Lin T, Xu X, Du H, Fan X, Chen Q, Hai C, Zhou Z, Su X, Kou L, Gao Q, et al. Extensive sequence divergence between the reference genomes ofTaraxacum kok-saghyzandTaraxacum mongolicum. Sci China Life Sci. 2022;65(3):515–28.
Article
CAS
Google Scholar
Lin T, Xu X, Ruan J, Liu SZ, Wu SG, Shao XJ, Wang XB, Gan L, Qin B, Yang YS, et al. Genome analysis ofTaraxacum kok-saghyzRodin provides new insights into rubber biosynthesis. Natl Sci Rev. 2018;5(1):78–87.
Article
CAS
Google Scholar
Kirschner J, Štěpánek J, Černý T, Heer P, Dijk P. Available ex situ germplasm of the potential rubber cropTaraxacum koksaghyzbelongs to a poor rubber producer, T. brevicorniculatum(Compositae–Crepidinae) Genet Resour Crop Ev. 2012;60:455–71.
Article
Google Scholar
van Beilen JB, Poirier Y. Establishment of new crops for the production of natural rubber. Trends Biotechnol. 2007;25(11):522–9.
Article
Google Scholar
Cornish K. Alternative Natural Rubber crops: why should we care? Technol Innov. 2017;18(4):244–55.
Article
Google Scholar
Luo Z, Iaffaldano BJ, Cornish K. Colchicine-induced polyploidy has the potential to improve rubber yield inTaraxacum kok-saghyz. Ind Crop Prod. 2018;112:75–81.
Article
CAS
Google Scholar
Nowicki M, Zhao Y, Boggess SL, Fluess H, Payá-Milans M, Staton ME, Houston LC, Hadziabdic D, Trigiano RN. Taraxacum kok-saghyz(rubber dandelion) genomic microsatellite loci reveal modest genetic diversity and cross-amplify broadly to related species. Sci Rep. 2019;9(1):1915.
Article
Google Scholar
Li HL, Wei LR, Guo D, Wang Y, Zhu JH, Chen XT, Peng SQ. HbMADS4, a MADS-box transcription factor fromHevea brasiliensis. negatively regulatesHbSRPP Front Plant Sci. 2016;7:1709.
Google Scholar
Wang X, Wang D, Sun Y, Yang Q, Chang L, Wang L, Meng X, Huang Q, Jin X, Tong Z. Comprehensive proteomics analysis of laticifer latex reveals new insights into ethylene stimulation of natural rubber production. Sci Rep. 2015;5:13778.
Article
Google Scholar
Fricke J, Hillebrand A, Twyman RM, Prufer D, Gronover CS. Abscisic acid-dependent regulation ofsmall rubber particle proteingene expression inTaraxacum brevicorniculatumis mediated by TbbZIP1. Plant Cell Physiol. 2013;54(4):448–64.
Article
CAS
Google Scholar
Wang XC, Shi MJ, Wang D, Chen YY, Cai FG, Zhang SX, Wang LM, Tong Z, Tian WM. Comparative proteomics of primary and secondary lutoids reveals that chitinase and glucanase play a crucial combined role in rubber particle aggregation in Hevea brasiliensis. J Proteome Res. 2013;12(11):5146–59.
Article
CAS
Google Scholar
Yamashita S, Takahashi S. Molecular mechanisms of natural rubber biosynthesis. Annu Rev Biochem. 2020;89:821–51.
Article
CAS
Google Scholar
Cherian S, Ryu SB, Cornish K. Natural rubber biosynthesis in plants, the rubber transferase complex, and metabolic engineering progress and prospects. Plant Biotechnol J. 2019;17(11):2041–61.
Article
Google Scholar
Panara F, Lopez L, Daddiego L, Fantini E, Facella P, Perrotta G. Comparative transcriptomics between high and low rubber producingTaraxacum kok-saghyzR. plants. BMC Genomics. 2018;19(1):875.
Article
CAS
Google Scholar
Moose SP, Mumm RH. Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiol. 2008;147(3):969–77.
Article
CAS
Google Scholar
Tang YQ, Xia ZQ, Ding ZT, Ding YC, Liu Z, Ma X, Liu JP. Construction of a high-density linkage map and QTL mapping for important agronomic traits in Stylosanthes guianensis(aubl.) Sw. Sci Rep. 2019;9(1):3834.
Article
Google Scholar
Zhang K, Kuraparthy V, Fang H, Zhu L, Sood S, Jones DC. High-density linkage map construction and QTL analyses for fiber quality, yield and morphological traits using CottonSNP63K array in upland cotton (Gossypium hirsutumL.). BMC Genomics. 2019;20(1):889.
Article
CAS
Google Scholar
Si Z, Jin S, Chen J, Wang S, Fang L, Zhu X, Zhang T, Hu Y. Construction of a high-density genetic map and identification of QTLs related to agronomic and physiological traits in an interspecific (Gossypium hirsutum x Gossypium barbadense) F2 population. BMC Genomics. 2022;23(1):307.
Article
CAS
Google Scholar
Arias M, Hernandez M, Remondegui N, Huvenaars K, van Dijk P, Ritter E. First genetic linkage map ofTaraxacum koksaghyzRodin based on AFLP, SSR, COS and EST-SSR markers. Sci Rep. 2016;6:31031.
Article
CAS
Google Scholar
Yang Y, Zhang J, Zhang L, Gan L, Qin B, Liu S. Genetic diversity analysis ofTaraxacum kok-saghyzRodin germplasm by SSR markers. Chin Agric Sci Bull. 2016;32(3):7.
Google Scholar
McAssey EV, Gudger EG, Zuellig MP, Burke JM. Population genetics of the rubber-producing russian dandelion (Taraxacum kok-saghyz). PLoS ONE. 2016;11(1):e0146417.
Article
Google Scholar
Bai B, Wang L, Lee M, Zhang Y, Rahmadsyah, Alfiko Y, Ye BQ, Wan ZY, Lim CH, Suwanto A, et al. Genome-wide identification of markers for selecting higher oil content in oil palm. BMC Plant Biol. 2017;17(1):93.
Article
Google Scholar
Luo Z, Iaffaldano BJ, Zhuang X, Fresnedo-Ramirez J, Cornish K. Analysis of the firstTaraxacum kok-saghyztranscriptome reveals potential rubber yield related SNPs. Sci Rep. 2017;7(1):9939.
Article
Google Scholar
Zhang Y, Ren H, Zhang X, Wang L, Gao Q, Abudurezike A, Yan Q, Lu Z, Wang Y, Nie Q, et al. Genetic diversity and evolutionary patterns ofTaraxacum kok-saghyzRodin. Ecol Evol. 2021;11(12):7917–26.
Article
Google Scholar
Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet. 2011;12(7):499–510.
Article
CAS
Google Scholar
Lee JH, Seo J, Lar S, Jang SG, Zhang H, Lee AR, Cao FY, Kim NE, Lee J, Kwon SW. QTL analysis of rice grain size using segregating populations derived from the large grain line. Agriculture-Basel. 2021;11(6):565.
Article
CAS
Google Scholar
Hu XM, Wang GH, Du XM, Zhang HW, Xu ZX, Wang J, Chen G, Wang B, Li XH, Chen XJ, et al. QTL analysis across multiple environments reveals promising chromosome regions associated with yield-related traits in maize under drought conditions. Crop J. 2021;9(4):759–66.
Article
Google Scholar
Dhungana SK, Kim HS, Kang BK, Seo JH, Kim HT, Shin SO, Oh JH, Baek IY. Identification of QTL for tolerance to flooding stress at seedling stage of soybean (Glycine maxL. Merr.). Agronomy-Basel. 2021;11(5):908.
Article
CAS
Google Scholar
Li B, Lu X, Dou J, Aslam A, Gao L, Zhao S, He N, Liu W. Construction of a high-density genetic map and mapping of fruit traits in watermelon (Citrullus LanatusL.) based on whole-genome resequencing. Int J Mol Sci. 2018;19(10):3268.
Article
Google Scholar
Ma J, Pei W, Ma Q, Geng Y, Liu G, Liu J, Cui Y, Zhang X, Wu M, Li X, et al. QTL analysis and candidate gene identification for plant height in cotton based on an interspecific backcross inbred line population of Gossypium hirsutum × Gossypium barbadense. Theor Appl Genet. 2019;132(9):2663–76.
Article
CAS
Google Scholar
An Z, Zhao Y, Zhang X, Huang X, Hu Y, Cheng H, Li X, Huang H. A high-density genetic map and QTL mapping on growth and latex yield-related traits in Hevea brasiliensis Müll. ArgIndustrial Crops and Products. 2019;132:440–8.
Article
CAS
Google Scholar
Peng Z, Zhao C, Li S, Guo Y, Xu H, Hu G, Liu Z, Chen X, Chen J, Lin S, et al. Integration of genomics, transcriptomics and metabolomics identifies candidate loci underlying fruit weight in loquat. Hortic Res. 2022;9:uhac037.
Article
Google Scholar
Xin F, Zhu T, Wei S, Han Y, Zhao Y, Zhang D, Ma L, Ding Q. QTL mapping of Kernel Traits and Validation of a major QTL for Kernel length-width ratio using SNP and bulked segregant analysis in wheat. Sci Rep. 2020;10(1):25.
Article
CAS
Google Scholar
Yang Y, Qin B, Chen Q, Zhang J, Zhang L, Nie Q, Liu S. Comparative full-length transcriptome analysis provides novel insights into the regulatory mechanism of natural rubber biosynthesis inTaraxacum kok-saghyzRodin roots. Ind Crop Prod. 2022;175:114278.
Article
CAS
Google Scholar
Li T, Deng G, Su Y, Yang Z, Tang Y, Wang J, Zhang J, Qiu X, Pu X, Yang W, et al. Genetic dissection of quantitative trait loci for grain size and weight by high-resolution genetic mapping in bread wheat (Triticum aestivumL.). Theor Appl Genet. 2022;135(1):257–71.
Article
CAS
Google Scholar
Chen XX, Zhang T, Yu QW, Zhou W, An YM, Du BH, Guo CH. Cloning and functional analysis of F-box protein geneMsFTLin Alfalfa (Medicago sativaL.). J Plant Genet Res. 2019;20(03):750–9.
CAS
Google Scholar
Niephaus E, Muller B, van Deenen N, Lassowskat I, Bonin M, Finkemeier I, Prufer D, Schulze Gronover C. Uncovering mechanisms of rubber biosynthesis inTaraxacum koksaghyz-role of cis-prenyltransferase-like 1 protein. Plant J. 2019;100(3):591–609.
Article
CAS
Google Scholar
Epping J, van Deenen N, Niephaus E, Stolze A, Fricke J, Huber C, Eisenreich W, Twyman RM, Prufer D, Gronover CS. A rubber transferase activator is necessary for natural rubber biosynthesis in dandelion. Nat Plants. 2015;1(5):15048.
Article
CAS
Google Scholar
Hillebrand A, Post JJ, Wurbs D, Wahler D, Lenders M, Krzyzanek V, Prufer D, Gronover CS. Down-regulation of small rubber particle protein expression affects integrity of rubber particles and rubber content inTaraxacum brevicorniculatum. PLoS ONE. 2012;7(7):e41874.
Article
CAS
Google Scholar
Rodriguez-Concepcion M, Boronat A. Breaking new ground in the regulation of the early steps of plant isoprenoid biosynthesis. Curr Opin Plant Biol. 2015;25:17–22.
Article
CAS
Google Scholar
Estevez JM, Cantero A, Reindl A, Reichler S, Leon P. 1-Deoxy-D-xylulose-5-phosphate synthase, a limiting enzyme for plastidic isoprenoid biosynthesis in plants. J Biol Chem. 2001;276(25):22901–9.
Article
CAS
Google Scholar
Tata SK, Jung J, Kim YH, Choi JY, Jung JY, Lee IJ, Shin JS, Ryu SB. Heterologous expression of chloroplast-localized geranylgeranyl pyrophosphate synthase confers fast plant growth, early flowering and increased seed yield. Plant Biotechnol J. 2016;14(1):29–39.
Article
CAS
Google Scholar
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754–60.
Article
CAS
Google Scholar
Tang H, Zhang X, Miao C, Zhang J, Ming R, Schnable JC, Schnable PS, Lyons E, Lu J. ALLMAPS: robust scaffold ordering based on multiple maps. Genome Biol. 2015;16:3.
Article
CAS
Google Scholar
Arends D, Prins P, Jansen RC, Broman KW. R/qtl: high-throughput multiple QTL mapping. Bioinformatics. 2010;26(23):2990–2.
Article
CAS
Google Scholar
Mao X, Tao C, Olyarchuk JG, Wei L. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics. 2005;21(19):3787–93.
Article
CAS
Google Scholar
Li C, Tian D, Tang B, Liu X, Teng X, Zhao W, Zhang Z, Song S. Genome variation map: a worldwide collection of genome variations across multiple species. Nucleic Acids Res. 2021;49(D1):D1186–91.
Article
CAS
Google Scholar
Members C-N, Partners. Database resources of the National Genomics Data Center, China National Center for Bioinformation in 2022. Nucleic Acids Res. 2022;50(D1):D27–38.
Article
Google Scholar