Zhang K, Tang J, Wang Y, Kang H, Zeng J. The tolerance to saline-alkaline stress was dependent on the roots in wheat. Physiol Mol Biol Plant. 2020;26:947–54. https://doi.org/10.1007/s12298-020-00799-x.
Article
CAS
Google Scholar
Chuamnakthong S, Nampei M, Ueda A. Characterization of Na+ exclusion mechanism in rice under saline-alkaline stress conditions. Plant Sci. 2019;287:110171. https://doi.org/10.1016/j.plantsci.2019.110171.
Article
CAS
Google Scholar
Liu X, Xie X, Zheng C, Wei L, Li X, Jin Y, et al. RNAi-mediated suppression of the abscisic acid catabolism gene OsABA8ox1 increases abscisic acid content and tolerance to saline-alkaline stress in rice (Oryza sativa L.). Crop J. 2022;10:354–67. https://doi.org/10.1016/j.cj.2021.06.011.
Article
Google Scholar
Koffler BE, Luschin-Ebengreuth N, Zechmann B. Compartment specific changes of the antioxidative status in Arabidopsis thaliana during salt stress. J Plant Biol. 2015;58:8–16. https://doi.org/10.1007/s12374-014-0264-1.
Article
CAS
Google Scholar
Wang H, Wu Z, Chen Y, Yang C, Shi D. Effects of salt and alkali stresses on growth and ion balance in rice (Oryza sativa L.). Plant Soil Environ. 2011;57(6):286–94. https://doi.org/10.17221/36/2011-PSE.
Article
Google Scholar
Kordrostami M, Rabiei B, Kumleh HH. Different physiobiochemical and transcriptomic reactions of rice (Oryza sativa L.) cultivars differing in terms of salt sensitivity under salinity stress. Environ Sci Pollut Res. 2017;24:7184–96. https://doi.org/10.1007/s11356-017-8411-0.
Article
CAS
Google Scholar
Das P, Manna I, Biswas AK, Bandyopadhyay M. Exogenous silicon alters ascorbate-glutathione cycle in two salt-stressed indica rice cultivars (MTU 1010 and Nonabokra). Environ Sci Pollut Res. 2018;25:26625–42. https://doi.org/10.1007/s11356-018-2659-x.
Article
CAS
Google Scholar
Ma X, Xia H, Liu Y, Wei H, Zheng X, Song C, et al. Transcriptomic and metabolomic studies disclose key metabolism pathways contributing to well-maintained photosynthesis under the drought and consequent drought-tolerance in rice. Front Plant Sci. 2016;7:1886. https://doi.org/10.3389/fpls.2016.01886.
Article
Google Scholar
Wang H, Takano T, Liu S. Screening and evaluation of saline-alkaline tolerant germplasm of rice (Oryza sativa L.) in soda saline-alkali soil. Agronomy. 2018;8:205. https://doi.org/10.3390/agronomy8100205.
Article
CAS
Google Scholar
Li XM, Chen MJ, Li J, Ma LJ, Bu N, Li YY, et al. Effect of endophyte infection on chlorophyll α fluorescence in salinity stressed rice. Biol Plant. 2014;58:589–94. https://doi.org/10.1007/s10535-014-0428-3.
Article
CAS
Google Scholar
Sun J, Xie D, Zhang E, Zheng H, Wang J, Liu H, et al. QTL mapping of photosynthetic-related traits in rice under salt and alkali stresses. Euphytica. 2019;215:147. https://doi.org/10.1007/s10681-019-2470-x.
Article
CAS
Google Scholar
Wei LX, Lv BS, Wang MM, Ma HY, Yang HY, Liu XL, et al. Priming effect of abscisic acid on alkaline stress tolerance in rice (Oryza sativa L.) seedlings. Plant Physiol Bioch. 2015;90:50–7. https://doi.org/10.1016/j.plaphy.2015.03.002.
Article
CAS
Google Scholar
Bu N, Li X, Li Y, Ma C, Ma L, Zhang C. Effects of Na2CO3 stress on photosynthesis and antioxidative enzymes in endophyte infected and non-infected rice. Ecotox Environ Safe. 2012;78:35–40. https://doi.org/10.1016/j.ecoenv.2011.11.007.
Article
CAS
Google Scholar
Li X, Ma L, Bu N, Li YY, Zhang LH. Endophytic infection modifies organic acid and mineral element accumulation by rice under Na2CO3 stress. Plant Soil. 2017;420:93–103. https://doi.org/10.1007/s11104-017-3378-7.
Article
CAS
Google Scholar
Ren XN, Shan Y, Li X, Wang LL, Li YY, Ma LJ, et al. Endophytic infection programs the ascorbate-glutathione cycle in rice (Oryza sativa L.) under Na2CO3 stress. Appl Ecol Environ Res. 2021;19(3):1895–907. https://doi.org/10.15666/aeer/1903_18951907.
Article
Google Scholar
Zhao X, Li C, Wan S, Zhang T, Yan C, Shan S. Transcriptomic analysis and discovery of genes in the response of Arachis hypogaea to drought stress. Mol Biol Rep. 2018;45:119–31. https://doi.org/10.1007/s11033-018-4145-4.
Article
CAS
Google Scholar
Dang Z, Zheng L, Wang J, Gao Z, Wu S, Qi Z, et al. Transcriptomic profiling of the salt-stress response in the wild recretohalophyte Reaumuria trigyna. BMC Genomics. 2013;14:29. https://doi.org/10.1186/1471-2164-14-29.
Article
CAS
Google Scholar
Rui H, Zhang X, Shinwari KI, Zheng L, Shen Z. Comparative transcriptomic analysis of two Vicia sativa L. varieties with contrasting responses to cadmium stress reveals the important role of metal transporters in cadmium tolerance. Plant Soil. 2018;423:241–55. https://doi.org/10.1007/s11104-017-3501-9.
Article
CAS
Google Scholar
Baldoni E, Bagnaresi P, Locatelli F, Mattana M, Genga A. Comparative leaf and root transcriptomic analysis of two rice japonica cultivars reveals major differences in the root early response to osmotic stress. Rice. 2016;9:25. https://doi.org/10.1186/s12284-016-0098-1.
Article
Google Scholar
Xu P, Guo Q, Meng S, Zhang X, Shen X. Genome-wide association analysis reveals genetic variations and candidate genes associated with salt tolerance related traits in Gossypium hirsutum. BMC Genomics. 2021;22(1):26. https://doi.org/10.1186/s12864-020-07321-3.
Article
CAS
Google Scholar
Johnson SM, Lim FL, Finkler A, Fromm H, Slabas AR, Knight MR. Transcriptomic analysis of Sorghum bicolor responding to combined heat and drought stress. BMC Genomics. 2014;15:456. https://doi.org/10.1186/1471-2164-15-456.
Article
CAS
Google Scholar
Xu C, Xia C, Xia Z, Zhou X, Huang J, Huang Z, et al. Physiological and transcriptomic responses of reproductive stage soybean to drought stress. Plant Cell Rep. 2018;37:1611–24. https://doi.org/10.1007/s00299-018-2332-3.
Article
CAS
Google Scholar
You J, Zhang Y, Liu A, Li D, Wang X, Dossa K, et al. Transcriptomic and metabolomic profiling of drought-tolerant and susceptible sesame genotypes in response to drought stress. BMC Plant Biol. 2019;19:267. https://doi.org/10.1186/s12870-019-1880-1.
Article
CAS
Google Scholar
Amaral MN, Arge LWP, Benitez LC, Danielowski R, Silveira SFS, Farias DR, et al. Comparative transcriptomics of rice plants under cold, iron, and salt stresses. Funct Integr Genomic. 2016;16:567–79. https://doi.org/10.1007/s10142-016-0507-y.
Article
CAS
Google Scholar
Mansouri M, Naghavi MR, Alizadeh H, Mohammadi-Nejad G, Mousavi SA, Salekdeh GH, et al. Transcriptomic analysis of Aegilops tauschii during long-term salinity stress. Funct Integr Genomic. 2019;19:13–28. https://doi.org/10.1007/s10142-018-0623-y.
Article
CAS
Google Scholar
Osthoff A, Rose PD, Baldauf JA, Piepho HP, Hochholdinger F. Transcriptomic reprogramming of barley seminal roots by combined water deficit and salt stress. BMC Genomics. 2019;20:325. https://doi.org/10.1186/s12864-019-5634-0.
Article
Google Scholar
Dubey S, Misra P, Dwivedi S, Chatterjee S, Bag SK, Mantri S, et al. Transcriptomic and metabolomic shifts in rice roots in response to Cr (VI) stress. BMC Genomics. 2010;11:648. https://doi.org/10.1186/1471-2164-11-648.
Article
CAS
Google Scholar
Evers D, Legay S, Lamoureux D, Hausman JF, Hoffmann L, Renaut J. Towards a synthetic view of potato cold and salt stress response by transcriptomic and proteomic analyses. Plant Mol Biol. 2012;78:503–14. https://doi.org/10.1007/s11103-012-9879-0.
Article
CAS
Google Scholar
Yue J, Zhang X, Liu N. Cadmium permeates through calcium channels and activates transcriptomic complexity in wheat roots in response to cadmium stress. Genes Genom. 2017;39:183–96. https://doi.org/10.1007/s13258-016-0488-1.
Article
CAS
Google Scholar
Li XC, Liao YY, Leung DWM, Wang HY, Chen BL, Peng XX, et al. Divergent biochemical and enzymatic properties of oxalate oxidase isoforms encoded by four similar genes in rice. Phytochemistry. 2015;118:216–23. https://doi.org/10.1016/j.phytochem.2015.08.019.
Article
CAS
Google Scholar
Hurkman W, Tanaka CK. Effect of salt stress on germin gene expression in barley roots. Plant Physiol. 1996;110:971–7. https://doi.org/10.1104/pp.110.3.971.
Article
CAS
Google Scholar
Valentovičová K, Halušková Ľ, Huttová J, Mistrík I, Tamás L. Effect of heavy metals and temperature on the oxalate oxidase activity and lignification of metaxylem vessels in barley roots. Environ Exp Bot. 2009;66:457–62. https://doi.org/10.1016/j.envexpbot.2009.03.006.
Article
CAS
Google Scholar
Garg R, Jhanwar S, Tyagi AK, Jain M. Genome-wide survey and expression analysis suggest diverse roles of glutaredoxin gene family members during development and response to various stimuli in rice. DNA Res. 2010;17:353–67. https://doi.org/10.1093/dnares/dsq023.
Article
CAS
Google Scholar
Meyer Y, Siala W, Bashandy T, Riondet C, Vignols F, Reichheld JP. Glutaredoxins and thioredoxins in plants. BBA-Mol Cell Res. 2008;1783:589–600. https://doi.org/10.1016/j.bbamcr.2007.10.017.
Article
CAS
Google Scholar
Verma PK, Verma S, Tripathi RD, Pandey N, Chakrabarty D. CC-type glutaredoxin, OsGrx_C7 plays a crucial role in enhancing protection against salt stress in rice. J Biotechnol. 2021;329:192–203. https://doi.org/10.1016/j.jbiotec.2021.02.008.
Article
CAS
Google Scholar
Guo Y, Huang C, Xie Y, Song F, Zhou X. A tomato glutaredoxin gene SlGRX1 regulates plant responses to oxidative, drought and salt stresses. Planta. 2010;232:1499–509. https://doi.org/10.1007/s00425-010-1271-1.
Article
CAS
Google Scholar
Morita S, Yamashita Y, Fujiki M, Todaka R, Nishikawa Y, Hosoki A, et al. Expression of a rice glutaredoxin in aleurone layers of developing and mature seeds: subcellular localization and possible functions in antioxidant defense. Planta. 2015;242:1195–206. https://doi.org/10.1007/s00425-015-2354-9.
Article
CAS
Google Scholar
Verma PK, Verma S, Tripathi RD, Chakrabarty D. A rice glutaredoxin regulate the expression of aquaporin genes and modulate root responses to provide arsenic tolerance. Ecotox Environ Safe. 2020;195:110471. https://doi.org/10.1016/j.ecoenv.2020.110471.
Article
CAS
Google Scholar
Wang G, Ding X, Yuan M, Qiu D, Li X, Xu C. Dual function of rice OsDR8 gene in disease resistance that thiamine accumulation. Plant Mol Biol. 2006;60:437–49. https://doi.org/10.1007/s11103-005-4770-x.
Article
CAS
Google Scholar
Nolan TM, Vukašinović N, Liu D, Russinova E, Yin Y. Brassinosteroids: multidimensional regulators of plant growth, development, and stress responses. Plant Cell. 2020;32:295–318. https://doi.org/10.1105/tpc.19.00335.
Article
CAS
Google Scholar
Planas-Riverola A, Gupta A, Betegón-Putze I, Bosch N, Ibañes M, Caño-Delgado AI. Brassinosteroid signaling in plant development and adaptation to stress. Development. 2019;146:dev151894. https://doi.org/10.1242/dev.151894.
Article
CAS
Google Scholar
Chaves MM, Flexas J, Pinheiro C. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot. 2009;103:551–60. https://doi.org/10.1093/aob/mcn125.
Article
CAS
Google Scholar
Kong W, Yu X, Chen H, Liu L, Xiao Y, Wang Y, et al. The catalytic subunit of magnesium-protoporphyrin IX monomethyl ester cyclase forms a chloroplast complex to regulate chlorophyll biosynthesis in rice. Plant Mol Biol. 2016;92:177–91. https://doi.org/10.1007/s11103-016-0513-4.
Article
CAS
Google Scholar
Zhou Y, Gong Z, Yang Z, Yuan Y, Zhu J, Wang M, et al. Mutation of the light-induced yellow leaf 1 gene, which encodes a geranylgeranyl reductase, affects chlorophyll biosynthesis and light sensitivity in rice. PLoS ONE. 2013;8:e75299. https://doi.org/10.1371/journal.pone.007529.
Article
CAS
Google Scholar
Zhang H, Li J, Yoo JH, Yoo SC, Cho SH, Koh HJ, et al. Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Plant Mol Biol. 2006;62:325–37. https://doi.org/10.1007/s11103-006-9024-z.
Article
CAS
Google Scholar
Li C, Hu Y, Huang R, Ma X, Wang Y, Liao T, et al. Mutation of FdC2 gene encoding a ferredoxin-like protein with C-terminal extension causes yellow-green leaf phenotype in rice. Plant Sci. 2015;238:127–34. https://doi.org/10.1016/j.plantsci.2015.06.010.
Article
CAS
Google Scholar
He L, Li M, Qiu Z, Chen D, Zhang G, Wang X, et al. Primary leaf-type ferredoxin 1 participates in photosynthetic electron transport and carbon assimilation in rice. Plant J. 2020;104:44–58. https://doi.org/10.1111/tpj.14904.
Article
CAS
Google Scholar
Ramamoorthy R, Vishal B, Ramachandran S, Kumar PP. The OsPS1-F gene regulates growth and development in rice by modulating photosynthetic electron transport rate. Plant Cell Rep. 2018;37:377–85. https://doi.org/10.1007/s00299-017-2235-8.
Article
CAS
Google Scholar
Yong H-Y, Zou Z, Kok E-P, Kwan B-H, Chow K, Nasu S, et al. Comparative transcriptome analysis of leaves and roots in response to sudden increase in salinity in Brassica napus by RNA-seq. Biomed Res Int. 2014;2014:467395. https://doi.org/10.1155/2014/467395.
Article
CAS
Google Scholar
Morgil H, Tardu M, Cevahir G, Kavakli İH. Comparative RNA-seq analysis of the drought-sensitive lentil (Lens culinaris) root and leaf under short- and long- term water deficits. Funct Integr Genomic. 2019;19(5):715–27. https://doi.org/10.1007/s10142-019-00675-2.
Article
CAS
Google Scholar
Ren X, Shan Y, Li X, Fan J, Li Y, Ma L. Application of RNA sequencing to understand the benefits of endophytes in the salt-alkaline resistance of rice seedlings. Environ Exp Bot. 2022;196:104820. https://doi.org/10.1016/j.envexpbot.2022.104820.
Article
CAS
Google Scholar
Chen S, Xing J, Lan H. Comparative effects of neutral salt and alkaline salt stress on seed germination, early seedling growth and physiological response of a halophyte species Chenopodium glaucum. Afr J Biotechnol. 2012;11(40):9572–81. https://doi.org/10.5897/AJB12.320.
Article
CAS
Google Scholar
Sui N, Yang Z, Liu M, Wang B. Identification and transcriptomic profiling of genes involved in increasing sugar content during salt stress in sweet sorghum leaves. BMC Genomics. 2015;16:534. https://doi.org/10.1186/s12864-015-1760-5.
Article
CAS
Google Scholar
Zhao Y, Li MC, Konaté MM, Chen L, Das B, Karlovich C, et al. TPM, FPKM, or normalized counts? A comparative study of quantification measures for the analysis of RNA-seq data from the NCI patient-derived models repository. J Transl Med. 2021;19(1):269. https://doi.org/10.1186/s12967-021-02936-w.
Article
CAS
Google Scholar
Florea L, Song L, Salzberg SL. Thousands of exon skipping events differentiate among splicing patterns in sixteen human tissues. F1000Res. 2013;2:188. https://doi.org/10.12688/f1000research.2-188.v2.
Article
Google Scholar