Caminero Luna JA, Pérez Mendoza G, Rodríguez de Castro F. Multi-drug resistant tuberculosis, ten years later. Tuberculosis multirresistentediez años después. Med Clin (Barc). 2021;156(8):393–401. https://doi.org/10.1016/j.medcli.2020.08.018.
Article
CAS
Google Scholar
WHO, Global Tuberculosis Report 2020. (https://apps.who.int/iris/bitstream/handle/10665/336069/9789240013131-eng.pdf),20220603.
Zaw MT, Emran NA, Lin Z. Mutations inside rifampicin-resistance determining region of rpoB gene associated with rifampicin-resistance in mycobacterium tuberculosis. J Infect Public Health. 2018;11(5):605–10. https://doi.org/10.1016/j.jiph.2018.04.005.
Article
Google Scholar
Portelli S, Myung Y, Furnham N, Vedithi SC, Pires DEV, Ascher DB. Prediction of rifampicin resistance beyond the RRDR using structure-based machine learning approaches. Sci Rep. 2020;10(1):18120. https://doi.org/10.1038/s41598-020-74648-y.
Article
CAS
Google Scholar
Uddin MKM, Rahman A, Ather MF, et al. Distribution and frequency of rpoB mutations detected by Xpert MTB/RIF assay among Beijing and non-Beijing rifampicin resistant mycobacterium tuberculosis isolates in Bangladesh. Infect Drug Resist. 2020;10(13):789–97. https://doi.org/10.2147/IDR.S240408.
Article
Google Scholar
Chee CBE, Lim LKY, Ong RTH, et al. Whole genome sequencing analysis of multidrug-resistant tuberculosis in Singapore, 2006-2018. Eur J Clin Microbiol Infect Dis. 2021;40(5):1079–83. https://doi.org/10.1007/s10096-020-04100-6.
Article
CAS
Google Scholar
Shi J, Zheng D, Zhu Y, et al. Role of MIRU-VNTR and spoligotyping in assessing the genetic diversity of mycobacterium tuberculosis in Henan Province, China. BMC Infect Dis. 2018;18(1):447. https://doi.org/10.1186/s12879-018-3351-y.
Article
CAS
Google Scholar
Gupta A, Sinha P, Nema V, et al. Detection of Beijing strains of MDR M. tuberculosis and their association with drug resistance mutations in katG, rpoB, and embB genes. BMC Infect Dis. 2020;20(1):752. https://doi.org/10.1186/s12879-020-05479-5.
Article
CAS
Google Scholar
Tang CY, Ong RT. MIRUReader: MIRU-VNTR typing directly from long sequencing reads. Bioinformatics. 2020;36(5):1625–6. https://doi.org/10.1093/bioinformatics/btz771.
Article
CAS
Google Scholar
Maladan Y, Krismawati H, Wahyuni T, et al. The whole-genome sequencing in predicting mycobacterium tuberculosis drug susceptibility and resistance in Papua, Indonesia. BMC Genomics. 2021;22(1):844. https://doi.org/10.1186/s12864-021-08139-3.
Article
CAS
Google Scholar
Huang H, Ding N, Yang T, et al. Cross-sectional whole-genome sequencing and epidemiological study of multidrug-resistant mycobacterium tuberculosis in China. Clin Infect Dis. 2019;69(3):405–13. https://doi.org/10.1093/cid/ciy883.
Article
CAS
Google Scholar
Walker TM, Kohl TA, Omar SV, et al. Whole-genome sequencing for prediction of mycobacterium tuberculosis drug susceptibility and resistance: a retrospective cohort study. Lancet Infect Dis. 2015;15(10):1193–202. https://doi.org/10.1016/S1473-3099(15)00062-6.
Article
CAS
Google Scholar
Liu L, Zhao X, Wu X, et al. Prevalence and molecular characteristics of drug-resistant mycobacterium tuberculosis in Hainan, China: from 2014 to 2019. BMC Microbiol. 2021;21(1):185. https://doi.org/10.1186/s12866-021-02246-7.
Article
CAS
Google Scholar
Li D, Song Y, Yang P, Li X, Zhang AM, Xia X. Genetic diversity and drug resistance of mycobacterium tuberculosis in Yunnan, China. J Clin Lab Anal. 2019;33(5):e22884. https://doi.org/10.1002/jcla.22884.
Article
CAS
Google Scholar
Zheng C, Li S, Luo Z, et al. Mixed infections and rifampin Heteroresistance among mycobacterium tuberculosis clinical isolates. J Clin Microbiol. 2015;53(7):2138–47. https://doi.org/10.1128/JCM.03507-14.
Article
CAS
Google Scholar
Sun G, Luo T, Yang C, Dong X, Li J, Zhu Y, et al. Dynamic population changes in mycobacterium tuberculosis during acquisition and fixation of drug resistance in patients. J Infect Dis. 2012;206(11):1724–33. https://doi.org/10.1093/infdis/jis601.
Article
CAS
Google Scholar
Gopie FA, Commiesie E, Baldi S, et al. Should treatment of low-level rifampicin mono-resistant tuberculosis be different? J Clin Tuberc Other Mycobact Dis. 2021;23:100222. https://doi.org/10.1016/j.jctube.2021.100222.
Article
CAS
Google Scholar
Li Y, Pang Y, Zhang T, Xian X, Yang J, Wang R, et al. Genotypes of mycobacterium tuberculosis isolates circulating in Shaanxi Province, China. PLoS One. 2020;15(12):e0242971. https://doi.org/10.1371/journal.pone.0242971.
Article
CAS
Google Scholar
Al-Mahrouqi S, Ahmed R, Al-Azri S, Al-Hamidhi S, Balkhair AA, Al-Jardani A, et al. Dynamics of mycobacterium tuberculosis lineages in Oman, 2009 to 2018. Pathogens. 2022;11(5):541. https://doi.org/10.3390/pathogens11050541.
Article
Google Scholar
Elsayed MSAE. Applicability of using 15 MIRU-VNTR loci for genotyping of Mycobacterium avium subsp. paratuberculosis from two cattle farms in Egypt. Mol Biol Rep. 2019;46(6):6253–62. https://doi.org/10.1007/s11033-019-05065-2.
Article
CAS
Google Scholar
Antonenko PB, Kresyun VI, Antonenko KO. Clusters of mycobacterium tuberculosis genotypes in Odesa region. Mikrobiol Z. 2016;78(2):103–10. Russian 30141603.
Article
CAS
Google Scholar
Ghavidel M, Tadayon K, Mosavari N, et al. Introducing the best six loci in mycobacterial interspersed repetitive unit-variable-number tandem repeat (MIRU-VNTR) typing for mycobacterium tuberculosis genotyping. Rep Biochem Mol Biol. 2019;8(3):335–46. https://doi.org/10.1186/s12879-020-05479-5.
Article
CAS
Google Scholar
Refaya AK, Sivakumar S, Sundararaman B, Narayanan S. Polymorphism in the RD1 locus and its effect on downstream genes among south Indian clinical isolates of mycobacterium tuberculosis. J Med Microbiol. 2012;61(Pt 10):1352–9. https://doi.org/10.1099/jmm.0.044453-0.
Article
CAS
Google Scholar
Yu-Feng W, Chao J, Xian-Feng C. Drug-resistant tuberculosis can be predicted by mycobacterial interspersed repetitive unit locus. Front Microbiol. 2015;6:147. https://doi.org/10.3389/fmicb.2015.00147.
Article
Google Scholar
Cheng XF, Jiang C, Zhang M, et al. Mycobacterial interspersed repetitive unit can predict drug resistance of mycobacterium tuberculosis in China. Front Microbiol. 2016;7:378. https://doi.org/10.3389/fmicb.2016.00378.
Article
Google Scholar
Cox JAG, Taylor RC, Brown AK, Attoe S, Besra GS, Fütterer K. Crystal structure of mycobacterium tuberculosis FadB2 implicated in mycobacterial β-oxidation. Acta Crystallogr D Struct Biol. 2019;75(Pt 1):101–8. https://doi.org/10.1107/S2059798318017242.
Article
CAS
Google Scholar
Pérez-Lago L, Navarro Y, Herranz M, Bouza E, García-de-Viedma D. Differences in gene expression between clonal variants of mycobacterium tuberculosis emerging as a result of microevolution. Int J Med Microbiol. 2013;303(8):674–7. https://doi.org/10.1016/j.ijmm.2013.09.010.
Article
CAS
Google Scholar
Clemmensen HS, Knudsen NPH, Rasmussen EM, et al. An attenuated mycobacterium tuberculosis clinical strain with a defect in ESX-1 secretion induces minimal host immune responses and pathology. Sci Rep. 2017;7:46666. https://doi.org/10.1038/srep46666.
Article
Google Scholar
Soler-Arnedo P, Sala C, Zhang M, Cole ST, Piton J. Polarly localized EccE1 is required for ESX-1 function and stabilization of ESX-1 membrane proteins in mycobacterium tuberculosis. J Bacteriol. 2020;202(5):e00662–19. https://doi.org/10.1128/JB.00662-19.
Article
CAS
Google Scholar
Maitra A, Nukala S, Dickman R, et al. Characterization of the MurT/GatD complex in mycobacterium tuberculosis towards validating a novel anti-tubercular drug target. JAC Antimicrob Resist. 2021;3(1):dlab028. https://doi.org/10.1093/jacamr/dlab028.
Article
Google Scholar
Shafipour M, Shirzad-Aski H, Ghaemi EA, et al. Mycobacterium tuberculosis typing using allele-specific oligonucleotide multiplex PCR (ASO-PCR) method. Curr Microbiol. 2021;78(12):4009–13. https://doi.org/10.1007/s00284-021-02659-7.
Article
CAS
Google Scholar