;15:2108–24.
Article
CAS
Google Scholar
Zavattieri MA, Frederico AM, Lima M, Sabino R, Arnholdt-Schmitt B. Induction of somatic embryogenesis as an example of stress-related plant reactions. Electro J Biotech. 2010;13:12–3.
Article
Google Scholar
Nic-Can GI, Galaz-Ávalos RM, De-la-Peña C, Alcazar-Magaña A, Wrobel K, Loyola-Vargas VM. Somatic embryogenesis: identified factors that lead to embryogenic repression. A case of species of the same genus. PLOS ONE. 2015;10:e0126414.
Article
Google Scholar
Magnani E, Jiménez-Gómez JM, Soubigou-Taconnat L, Lepiniec L, Fiumen E. Profiling the onset of somatic embryogenesis in Arabidopsis. BMC Genomics. 2017;18:998.
Article
CAS
Google Scholar
Grace SC, Logan BA. Energy dissipation and radical scavenging by the plant phenylpropanoid pathway. Philos Trans R Soc Lond B Biol Sci. 2000;355:1499–510.
Article
CAS
Google Scholar
Lepelley M, Cheminade G, Tremillon N, Simkin A, Caillet V, McCarthy J. Chlorogenic acid synthesis in coffee: An analysis of CGA content and real-time RT-PCR expression of HCT, HQT, C3H1, and CCoAOMT1 genes during grain development in C. canephora. Plant Science. 2007;172:978–96.
Article
CAS
Google Scholar
Perrois C, Strickler SR, Mathieu G, Lepelley M, Bedon L, Michaux S, et al. Differential regulation of caffeine metabolism in Coffea arabica (Arabica) and Coffea canephora (Robusta). Planta. 2015;241:179–91.
Article
CAS
Google Scholar
The Arabica Coffee Genome Consortium (ACGC). Towards a better understanding of the Coffea arabica genome structure. In: ASIC, editor. Proceedings of the 25th International Conference on Coffee Science. Paris: ASIC; 2015. p. 42–5.
Google Scholar
Xing Y, Yu T, Wu YN, Roy M, Kim J, Lee C. An expectation-maximization algorithm for probabilistic reconstructions of full-length isoforms from splice graphs. Nucleic Acids Res. 2006;34:3150–60.
Article
CAS
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
Article
Google Scholar
Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics. 2016;32:2847–9.
Article
CAS
Google Scholar
Suzuki R, Shimodaira H. Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics. 2006;22:1540–2.
Article
CAS
Google Scholar
Tian T, Liu Y, Yan H, You Q, Yi X, Du Z, et al. agriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res. 2017;45:W122–9.
Article
CAS
Google Scholar
Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Dalla-Favera R, Califano A. ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics. 2006;7:S7.
Article
Google Scholar
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.
Article
CAS
Google Scholar
Marraccini P, Vinecky F, Alves GSC, Ramos GSC, Elbelt S, Vieira NG, et al. Differentially expressed genes and proteins upon drought acclimation in tolerant and sensitive genotypes of Coffea canephora. J Exp Bot. 2012;63:4191–212.
Article
CAS
Google Scholar
Ramakers C, Ruijter JM, Deprez RHL, Moorman AFM. Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett. 2003;339:62–6.
Article
CAS
Google Scholar
Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3:research0034.1-research0034.11.
Article
Google Scholar